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1. Introduction 

Recent studios have shown, that I'or most constraints of' practical importance, 

the optimum forebody shape for a supersonic vehicle will feature a con31dor;ible 
degree oi' nose rounding. Existing simple theoretical methods for calculating 
forebody drag are inadequcto since such sh.lpes are outside their range of 
validity. Optimisation studies are thus often restricted to the fame consuming 

and uncertain process oi'.interpolation using available experimental data. Thus, 
there is an urgent need for a method of forebody drag estimation which is 
sufficiently accurate to enable promising f'orebody shapes to be readily identified, 
and yet is sufficiently. simple to allorr of it3 repetitive use in optimisation 
studies without undue cost in computing time. Since it will be required to cope 
with a uide range of forebody configurations, it 13 important that such a method 
makes as little use as possible of empirical correlations whose*velidity is 
necessarily confined to the range of experimental data used in their compilation. 

Kost simple methods of uressure drag estimation proceed through the prediction 
of pressure distributions which, when integrated, yield the pressure drag. This 
has proved to be a difficult task in the case of round nosed bodies unless extensive 
empirical data are employed. The major difficulty lies in the treatment of regions 
of high surface curvature and their downstream influence. 

However, following the 3uccessfU development of methods for the estimation 
of forebody pressure drag from measured bow shock-wave shapes,' attention has 
been given to the possibility of predicting the shock wave shape for a given body, 
end hence estimating its drag. This approach has met with some success. The 
purpose of this note is to outline the essential features of this schene as this 
approach may be of help to other workers in the field of drag estimation. Xrile 
the method is still capable of refinement and extension, sufficient success has 
been achieved to justify making the basic appmach more generally available. 

In the following description of the method,attention is concentrated on the 
simplest practical forebody shape which incorporates nose rounding, namely the 
spherically blunted cone. This shape w.33 chosen because of its simplicity and 
because sufficient reliable experimental. drag data exist to enable the success of 
the proposed prediction sethod to be judged. However, as indicated in the 
following section, the prediction method is capable ofdsaling with a wide range 
of other forebody shdpes. 

In assessing the success of this method it must be appreciated that it is 
unlikely that sny simple method will ever be developed which will allow of the 
very accurate estimntlon of absolute levels of drag for non-slender shapes. 
However, although one of the aims of the present rrethod is to predict absolute 
levels of drag with reasonable precision, the primary purpose is to predict reliable 
trends in the varJation of drag coefficient with body geometry, in order to enable 
optimum shapes to be identified reasonably accurately and thus minimise the 
inevitable 'cut-and-try' wind tunnel tests. 

2. The basic scheme 

As indicated above, the method adopted is to predict the shape of the bow 
shock wave for a given body and hence use the existing calculation procedures to 
estimate the forebody drag. The problem of' predicting the forebody drag hes been 
simplified by dividing the bow shock weve into various zones. For exulple, in 
the case of the blunted cone, it is sufficient to consider three zones which may 
be defined by considering the regions of influence of the various parts of the 
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body (se? Pig. 1). Tlmsc rxre:- 

I, the shock-vszvc shape due Lo the 
blunting 

I' * a near-conuxil portion of' the shock 
"law? 

III, the decay of the bow shock wave to a 
Eiach wave . 

Zone I arises from the ~mbeddcrl subsonic flow close to the axis of 
symmetry end the interaction bctwcen Lhc bow shock wave and the eqension from 
the sonic point to the bluntness/cone Junction. The influence of the bluntness 
on Lhc shock wave tennctcs uhcn the bow shock wave is intersected by the most 
downstream characteristic to spring from the bluntness/cone junction. 

Zone II arises from the flow over the conical portion of the body and lies 
between the end of gone I and the point at which the most upstream characteristic 
of the expansion fa radiatin g frm the discontinuity of slope at the base of 
the cone intersects the shock wave. 

Zone IlI is determined by the interaction of' the expansion from the base of 
the cone snd the bow shock wave. This zone stretches from the end of 2one 11 
to infinity. 

The prediction method used is a marching solution predicting the shape and 
location of Zones I, II, and III in that order and using each prediction to 
provide boundary conditions for the next stage of the calculation. 

Accordingly, the methods used for each section nil1 be described in turn, 
followed by a description of the methods used to match each solution to form the 
whole shock wave. 

hlorn complex body geometries are dealt with by approximating the body shape 
by a "blunting" followed by a series of cone frustrums. The complete.bow shock 
wave due to the blunting and the first cone frustrum is then calculated. This 
blunted cone is then treated as the "bluntness" ' applied to the second cone 
fxustrum and the previously calrulntnd shock shape is used as an Input to this 
second calculation. This cycle is repeated until the boa shook wave due to'the 
complete body has been calculated. Because of the simplicity of the calculation 
method adopted, computing time for each cycle is extremely short (appmx. 8 sets 
machine running tame on an I.C.L. KM+-9). Thus a large number of cone frustrums 
may be used to approximate the shape of a smooth body to a high degree of accuracy. 

2.1 Zone I - The part of the shock due to the blunting . 

The shape of this part of the bow shock wave is determined by the geometrical 
shape of the bluntness alone and scales linearly as the bluntness size. The 
prediction method uses experimentally measured shock-wave shapes for isolated 
bodies which are geometrically similar to that part of the n03e blunting that is 
wetted by the flow. Thus, measured shock wave shapes for isolated spheres are 
used in the calculation of bow shock waves due to spherically blunted cones while 
measured shock-wave shapes for isolated discs are used in the treatment of flat- 
faced truncated cones. The acceptance of this empirical input avoids the 
exceedingly arduous task of computing the mixed subsoniJtransonic floe around the 
bluntness. It does not, however, unduly restrict the range of the whole 
prediction method. Fdr cxonple, a single measured shock-wave shape for an 
isolated sphere at a given Mach number is all that is required to predict the 
drag of any spherically blunted configuration at that h;ach number. Indeed, such a 

/measured 



-4- 

measured shock-wave shape for an isolated sphere is sufficient for the prediction 
of the drag of any body in which the blunting takes the form of a segment of a 
sphere whether or not there IS a discontinuity of slope at the bluntness/cone 
junction. However, all the examples presented in this paper are for spherically 
blunted cones in which the distribution of surface slope is continuous (i.e. there 
is no change in slope at the sphere/cone junction). The measured shock-wave 
shapes must be accurat to the same standard as required for their use to 
estimate forebody drag?2;7) - and to extend to values of y/D such that the shock 
angle closely approaches a Mach wave. However, in fitting a "standard" bluntness 
shape to the stagnation region of an arbitary forebody geometry some degree of 
approximation is probably acceptable. Inverse numerical calculations of the 
embedded subsonic flow due to a prescribed shock wave have shown that extremely 
small differences in shock-wave shape produce widely different body geometrms in 
the vicinity of the stagnation point. Thus some discrepancies in the fitting of 
the given body shape by a "standard bluntness" in the stagnation region is probably 
reasonable provided that the f3.t is good in the vicinity of the sonic point - which 
can readily be established by standard methods. 

In the computational scheme adopted this shock-wave shape IS specified by a 
table of pairs of co-ordinates of points on the shock wave due to an "isolated 
bluntness" of unit maximum diameter together with shock slopes at these points. 

The prediction of this portion of the shock wave thus reduces to simply taking 
each pair of co-ordinates and scaling these by the factor required to scale the 
"isolated bluntness" so that it is identical with the actual blunting over the 
wetted area of the latter. 

2.2 Zone II - Quasi-conical shock wave 

It is commonly observed that for blunted cones the zone of the bow shock wave 
lying immediately downstream of the end of the highly c 

q 
ed section (Zone I) is 

virtually conical. Several workers, noteably Traugott have commented upon the 
appearenoe of points of inflection in bow shock waves due to blunted bodies. 
These are significant only under rather extreme conditions such as large cone 
angles for which the Mach number of the flow over the surface of the cons is near 
unity, and, in general, are important only when internal shock 'waves are present 
between the bow shock wave and the body. During the course of measurements of 
observed bow shock waves about a wide range of blunted cones, it was found to be 
difficult to distinguish,a point of inflection despite the fact that the measurement 
accuracy was amply sufficient to enable satisfactory estimates of overall forebody 
pressure drag to be made. It is, therefore, considered unnecessary to allow for 
deviations of the bow shock wave in Zone II from a conical form provided that the 
mean shock angle is correctly predicted. 

However, it must be noted that the true mean shock angle is not that which 
corresponds to a sharp cone of the same semi-apex angle as the conical portion of 
the body. This discrepancy arises from the presence of an entropy layer enveloping 
the surface of the cone. This layer comprises the gas which has passed through the 
strong shock wave near the axis of symmetry and has suffered a large increase in 
entropy. It is commonly observed that the surface pressure on the conical portion 
of blunted cones attains an approximately constant value a short distance down- 
stream of the bluntness/cone junction (i.e. although important "overexpansions" 
occur, the large percentage deviations from a uniform pressure are confined to a 
small region near the junction). Thus, the greater entropy of the gas near the 
cone surface implies that the gas density is correspondingly low. Accordingly, 
by analogy with a boundary layer, this entropy layer may be regarded as having a 
displacement effect. Unlike the boundary layer, the displacement area of the 
entropy layer is constant over most of the surface of the conical part of the body 
because high shock angles are confined to a region of the shock wave close to the 
axis of symmetry. As the entropy layer develops downstream it is SPm8.d around an 
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increasing cone perlphexy. This means that the duplacement thxkness decreases 
in the downstream dire&Ion, msklng the mean inclination of the displacement 
surface less than that of the sold surface of the conical part of the body. 

The excess of entropy ~fl the entropy layer over that of the rest of the flow 
between the bow shock wave and the body arues because the shock angles UI Zone I 
are greater than they would have been If the body had been sharp. Thus, the 
excess entropy is due to the shape of the shock wave 111 Zone I. Smce the change 
in shock angle due to the presence of the entropy layer, although of s~gnlf~oance 
xn calculating the overall drag, is small, it 1s justlfxable to make approxlnatlons 
in the caloulatlon of the displacement area. 

A simple relationship may be developed along the lines lndloated below:- 

Consider a blunted cylmder. In this case the entropy ls,yer srlses as a 
result of the whole shock wave because the bow shock wave due to the parallel 
portlon of the body 1s the limltlng case of a Nach wave. Thus, we can write for 
each streamline, consderlng conditions m the stresmlrne and at a po)omt downstream 
of the bow shock wave:- 

AS = op.loge(Ta/T,) + R~w,(P~P~). 

If the downstream point is far downstream of the nose, pd = pa. Also, if the 
AS 

free stream Mach number is not too high, then - << 1 everywhere. Thus, 
% 

usmg the series expsnsxon for log, snd. the bxnomlal theorem:- 

T d AS 
-e l+- . . . (1) 
T 03 ycv 

and since pa = p, we have p T dd = pmTw 

Pa AS 
and hence - $3 I--. 

P m YCV 

To obtain the downstream velocity we use the enera equation 

up a' 
m G a: +2L = -+-; 

2 (Y-1) 2 (Y-1 1 
I 

and smce 

. ..(2) 

. . . (3) 

ai Ta AS 
- =-=I+- 
a: 03 

(from (I)). 
T 

YCV 
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Then substituting in (T), we obtam 

53 1 AS 
- 5 l- . ..(4) 
%l (y-l )M? l rv l 

Now the sffectlve displacenent area-produced by the. entropy layer 1s 

6 = jorn(l-~py~ 
coo0 

and f1.-0m (2) and (4) m obtain 

paud = , 

pc2?z.a -ps fi + (y:),>P} ycv 

AS 
= 1 -z--, say 

Q-J 

1 
where z =- 

Y 

. ..(5) 

. ..(6) 

Hence I 
00 AS 

6 = 2 z--yay. 
O cv 

This can be related to K, the forebody drag, by means of Oswatxtsch's 
theorem (Ref.1, p.209) which gxves (to frost order in AS) 

ace 
K = 217T ma, ASzy dy. 

0 
Hence 

ZD 1 
6 5- 

o,p.T~ 
= - Z.A.CD.%(Y-l).Mz 

2 

Dmplacement Area 
so T)= 

mx. cross-sectional area of bow 
= ; CD t,+ (y-lL?g}. . ..(P) 

Thus the total duplacement thickness 1s directly related to the forebody 
pressure drag of the blunting (in this case the complete body). It should be 
noted that equation (9) does not involve the geometry of the body in q my 
except thmugh CD. 
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Turning now to the case where the part of the body downstream of the 
blunting has a non-zero inclination to the free-stream (and hence a non-zero 
pressure drag), two additional factors have to be t&en into account. Firstly, 
the entire flow between the body and the bow shock wave suffers some increase in 
entropy even if the blunting is vanishingly small. The entropy layer then 
results from the excess of entropy near the body compared to the entropy of the 
majority of flow within the shock layer. Neglecting second order effects (such 
as the fact that the presence of the entmpy layer alters the strength of the 
conical portion of the'shock wave and hence reacts back on the entropy layer 
thickness), the whole of the excess entropy production is confined to Zone I of 
the shock wave, and results from the replacement of part of the conical shock 
wave due to a sharp nosed cone by the curved shock due to the blunting. Recalling 
the proportionality between drag and rate cf entropy production, it is reasonable, 
therefore, to allow for this effect by replacing CD in equation (9) by the 
difference in drag coefficients between that of the "isol&ed bluntness" and the 
section of the conical body replaced by the bluntness. Further, the pressure on 
the Surface of the conical portion of the body is higher than free-stream pressure. 
Since the Mach numbers, including those within the entropy laye"r, are considerably 
in excess of unity, the mass flux densities close to the surface are increased 
because the Mach number is lower than it would have been had the surface been 
aligned with the free-stream &rection. If the mass flux densities over the 
inclined and cylindrical surfaces are related by the isentropic relation to 
sufficient accuracy (which will be the case unless the inclined surface is at a 
large angle to the free-stream direction) and if the Mach numbers in the entmpy 
layer are not too close to unity then we may write:- 

C = Displacement area on inclined surface -J/&f 
Displacement area on cylindrical surface 'I ((y.M:.chj/z +I) . . . . . . . (10) 

This approximation implies that the main cause of the variation of mass flux per 
tit area is ti change in density. This is physically reasonable for supersonic 
Mach numbers not too close to unity when the kinetic energy of the gas is 
considerably larger then its internal energy so that small changes in velocity 
are accompanied by large changes in density. 

To the same degree of approximation as used earlier we may write 

cp = c where C 
PS PS 

is the pressure coefficient over the forward 

facing surfaces of a sharp cone of' the seme apex angle as the conical portion of 
the body. That is to say, It is considered necessary to allow for the effects 
of the entmpy layer on shock angle,but that this effect is sufficiently small to 
allow the use of approximate methods in its calculation without incurring 
significant errors in the computation of the overall drag of the body. Thus, in 
calculating the entropy layer thicloless (but not the total drag) it may be assumed 
that the angle of the conical part of the shock wave is the same as that due to a 
sharp cone of the sane apex angle as the conical portion of the body. This is 
no more than to say that if the fractional change of total drag due to the presence 
of the entropy layer is f then f is significant compared to 1 but that $' may be 
neglected - a not unreasonable assumption for most cases. 

Thus the effective cone angle (i.e. the in&nation of the displacement 
surface to the free-stream) is calculated from the geometry of the conical part. 
of the body and the displacement area of the entropy layer computed as described 
above - which, as discussed earlier, is assumed to be constant. The shock wave 
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incli a ion ~.n Zone II 1s then computed using the exact num solutions of 
Sims 3 and the ~nterpolatlon tables of Crabbe and PF Cambell 

2.3 Zone III - Decaylnf, axl-s.ymnietric shock wave 

The interaction of the bow shock wave with the expansion fan could be 
cdlculatedexaotly by the method of characterlstlcs provided the flow conditions 
on the most upstream chcructerlstlc were known. This would be a time consuming 
process and hence it would bc undesirable to include a characteristics calculation 
into the present method especlslly since it would have to be a complex non- 
hornentropic calculation inclutin:; shock waves. kgaln, it IS doubtfil whether, 
with reasonable effort, the requlslte boundary conditions could be specified with 
sufficient accuracy to merit this approach. The prime difficulty that has to be 
overcome In developing a slmplcr appmwh is the variation in flow properties 
between the shock and the body. This variation is due to 'two causes. 

Firstly, the presence of the entropy layer introduces significant gradients 
in the flow properties close to the body surface. However, at the base the 
entropy layer 1s spread out over a large periphery and hence its effects are 
generally conflncd to distances from the body which are small compared to the 
distance between the shock and the body(measured along the most upstreem character- 
lstic of the expansion). The entropy layer would thus be eqected to cause only 
a small displacement of the outgoing characteristics from the positions that they 
would have taken up in the absence of the entropy layer. 

The second cause of wriations in flow propertIes between the body and the 
shock wave is that, even lf' the body mere a sharp cone, flow property variations 
of this type i*rould occur because of the axisymmetric nature of the flow. Thus 
the outgoing charactcrlrtlcs a~ curved and the degree of curvature depends on the 
relative magnitudes of the flow deflections at the shock end at the body. Since 
the present objective LS to predict the shock-nave shape and not the nhole flow 
field the parameter of importance is the mean inclination of the characteristic 
(+ say)* and its relationship to p (the shock angle to the free-stream at the 
point where the characterlstlo Intersects the shock wave). If a unique relation- 
ship between@ and p could be established for a given free-stream h'ach number then 
a simple solution for the shape of the shock In Zone III 1s possible. Such a 
simple solution would, of course, apply only to the general class of flow 
situdtlons being consuiered, 1.e. the interaction of an axisymrretric shock wave and 
an expansion, and not to all flow fleld.3. 

In the analogous two-dimensional case such a relation is known to exist since, 

to a high degree of appro~lmatjon, the shock wave bisects the angle between the 
chnlwAerlstics upstream and downstream of the shock wave. 

5.e. l/y+ #,)A? *p ----. (II) 

or p++ l zp 
hence + z 2~ -p - ----(JZ) 

e 
The same relnt~onshq must apply to all flows if @is replaced by p where 

1s the inclinutlon of the characteristic immediately downstream of the9 shock 
wat e . 

/Similar 

* In this context the "mean inclination" of the characteristic 1s the angle 
between the free stream and the straight line Joining the points at which the 
charactenstlc intersects the body and at which it intersects the shock wave. 



Smilar relatlona such as:- 

tnight also be expected for axi-aymnetnc flow. Ohile it is not proposed to 
demonstrate thla from first pnnclplea, there =a strong circumatantlal evidence 
to support this suggestion. For example, thla auggeatlon can be tested 
experimentally wherever the expanalon fan la centred on a dlacontinuity of surface 
slope. Then the origin of the characterlatlcs is known (i.e. at the discontlnuity) 
30 that the mean inclination of any characteristic intersecting a point on the 
shock wave may be readily eatlmated from a measured shock-wave shape. This has 
been done for a disc, two cut spheres, and a 40' half angle oone, the results 
being shown in Fig. (2a). 

In thla figure these experimental results are compared with exyt numerical 
solutions which were obtained using a computer program due to Moore . The 
numerical results give the p,$relationahip for the moat upstream characteristic 
of the expansion fan (for a wide range of sharp cones). 

/;/ / Straight line 
between ends of 
characteristic 

( 

E 

SKETCH I 

The experimental results demonstrate the similarity between the decaying 
bow shock waves about several different body geometries. They also suggest 
that there is, at least to a reasonable approximation, a unique relationship 
between p and+ for each free-stream Mach number. Thgre 13 a significant 
difference between the experimental results and the numerical solutions at 
values, of shock angle (p) greater than about 30". 
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Since the experimental results for shock angles greater than 30" correspond 
to characteristics deep inside the expansion fan, whereas the numerical results 
are all for the most upstream characteristic of the expansion, Fig. (Za) is 
interpreted as showing that there is Some effect of the position of a characteristic 
within an expansion on its mean inclination to the free-stream direction. This 
effect is, however, remarkably small considering that the strength of the 
expansion preceeding a characteristic in question varies so widely between the 
different results shown on Fig. (2a). This suggests that it might well be 
adequate to assume a unique relationship between g and+ for any given Mach 
number and yet preserve useful accuracy in the prediction of the shape of the 
bow shock wave in zone III. 

It is also interesting to examine the possibility of using a relationship 
of the form (Id-a)=! g-a to cover a range of free-stream Mach numbers. In Fig. 2b, 
plots of u-n) and g-n are given for the most upstream characteristic of the I 1 
expansion fan for a wide range of sharp cones at two very different Mach numbers. 
Also shown is the relationship#=2g-n (for two dimensional flow) referred to 
earlier. 

There is an interesting degree of correlation between the curves shown in 
Fig. 2b. However, it is clear that the use of a unique relationship of the form 
(#-n)=f(g-n) to cover all Mach numbers would introduce additional significant 
errors. Accordingly, pending the development sf a more general expression, the 
current prediction method uses a different relationship between (4-a) and (p-n) 
for each free-stream Mach number considered. 

The relationship chosen was that given by the theory. This was adopted for 
the following reasons:- 

a) it could be readily and precisely calculated for any chosen free-stream 
Mach number. 

b) Analysis of measured shock-wave shapes has shown that good estimates of 
forebody pressure drag can be obtained from the shock-wave shape2 only if the 
shape of the shock wave at large distances from the body is reasonably well 
defined or predicted and if the shape of the bow shock wave is known precisely 
in the vicinity of the junction between Zones II and III. Since the numerical 
results apply to the case of zero strength for the expansion upstream of the 
characteristic considered, the g,$ relationship derived from them is morep~~XL; 
to be correct in the vicinity of the junction between Zones II and III. 
the same @, # relationship seems in good agreement with the experimental results 

, 

for shock angles close to the Maoh angle. 

c) Complex body geometries are built up from a multiplicity of cone 
frustrums when applying the method described in this paper. In this case zones 
like Zone II and Zone III alternate end the expansion fans between each conical 
segment of the shoek wave become weak. In this case the numerical calculations 
are likely to represent the truth mars closely for the reasons outlined above. 

For simplicity the chosen p,# relationship was approximated by two straight 
lines, the maximum deviation of the calculated points from this approximation 
giving 0.02O error in the value of g corresponding to a given value ofb. 

If such a relationship between g and $ is adopted, then calculation of 
Zone III merely becomes an exercise in geometry, the solution proceeding in a 
marching fashion downstream from the initial conditions given by the shock angle 
in Zone II, and the geometry of the base plane of the model. 

/This 
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This calculation procedure should, strictly speaking, bc continued to 
inflnlty in the y and x directions if subsequent integration of the rate of 
entropy production at the bow shock wave is to yield the total f'orebody pressure 
drag. To avoid thus attempting the impossible, the marchin solution 1s 
terminated at.(p-u)r+0.006° corresponding to a value of (y/D 7 which always exceeds 
200. A;t this distance from the body, the f'low behind the bow shock wave will 
have taken on the'familiar fapfield fo 
Accordingly, the analyst due to Luidens 
result that:- 

(equation 27 of Ref. 12) 
where &is the drag due to entropy production at all points on the shock wave 
between OL(y/D)d (y/D) , (y/D)' being the value of (y/D) at which the marching 
solution is terminated. The term k is the distance, measured III the free- 
stream dire&Ion, from the last point on the bow shock wave calculated by the 
marching solution, to a line drawn from the origin of the last expansz.on at angle 
p to the free stream. 

/ 

/ 

SKETCH 2 

Thus, the calculated shock shape for (y/D),((y/D)' may be used together with 
equation (14) to evaluate the total corebody pressure drag wlthout having to extend 
the marching solution (used to calculate the shock shape In Zone III for (y/D)<(y/D))) 
to extreme values of (y/D). The total computing time 1s thus kept at an acceptable 
level at the same time as reasonable accuracy 1s retaIned. 

3. Watching procedures 

It remains to ma&h the solutions for Zones I, II and III so as to produce a 
complete predicted bow shock-wave shape. 

/This 
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This problem is one of' predicting the location of various "junction" 
characteristics. For example, since Zone I is determined by the shape of the 
bluntness and. Zone II is likewise determined by the shape of the displacement 
surface over the conical portron of the body, Zones I and II join at tho paint 
where the outgoing characteristic from the bluntness/cone junction intersects 
the bow shock wave. If strung internal shock waves are present the problem 
is more complex and cannot be treated at present. However, if the flow between 
the bow shock wave and the body is isentropic (or effectively so) then the 
matching point between Zones I and II may be found either by:- 

a) finding the point at which the calculation of Zone I yields 
a shock nave angle equal to that of the shock wave in Zone II, 

or b) calculating the mean inclination of the junction characteristic 
f’mm the shock angle In Zone II and hence finding the point at 
which this characteristic meets the bow shock wave as calculated 
using the method appropriate to Zone I. 

However, for most configurations of practical importance matching takes place 
at values of S such that the experimental p,@ relationship for blunt configurations 
is not much different to that computed for conical flow fields. Thus, the matching 
points calculated by both methods will be in good agreement. Either method should 
give satisfactory results and, for computational convenience, the former is 
currently used. 

Since the shock slope at this matching point depends on the displacement area 
of the entropy layer and this, in turn, varjes as the shock slope, some iteration 
is required in principle. Hov,ever, as noted in section 2b, this coupling is a 
second order effect, and in practice, such iteration is not required. 

The matching procedure for Zones II and III is implicit in the beginning of 
the marching solution for Zone III. Since a given relationship between S .endd 
is assumed, this applies to all outgoing characteristics of the expansion centred 
on the aeriphery of the base of the model. Thus a knowledge of the shock angle 
within Zone II enables the mean inclination of the most upstream characteristic 
of the expansion to be calculated. The shock-wave shape within Zone II is known 
and the origin and slope of this most upstream characteristic of the expansion 
can then be derived. Thus their intersection (the junction of the two zones) 
may readily be calculated. 

lr. Complete calculation scheme 

The foregoing principles for the prediction of forebody pressure drag have 
been realised in a computer program, which performs the following major steps:- 

1) Reads in the shock-wave shape about the "isolated bluntness" from 
a data tape. 

2 Scales these data to the actual bluntness size. 
3 Calculates the displacement area of the entropy layer and hence the 

mean inclination of the displacement surface over the conical part 
of the body. 

4) Calculates the shock angle in Zone II. 
5) Determines the matching point between Zones I and II and hence the 

shock shape in these two Zones. 
6 Determines the matching point for Zones II and III. 
7 Computes the shock shape in Zone III. 
8 Calculates the forebody pressure drag from the bow shock-wave shape 

as in Ref (2). 
9) Allows for entrap 

(y/D)' (Equ. 
production at points on the shock wave for (y/D)> 

A'+ . 3 

/if 
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If a curved forebody has been approximated by several segments, then steps 1) to 8) 
are carried out for a body compnss.ng the blunted and the first conical segment 
only. This portion of the whole body is then regarded as the "bluntness" and 
steps 2) to 8) are repeated for a body consisting of this "bluntness" and the 
next conical segment. The shock wave due to the "isolated bluntness is, of course 
taken from the previous calculation as is the drag of the "bluntness". Repeated 
application of this procedure allows any number of additional conical segments 
to be treated. 

5. Testing of accuracy of method 

Any reasonably general prediction method may be tested in two ways:- 

a) by comparison of predicted and experimental results for a multiplicity 
of cases covering the whole range of interest, 

or b) by comparison of predicted and experimental values in selected oases 
chosen so as to test the main assumptions implicit in the calculation method. 

The former procedure is extremely arduous and time consuming. The latter 
procedure is not only more convenient but it provides clearer indications of those 
areas in which improvements in the prediction method are most desirable. This 
method has, therefore, been adopted. 

There are three main sets of approximations implicit in the method. 
These are:- 

a) the method adopted to match the solutions for Zones I and II. 

b) the representation of the effects of the entropy layer. 

o) the approximations made in the calculation of Zone III. 

The last set of approximations may be tested by computing the drag of a 
range of sharp cones. Clearly, in this case the first two sets of assumptions 
do not enter the calculation. As over 6C$ of the total drag is then associated 
with entropy productIon in Zone III, this is a severe test of the accuracy with 
which this region is calculated. The results of such calculations are shown in 
Fig. (3) where it will be seen that reasonable agreement exists between the 
predicted forebody pressure drags and the exact solutions available for this 
particular case. Significant discrepancies of absolute level are present at the 
lower fineness ratios. However, the curves are clearly of the same form end the 
effects of changes in fineness ratio are well predicted. Indeed, the derivative 
%/a(~+) is predicted to an accuracy of better than 1% throughout the range 

shown. Fortunately, at the 10~ fineness ratios, where the errors are greatest," 
the practical interest is least. 

The first two sets of approximations cannot be tested completely independently 
of each other or of the last set. However the adequacy of both may be tested by 
calculating the forebody pressure drag of spherically blunted cones. Tao series 
of calculations were performed. In the first of these, the variation of forebody 
drag with bluntness ratio for cones having a fixed semi-apex angle of6200 was 
computed. These results are compared sit& measurements made by Owen and others, 
collated by the Royal Aeronautical Society' (Fig. (4)). The predictions are in 
reasonable agreement with the measured drags (and. with the theoretical value for 
(a/D)=0 1. In the second series of calculations the bluntness ratio was varied 
while the fineness ratio was held constant at 2.0. These predictions were 
compared with the R. Ae. Sot. Data Sheets9 (fig. (5)). Again, reasonable 
agreement was obtained and it is gratifying to observe that occurrence of a drag 
minimum aas correctly predicted and that the extent of the drag reduction effehted 
by nose blunting and the optimum bluntness ratio iS given WJrOximatelY. 



An alternative presentation showing the accuracy of the method 1s given as 
Fig. (7). In this, the predicted drags of 22 sharp and spherically blunted cones 

are compared to values derived from R. Ae. S. Data Sheetsy. The scatter of the 
predicted drags exceeds the quoted accuracy of the Data Sheets by less than 252 
for over 7Cfb of the bodies considered. 

It may be observed that good agreement is not confined to M = 3.05. Fig. (6) 
shows a comparison of predicted shoewave shapes for a 40' semi-apex angle cone 
at IJ = 8.8 with measurevents made in the I&'L 16 in shock tunnel. The agreement 
is good and the slight divergence of measured and predicted shock-wave shapes with 
increasing distance do;mstruxn IS consistent inth the small gradient of freestream 
Mach number in the shock tunnel in which the measurements were n&e.8 

Finally, the proposed method would become cumbersome if a large number of 
segments were needed to approximate a given, non-conical, body shape to 
sufficient accuracy. Houever, Fig. (8) shows the effect of varying the number of 
segments used to represent a tangent ogive. It nil1 be seen that 8 
segments are quite sufficient to give a reasonably accurate estimate of the drag. 

6. Conclusions 

A simple method for the prediction of forebody pressure drag has been 
developed. Although some refinement is needed the method appears to be 
promising. The novel feature of this method, which makes only limited use of 
empirical information, is that the drag is computed via the prediction of the shape 
of the complete boa shock wave. The development of this method has indicated the 
importance of the displacement effect of the entropy layer and has suggested a 
number of simplifying assumptions that may be of use in other applications. The 
method has already shown considerable promise for the prediction of the zero-lift 
drag of blunted axi-symmetric bodies, and future work will be concerned with the 
refinement of the method and its extension to include the lifting case and flow 
fields where strong internal shocks are present in the flow between the bow shock 
wave and the body. Such developments must, however, wait on further detailed 
experimental studies and since the method is currently capable of yielding useful 
results in cases of practical importance, it is felt that it is appropriate to 
present its basic elements at this stage. 
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A method for calculating the zero-lift drag of 
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uses the novel approach of first predicting the shape 
of the born shock zave and then using this to compute 
the drag. Accuracies of drag prediction of typically 
% are achieved. 

A.R.C. C.P. No.1162 
February, 1970 
Pugh, P. G. and Ward, L, C. 

A NOVEL MXl!HOD FOR THE ESTIfUTION CF TX.2 ZERO-LIFT 
FORBC'DY PRESSUR2 DRAG OF AXIS-TRIC NON-SLiXNDW 

SHAPES AT SUF'ERSONIC AND HYPERSONIC KiLJXITI3S 

A method for calculating the zero-lift dreg of 
both blunted and sharp forebodies is described. This 
uses the novel approach of first predicting the shape 
of the bow shock mve and then using this to compute 
the drag. Accuracies of drag prediction of typically 
5% are achieved. 
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A method for calculating the zero-lift dreg of 
both blunted and sharp forebodies is described. This 
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