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SUMMARY

The method described in this paper uses the novel approach of first
predicting the shape of the bow shock wave and then using this to caloulate the
drag through a computation of the total rate of entropy production due to the bow
shock wave, Both blunted and sharp forebodies can be treated in this way and
comparison with experimental duta shows that drag predictions with a typical
accuracy of % are readily achiecved, The method has been expressly developed to
be econonical in its use of computer time s0 as to allow of its repetitive use in
optimisation studies,.
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1. Introduction

Recent studaes have shown, thot 'or most constraints of practical importance,
the optimum forebody shape for a supersonic vehicle will feature a considereble
degrec of nose rounding. Existing simple Llheoretical methods for calculating
forebody drag are inadequale since such shapes are outside iheir range of
validily, Oplimisation siudies are thus of'ten restricted to the time consuming
and uncertain process of' interpolation using available expcrimental data. Thus,
there 1s an urgent need for a method of forebody drag estimation which is
sufficiently accurate to enable promising forebody shapes to be readily identafied,
and yet 1s sufficiently simple to allow of its repetitive use in coptimisation
studies without undue cost in computing time, Since it will be required to cope
with a wide range of forebody configurations, it 13 important that such 2 method
makes as little use as possible of empirical correlailions whosevvelidity ia
necessarily confined to the range of experimental data used in their compilation.

kost simple methods of pressure drag estimation proceed through the prediction
of pressure distributions vhich, vhen aintegrated, yield the pressure drag. This
has proved to be a difficult task in the case of round nosed bodies unless extensive
empirical data are empleoyed, The major difficulty lies in 1he treatment of regions
of high surface curvature and their downstream influence.

However, following the successful development of methods for the estimation
of forehody pressure drag from measured bow shock-wave shapes,z attention has
been gaven to the possibilitly of predicting the shock wave shape for a given body,
and hence estimeting its drag. Thas approach has met with some success. The
purpoce of this note is to outline the essential features of this schene as this
appreoach may be of help to other workers in the field of drazg estimation. Yhile
the method is st111 capable of refinement and extension, sufficient success has
been achieved to justify making the basic approach more generally available.

In the following description of the method, attention is concentrated on the
simplest practical forebody shape which incorporates nose rounding, namely the
spherically blunted cone. This shape was chosen becouse of its simplicity and
because sufficient reliable experimental drag data exist to enable the success of
the proposed prediction rmethod to be judged. However, as indicated in the
following section, the prediction method is capable of dealing with a wide range
of other forebody shapes.

In zssessing the success of this method it must be appreciated that it is
unlikely that any simple method will ever be developed which will allow of the
very accurate estimation of absolute levels of drag for non-slender shapes.
However, although one of the aims of the present rethod is to predict absolute
levels of drag with reasonable precision, the primary purpose is to predict reliable
trends in the varaation of drag coefficient with body geometry, in order to enable
optimum shapes to be identified reasonably accurately and thus minimise the
inevitable 'cut-and-iry' wind tunnel tests.

2e The basic scheme

As indicated above, the method adopted is to predict the shape of the bow
shock wave for a given body and hence use the existing calculaetion procedures to
estimate the forebody drag, The problem of predicting the forebody drag has been
simpliified by dividing the bow shock wave into various zones. For example, in
the case of the blunted cone, 2t is sufficient to consider three zones which may
be defined by considering the regions of influence of the various parts of the
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body (sec Fig, 1). These are:=
I, the shock-wave shape due to the
bluntaing

I1, & near-conical portion of the shock

viove

IIT, +the decay of the bow shock wave to a
Mach wave,

Zone I arises from the cmbedded subsonic flow close to the axis of
symmetry and the interaction between the bow shock wave and lhe expansion from
the sonic point 1o the bluntness/cone junction, The inTluence of the bluntness
on ithe shock wave terminates when the bow shock wave is intersected by the most
dovmstream characteristic to spring from the bluntness/cone junction,

Zone II arises from the flow over the conical portion of the body and lies
between the end of Y%one I and the point at which the mosi upstream characteristic
of the expansion fan radiating from the discontinuity of slope at the base of
the cone intersects the shock wave,

Zone 111 is determined by the interaction of the expansion from the base of
the cone and the bow shock wave, This zone stretches from the end of Zone I1
to infinity.

The prediction methed used is a marching solution predicting the shape and
location of Zones I, II, and III in that order and using each prediction to
provide boundary conditions for the next stage of the calculation.

Accordingly, the methods used for each section will be described in turn,
followed by a description of the methods used to match each solution to form the
vhole sheck wave,

More complex body geometries are dealt with by approrimating the body shape
by a "blunting" followed by = serics of cone frustrums. The complete.bow shock
wave due to the blunting and the first cone frustrum is then calculated, This
blunted cone is then treated as the "bluntness" applied to the second cone
f'rustrum and the previously calcrulated shock shape is used as an input to this
second calculation. This cycle is repeated until the bow shock wave due to' the
complete body has been calculaled. Because of the simplicity of the calculation
method adopted, computing time for each cycle 1s extremely short (approx. 8 secs
machine running taime on an I,C,L. KDk-9), Thus a large number of cone frustrums
may be used to approximate ihe shape of a smooth body to a high degree of accuracy.

2.1 Zone I - The part of the shock due to the blunting

The shape of this part of the bow shock wave is determined by the geometrical
shape of' the bluntness alone and scales linearly as the bluntness size, The
prediction method uses experimentally measured shock-wave shapes for isolated
bodies which are geometrically similar to that part of the nose blunting that is
wetted by the flow., Thus, mecasured shock wave shapes for isolated spheres are
used in the calculation of bow shock waves due to spherically blunted cones while
measured shock-wave shapes for isolated discs are used in the treatmeni of flat-
faced truncated cones, The acceptance of this empirical input avoids the
exceedingly arducus task of computing the mixed subsonic/transonic flow around the
bluntness. It does not, however, unduly restrict the range of the whole
prediction method, Fur cxample, a single measured shock-wave shape for an
isolated sphere at a given Mach number is all that is required to predict the
drag of any spherrcally blunied configuration at that Mach number. Indeed, such 2
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measured shock-wave shape for an isolated sphere is sufficient for the prediction
of the drag of any body in which the blunting takes the form of a segment of a
sphere whether or not there 1s a discontinuity of slope at the bluntness/cone
junction. However, all the examples presented in this paper are for spherically
blunted cones in which the distribution of surface slope is continuous (i.e. there
is no change in slope at the sphere/cone jurction). The measured shock-wave
shapes must be accurate - to the same standard as required for their use to
estimate forebody drag?2,7) - and to extend to values of y/D such that the shock
angle closely approaches a Mach wave. However, in fitting a "standard" bluntness
shape to the stagnation region of an arbitary forebedy geometry some degree of
approximation is probably acceptable. Inverse numerical calculations of the
embedded subsonic flow due to a prescribed shock wave have shown that extremely
smell differences in shock-wave shape produce widely different body geometries in
the vicinity of the stagnation point. Thus some discrepancies in the fititing of
the given body shape by & "standard bluntness" in the staghation region is probably
reagonable provided that the fit is good in the vicinity of the sonic point - which
can readily be established by standard methods.

In the computational scheme adopted this shock-wave shape 13 specified by a
table of pairs of co-ordinates of points on the shock wave due to an "isclated
bluntness" of unit maximum dismeter together with shock slopes at these points.

The prediction of this portion of the shock wave thus reduces to simply taking
each pair of co-ordinates and scaling these by the factor required to scale the
"igolated bluntness" so that it is identical with the actual blunting over the
wetted area of the latter,

2,2 Zone 1II - Quasi-conical shock wave

It is commonly observed that for blunted cones the zone of the bow shock wave
lying immediately downstream of the end of {he highly CF ed section (Zone I) is
virtually conical. Several workers, noteably Traugott'ﬁy have commented upon the
appearence of points of inflection in bow shock waves due to blunted bodies,

These are significant only under rather extreme conditions such as large cone

angles for which the Mach number of the flow over the surface of the cone is near
unity, and, in general, are important only when internal shock waves are present
between the bow shock wave and the body. During the course of measurements of
observed bow shock waves about a wide range of blunted cones, it was found to be
difficult to distinguish a point of inflection despite the fact that the measurement
accuracy was amply sufficient to enable satisfactory estimates of overall forebody
pressure drag to be made. It is, therefore, considered unnecessary to allow for
deviations of the bow shock wave in Zone II from a conical form provided that the
mean shock angle is correctly predicted.

However, it must be noted that the true mean shock angle is not that which
corresponds to a sharp cone of the same semi-apex angle as the conical portion of
the body. This discrepzncy arises from the presence of an entropy layer enveloping
the surface of the cone. This layer comprises the gas which has passed through the
strong shock wave near the axis of symmetry and has suffered a large increase an
entropy. It is commonly observed that the surface pressure on the conical portion
of blunted cones attains an approximetely constant value a short distance down-
stream of the bluntnesq/cone junction (i,e. although important "overexpansions"
occur, the large percentage deviations from a uniform pressure are confined to 2
small region near the junction), Thus, the greater entropy of the gas near the
cone surface implies that the gas density is correspondingly low. Accordingly,
by analogy with a boundary layer, this entropy layer may be regarded as having a
displacement effect, Unlike the houndary layer, the displacement area of the
entropy layer is constant over most of the surface of the conical part of the body
because high shock angles are confined to a region of the shock wave close to the
axis of symmetry. As the entropy layer develops downstream it is spreed around an
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increasing cone periphery. This means that the displacement thickness decreases
an the downstream direction, making the mean inclination of the displacement
surface less than that of the sclid swface of the conical part of the body.

The excess of entropy in the entropy layer over that of the rest of the flow
between the bow shock wave and the body arises because the shock angles 1n Zone I
are greater than they would have been 1f the body had been sharp. Thus, the
excess entropy is due to the shape of the shock wave in Zone I. Since the change
in shock angle due to the presence of the entropy layer, although of significance
in calculating the overall drag, is small, it 1s justifisble to mske approxamations
in the calculation of the displacement area,

A simple relationship may be developed along the lines indicated below:-

Consader a blunted cylinder, 1In this case the entropy layer arises as a
result of the whole shock wave because the bow shock wave due to the parallel
portion of the body 1s the limiting case of a Mach wave. Thus, we can write for
each streamline, considering conditions in the streamline and at a point downstream
of the bow shock wave:-

A8 = cp.loge(Td/'iw) + R.loge(po/pd).
If' the downstream point is far downstream of the nose, p a = P Also, if the
AS
free streem Mach number i1s not toc high, then -—— << 1 everywhere. Thus,
Yo,

using the series expansion for loge and the binomial theorem:-

h =~ 1 4 E- eeo (1)
Too ycv

and since p a = P, we have o de = .oml‘cm
Pa A3

and hence —_ a1 . — ese(2)
poo ycv

To obtain the downstream velocity we use the energy equation

2 2 < a
U B ud. ad
— = e ; L] (3)
2 (y-1) 2 (y-1)
1
a T \F
oa (=]
and since - = ("' > »
ad Tcl
a? T A3
—f-' = 4 = 1 & — (from (1)).
o lo Yoy



Then substituting in (3), we obtain

1 AS
Fas 1 - .2 . - LE N (L")
- ye,

8; lp}:

Now the effective displacement area produced by the entropy layer 1is
oo p.u
d'd
5 - f (1-——-——-).27tydy ees(5)
[¢) £ 0

and from (2) and (4) we obtain

pu a3 1
dd = 1 - — 1 4+
H]
Pt Yy (y-1 )}%o
A3
= 1=2—, say
O
1 1
where Z = — 1 o ees(6)
y (y=1n
o AS
Hence 6 = 2 f 2 - xy dy.
o ¢

v

This can be related to K, the forebody drag, by means of Oswatitsch's
theorem (Ref.1, p.209) which gaves (to farst order in 4S)

v OO
K = 20T '/ ASRy dy. ees(7)
o
Hence
ZD 1
[ a
6 = T = - A.A'GDOY.(Y_"I).Mm ...(8)
ovpoo [e5) 2
Digplacement Area 1
S0 n = = _CD 1‘+ (Y—‘l)o]lio: » o--(9)
Max. cross—-sectional area of body 2

Thus the total displacement thickness is directly related to the forebody
pressure drag of the blunting (in this case the complete body). It should be
noted that equation (9) does not involve the geometry of the body in eny way

except through Cyp.
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Turning now to the case where the part of the body downstream of the
blunting has & non-zero inclination to the free-stream {and hence a non-zero
pressure drag), two additional factors have to be taken into account. Firstly,
the entire flow between the body and the bow shock wave suffers some increase in
entropy even if the blunting is vanishingly small, The entropy layer then
results from the excess of' entropy near the body compared to the entropy of the
majority of flow within the shock layer., Neglecting second order effects (such
as the fact that the presence of the entropy layer alters the strength of the
conical portion of the' shock wave and hence reacts back on the entropy layer
thickness), the whole of the excess entropy production is confined to Zone I of
the shock wave, and results from the replacement of part of the conical shock
wave due to & sharp nosed cone by the curved shock due to the blunting. Recalling
the proportionality between drag and rate ¢f entropy production, it is reasonable,
therefore, to allow for this effect by replacing Cp in equation (9) by the
difference in drag coefficients between that of the "isolated bluntness" and the
section of the conical body replaced by the bluntness. Further, the pressure on
the surface of the conical portion of the body a1s higher than free-stream pressure.
8ince the Mach numbers, including those within the entropy layer, are considerably
in excess of unity, the mass flux densities close to the surface are increased
because the Mach number is lower than it would have been had the surface been
aligned with the free-stream dairection. If the mess flux densities over the
inclined and cylindrical surfaces are related by the isentropic relation to
sufficient accuracy {which will be the case tnless the inclined surface is at a
large angle to the free-stream direction) and if the Mach numbers in the entropy
layer are not too close to unity then we may write:-

wl
_ Displacement area on inclined surface > ((y ML:C}S/Z +I)’?.......(10)

~ Displacement area on cylindrical surface

This appreoximation implies that the main cause of the variation of mass flux per
unit area is the change in density. This is physically reasonable for supersonic
Mach numbers not tco close to unity when the kinetic cnergy of the gas 1s
considerably larger than its intermal energy so that small changes in velocity
are accompanied by large changes in density.

To the same degree of approximation as used earlier we may write

CP = Cp where Cp is the pressure coefficient over the forward
3 3

facing surfaces of a sharp cone of the same apex angle as the conical portion of
the body. That is tc say, a1t is considered necessary to allow for the effects

of the entropy layer on shock angle, but that this effect is sufficiently small to
allow the use of approximate methods in its calculation without incurring
significant errors in the computation of the overall drag of the body. Thus, in
calculating the entropy layer thickmness (but not the total drag) it may be assumed
that the angle of the conical part of the shock wave is the same as that due to 2
shevp cone of the same apex angle as the conieal portion of the hody. This is

no more than to say that i1f the fractional change of total drag due to the presence
of the entropy layer is § then ¥ is significant compared to 1 but that j' may be
neglected - a not unreasonable assumption for most cases.

Thus the effective cone angle (i.e, the inclination of the displacement
surfaece to the free-stream) is calculated from the geometry of the conical part
of the body and the displacement area of the entropy layer computed as described
above - which, as discussed earlier, is assumed to be constant. The shock wave
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inecli aylon in Zone II 1s then computed using the exact numfr}cal solutionsg of
Simms\3) and the interpolation tables of Crabbe and Cambell L .

2.3 Zone III - Decaving axi-symmetric shock wave

The interaction of the bow shock wave with the exponsion fan could be
caleulated emetly by the melhod of characterastics provided the flow conditions
on the most upstream choracteristic were known. This would bhe a time consuming
process and hence it would he undesirable $o include a characteriatics calculation
anto the present method especially since it would have Lo be a complex non-
homentropic calculation including shock waves. Again, it 18 doubtful whether,
with reasonable effort, the reguisite boundary conditions could be specified with
sufficient accuracy to merit this approsch, The prime difficulty that has to be
overcome in developing a simpler approach is the variation in flow properties
between the shock and the body. This variation is due to two causes.

Firstly, the presence of the entropy layer introduces significant gradients
in ithe flow properties close to the body surface. However, &t the base the
entropy layer 1s sprezd out over a large periphery and hence its effects are
generally confined to distances from the body which are small compared to the
distance between the shock and the body (measured along the most upstream character-
istic of the expansion). The entropy layer would thus be expected to cause only
& small displacement of the outgoing characterastics from the positions that they
would have taken up in the absence of the entropy layer.

The seccnd cause of variations in flow properties between the body and the
shock wave is that, even 1f the body were a sharp cone, flow property variations
of thais type would occur because of the axisymmetric nature of the flow., Thus
the outgoing characterictics are curved and the degree of curvature depends on ithe
relative magnitudes of the flow deflections at the shock end at the body. Since
the present objective i1s to predict the shock-wave shape and not the whole flow
field the parameter of importance is the mean inclination of the characteristic
(95 say)* and its relationship to B {the shock angle to the free-strezm at the
point where the characteristic iniersects the shock wave). If a unique relation-
ship between @ and P could be established for a given free-stream Nach number then
a simple solution for the shape of the shock in Zone III 1s possible. Such a
simple solution would, of course, apply only to the general class of flow
situations heing considered, 1.e., the interaction of an axisymmretric shock wave and
an expansion, and not to all flow fields,

In the analopous two-dimensional case such a relation is known to exist since,
to a high degree of approximalion, the shock wave bisects the angle between the
chiracteristics upstream and downstream of the shock wave,

i.e. (/4,4 g)/2 = A —eme (11)
or /gg+f6 ¢‘2F3
hence p ' 2[3 - cene-(r2)
The same relalionship must apply to all flows if gfis replaced by ¢ _ where

ﬂss 1s the inclination of the characteristic immediately downstream of th& shock

wave, .
/Similar
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* In this context the "mean inclination" of the characteristic 1s the angle
between the free stream ond the straight line joining the points at which the
characterastic intersects the body and at which it intersects the shock wave.



Similar relations such as:- )
Pom = Fpop) i FAE) o (D)

might also be expected for axi-symmetric flow. thile it is not proposed to
demonstrate this from first pranciples, there 1s strong circumstantial evidence

to support this suggestion. TFor example, this suggestion can be tested
experimentally wherever the expansion fan 18 centred on a discontinuity of surface
slope. Then the origin of the characteristics is known (i.e. at the discontinuity)
so that the mean inclination of any characteristic intersecting a point on the
shock wave may be readily estimated from a measured shock-wave shape. This has

been done for a disc, two cut spheres, and a 40° half angle cone, the results
being shown in Fig. (22).

In this figure these experimental resulte are compared with exact numerical
solutions which were oblained using a computer program due to Moore?.  The
numerical results give the ﬁ,ﬂsrelationship for the most upstream characteristic
of the expansion fan (for a wide range of sharp cones).

Straight line
between ends of

Bow characteristic

shock
wave

SKETCH |

The experimental results demonstrate the similarity between the decaying
bow shock waves about several different body geometries. They also suggest
that there is, at least to a reasonable approximation, a unique relationship
between B and p for each free-stream Mach number, There 1s & significant
difference between the experimental results and the numerical sclutions at
values, of shock angle (P) greater than about 30°.
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Since the experimental results for shock angles greater than 30° correspond
to characteristics deep inside the expansion fan, whereas the numerical results
are all for the most upstream characteristic of the expansion, Fig. (2a) is
interpreted as showing that there is some effect of the position of a characteristic
within an expansion on its mean inclination to the free-stream direction., This
effect is, however, remarkably small considering that the strength of the
expansion preceeding a characteristic in question varies so widely between the
different results shown on Fig. (2a). This suggests that it might well be
adequate to assume a unique relationship between f and @ for any given Mach
number and yet preserve useful accuracy in the predaction of the shape of the
bow shock wave in zone ITI,

It 18 also interesting to examine the possibility of using a relationship
of the form Gﬁ—u)=f§ﬁ-u; to cover a range of free-stream Mach numbers., In Fig. 2b,
plots of ($-u) and P-u) are given for the most upstream characteristic of the
expansion fan for a wide range of sharp cones at two very different Mach numbers.
Also shown is the relat:s.onshipﬂ =2f-u (for two dimensional flow) referred to
earlier,

There is an interesting degree of correlation between the curves shown in
Fig, 2b., However, it is clear that the use of & unique relationship of the form
(#-u)=f(B~u) to cover £ll Mach numbers would introduce additional significant
errors. Accordingly, pending the development >f a more general expression, the
current prediction method uses a different relationship between (#-p) and (B-u)
for each free-stream Mach number considered,

The relationship chosen was that given by the theory. This was adopted for
the following reasons:-

&) it could be readily and precisely calculated for any chosen free-stream
Mach number,

b) Analysis of measured shock-wave shapes has shown that good estimates of
forebody pressure drag can be obtained from the shock-wave shape® only if the
shape of the shock wave at large distances from the body is reasonably well
defined or predicted and if the shape of the bow shock wave is known precisely
in the vicinity of the junction between Zones II and III, Since the numerical
results apply to the case of zero strength for the expansion upstream of the
characteristic considered, the B, # relationship derived from them is more likely
to be correct in the vicinity of the junction between Zones II and III. Further,
the same B, ¢ relationship seems in good agreement with the experimental results
for shock angles close to the Mach angle.

¢) Complex body geometries are built up from a multiplicity of cone
frustrums when applying the method described in this paper. In this case zones
like Zone II end Zone III alternate and the expansion fans between each conical
segment of the shog¢k wave become weak. In thas case the numerical calculations
are likely to represent the truth more closely for the reasons outlined above,

For simplicity fhe chosen B, ¢ relationship was approximated by two straight
lines, the maximum deviation of the calculated points from this approximation
giving 0,02° error in the value of P corresponding to a given value of‘ﬁ.

If such a relationship between B and @ is adopted, then caleulation of
Zone III merely becomes an exercise in geometry, the solution proceeding in e
marching fashion downstream from the initial conditions given by the shock angle
in Zone II, and the geometry of the base plane of the model,

/This
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Thie calculation procedure should, strictly speaking, be continued to
infainity in the y and x directions if subsequent integration of the rate of
entropy production at the bow shock wave is to yield the total forebody pressure
drag. To avoid thus attempting the impossible, the marching solution i3
terminated at.(p-u)a¥0.006° corresponding te a value of (x/Dg which always exceeds
200, At this distaence from the body, the flow behind the bow shock wave will
have taken on the familiar far-field form having an Lh-wave pressure trace.
Accordangly, the analysis due to Luidens 12? is applicable. This gives the
result that:-~

Ke o | - (&) oeeen.
.Ec./ (? (1%)

(equation 27 of Ref. 12)
where Ke_is the drag due to entropy production at all points on the shock wave
vetween 0% (y/D)€ (v/D) , (y/D) being the value of (y/D) at which the marching
solution is terminated. The term £ is the distance, measured in the free-
stream direction, from the last point on the bow shock wave calculated by the
marching solution, fo a line drawn from the oragin of the last expansion at angle
# to the free strean.

~
e
I —
~

|
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SKETCH 2

Thus, the calculated shock shape for (/D)€ (3/D)” may be used together with
equation (14) to evaluale the total forebody pressure drag without having to extend
the marching solution (used to calculate the shock shape in Zone III for (y/D)< (y/D
to extreme values of (y/D). The total computing time 13 thus kept at an acceptable
level at the same time as reasonable accuracy 1s retained.

3. llatching procedures

It remains to match the solutions for Zones I, II and III so as to produce a
complete predicted bow shock-wave shape.

/This
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This problem is one of predicting the location of verious "junction"
characteristics. For example, since Zone I is determined by the shape of the
bluntness and Zone Il is likewise determined by the shape of the displacement
surface over the conical portion of the body, Zones I and Il join at the point
where the outgeing characteristic from the bluntness/cone junction intersects
the bow shock wave, If strong internal sheck waves are present the problem
is more complex and cannot be ireated at present. However, if the flow between
the bow shock wave and the body is isentropic {or effectively so) then the
matching peint between dones I and II may be found either by:-

a) finding the point at which the calculation of Zone I yields
a shock wave angle equal to that of the shock wave in Zone II,

or b) calculating the mean inclination of the junction characteristic
from the shock angle in Zone II and hence finding the point at
which this characteristic meets the bow shock wave as calculated
using the method appropriate to Zone I,

However, for most configurations of practicael importance matching takes place
at values of P such that the experimental B, g relationship for blunt configurations
is not much different to that computed for conical flow fields. Thus, the matching
points calculated by both methods will be in good agreement. Either method should
give satisfactory results and, for computational convenience, the former is
currently used.

Since the shock slope at this matching point depends on the displacement area
of the entropy layer and this, in turn, varses as the shock slope, some iteration
is required in principle., However, as noted in section 2b, this coupling is a
second order effect, and in practice, such iteration is not required,

The matching procedure for Zomes II and III is implicit in the beginning of
the marching solution for Zone III, Since a given relationship between P and @
is assumed, this applies to all outgoing characteristics of the expansion centred
on the periphery of the base of the model. Thus a knowledge of the shock angle
within Zone IT enables the mean inclination of the most upstream characteristic
of the expansion to be calculated. The shock-wave shape within Zone II is knowm
and the origin and slope of this most upstream characteristic of the expansion
can then be derived., Thus their intersection (the junction of the two zones)
may readily be calculated,

k., Complete calculation scheme

The foregoing principles for the prediction of forebody pressure drag have
been realised in a computer program, which performs the following major steps:-~

1) Reads in the shock-wave shape about the "1solated bluntness" from
a data tape.

2) Scales these data to the actual bluntness size.

3; Calculates the displacement area of the entropy layer and hence the
mean inclination of the displacement surface over the conical part
of the body.

) Calculates the shock wongle in Zone II,

5) Determines the matching point between Zones I and II and hence the

shock shape in these two Zones.

6} Determines the matching point for Zones II and II1.

Computes the shock shape in Zone III,

Calculates the forebody pressure drag from the bow shock-wave shape
as in Ref (2).
} Allows for entropy production at points on the shock wave for (y/D)>
(/D) (Bqu. 1#3.
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If & curved forebody has been approximated by several segments, then steps 1) to 8)
are carried out for a body comprising the blunted and the first conical segment
only. This portion of the whole body is then regarded as the "bluntness" and
steps 2) to 8) are repeated for a body consisting of this "bluniness" and the

next conical segment. The shock wave due to the "isolated bluntness is, of course
taken from the previocus calculation as is the drag of the "bluntness"., Repeated
application of this procedure allows any number of additional conical segments

to be treated,

|

5. Testing of accuracy of method

Any reasonably general predaction method may be tested in two ways:-

&) by comparison of predicted and experimental results for a multiplicity
of cases covering the whole range of interest,

or b) by comparison of predicted and experimental values in selected oases
chosen so as to test the main assumptions implicit in the calculation method.

The former procedure 1s extremely arduous and time consuming., The latter
procedure is not only more convenient but it provides clearer indications of those
areas in which improvements in the prediction method are most desirable, This
method has, therefore, been adopted.

There are three main sets of approximations implicit in the method.
These are:- '

a) the methed adopted to match the solutions for Zones I and II.
b) the representation of the effects of the entropy layer.
c) the approximations made in the calculation of Zone III.

The last set of approximations may be tested by computing the drag of a
range of sharp cones, Clearly, in this case the first two sets 'of assumptions
do not enter the calculation. As over 606 of the total drag is then associated
with entropy production in Zone III, this is a severe test of the accuracy with
which this region is calculated. The results of such calculations are shown in
Fag. (3) where it wi1ll be seen that reasonable agreement exists between the
predicted forebody pressure drags and the exact solutions available for this
particular case. Significant discrepancies of absolute level are present at the
lower fineness ratios, However, the curves are c¢learly of the same form and the
effects of changes in fineness ratio are well predicted. Indeed, the deravative

9 /3(~p) 15 predicted to an accuracy of better than 1G4 throughout the range
shown. Fortunately, at the low fineness ratios, where the errors are greatest,’
the practical interest ia least.

The first two sets of approximations cannot be tested completely independently
of each other or of the last set. However the adequuacy of both may be tested by
calculating the forebody pressure drag of spherically blunted cones. Two series
of calculations were performed. In the first of these, the variation of forebody
dreg with bluntness ratio for cones having o fixed semi-apex angle of620° was
computed., These results are compared with measurements made by Owen~ and others,
collated by the Royal Aeronautical Society” (Fig. (4)). The predictions are in
reasonable agreement with the measured drags (and with the theoretical value for
(3/D)=0 ). In the second series of calculations the bluntness ratioc was varied
while the fineness rmtio was held constant at 2,0. These predictions were
compared with the R. Ae. Soc., Data Sheets’ (Fag. (5)). Again, reasonable
agreement was obtained and it is gratifying to observe thet occurrence of a drag
minimum was correctly predicted and that the extent of the drag reduction effetted
by nose blunting and the optimum bluntness ratic is given approximately.

/An
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An alternative presentation showing the accuracy of the method 1s given as
Fig. (7). In this, the predicted drags of 22 sharp and gpherically blunted cones
are compared to values derived from R. Ae, 5. Data Sheets?. The scatter of the
predicted drags exceeds the quoted accuracy of the Data Sheets by less than iﬁ%
for over 705 of the bodies considered.

It may be observed that good agreement is not confined to M = 3.05, Fig.(G)
shows a comparison of predicted shock-wave shapes for a 40° semi-apex angle cone
at M = 8,8 with measurements made in ihe MPL 16 in shock tunnel. The agreement
is good and the slight divergence of measured and predicted shock-wave shapes with
increasing distance downstre.m 1s consistent wath the small gradient of freestrsam
Mach number in the shock tunnel in which the measurements were made.

Finally, the proposed method would become cumbersome if a large number of
segments were needed to approximate a gaven, non-conical, body shape to
sufficient accuracy. However, Fig. (8) shows the effect of varying the number of
segments used to represent & tangent ogive. It will be seen that 8
segments are guite sufficient to give a reasonably accurate estimate of the drag.

6. Conclusions

A simple method for the prediction of forebody pressure drag has been
developed, Although some refinement 1s needed the method appears to be
promising, The novel feature of this method, which mekes only limited use of
empirical information, 1s that the drag is computed via the predicticn of the shapse
of the complete bow shock wave, The development of this method has indicated the
importance of the displacement eff'ect of the entropy layer and has suggested a
number of simplifying assumptions that may be of use in other applications. The
method has already shown considerable promise for the prediction of the zero-lift
drag of blunted axi-symmetric bodies, and future work will be concerned with the
refinement of the method and 1ts extension to include the lafting case and flow
fields where strong internal shocks are present in the flow between the bow shock
wave and the bedy. Such develcpments must, however, wait on further detailed
experimental studies and since the methed is currently capable of yielding useful
results in cases of practical importance, it is felt that it is appropriate to
present its basic elements at this stage.

7. Acknowledgements

The authors are anxious to acknowledge the assistance of many friends and
colleagues, Noteable zmongst these are Dr. A, Moore of R.A,E, and Mr. J. Arnall
of H.S.A, (Kingston) who helped greatly in the provision of the characteristic
solutions reflerred to in the text, Dr. R. C. lLock who contributed much valuable
criticism and advice, and Dr. L, Dagvies, Mr. R. ¥, Cash, and Mr. A. Catley who
obtained the M = 8,8 results, and Mr, J, Fulker (of N.P,L.) who performed much of
the programming work,



Symbols

e

<

T > B R Y

i

AS

M <2 W oM

-1 5

local speed of sound
maximum cross-sectlonal area of body

forebody pressure drag coefficient based on free-stream

K N
conditions and area A. ( GD = )
1 2
§ﬂmumA
(p-p)
pressure coef'ficient ( c =
p 1 2
0 U
o0 o0

specif'ic heat at constant pressure of air
specific heat at constant volume of air
diameter of body at bluntness/cone junction
base diameter of body
See text {equation (10))
See text (Section 3.3)
length of body

total pressure drag of forebody

Mach number

static pressure

gas constant

change in gpecifiic entropy of a given mass of air
total rate of entropy production

static temperature

velocity

distance from axas of symmetry measured perpendicular to
free~atream darection

See text (equation (6))

inclination of shock wave to free-stream direction
adiabatic index (y = op/bv)

a small fraction change in drag (Section 3,2)
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n See Text {3ection 3,2)
] mean inclination of characteristic to free-stream direction
u Mach angle = sin* (1/‘1\*00)

¢ inclination of characterastic to free-stream direction
immediately downstream of shock wave

[+ density
Sutr'fices
oo free-stream
d downstream of bow shock wave

] cone suwrface conditions.
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