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To appraise the conoluslons of this paper It 1s noccssary 
to distinguish two methods of approach to the problem of wing loading. 
The fwst method, actively pursued at the Natronal physical Laboratory, 
1s to seek an accurate thin wrng potential solution, later to be 
developed to take account scml-emplricnlly of nerofoil thxkness and 
boundary layers, with a flnal appeal to experiment. The second 
method seeks at the outset to coordlnatc experimental results, 
making use of potential theory III a less rigorous mannor than III 
the first method, to evolve a rapid process of computntzon rclioble 
enough for pmctxal urjc. 

The present invcstigotion 1s concerned sol& with the 
first method of approach, the concept of reachzng on accurate 
solution for a thin wing m potential flow and the relative promise 
of the various coqutntlonal procedures so far proposed to achieve 
this, The nocessnry accuracy to be sought by the bcslo potential 
theory depends on the partrculor vnng chnrnctcristics ahxch are to 
be computed. But It appears that for dlstrlbutlons of local lift 
and aerodynmic centre every effort should be made to arrlvc at the 
most reliable solution posszblc nathout prohibitive lobour. 
pbr this purpose the speed rind oonslstency of Multhopp's nothod 
promises well, but more work is needed to nsscss Its accuracy wrth 
regard to local aerodynamic centre; and this basic invcstigatxon 
is prooceding. However, the general conclusions in this paper 
seem to bc well supported by the evidence of ccmporatlve results 
from the avaIlable thcsrlcs, 

An appeal to cxperlnent for a chock on the,vnlCllty of a 
portroular potentxnl theory is not at this stage of real help, 
because all experiLlcnta1 results have to be "corrected" for thickness' 
and boundary layer effects before they bcccxx comparable with theory. 
The object of seeking a trustworthy theory is precisely to find out ' 
how to make those "oorrectlons" for a wide range of plan form, 
aerofoll scctlon, Reynolds number and Mach number. 

From the stnndpolnt of the designer aerodynezucist, these 
fundamentnl oonsxIerntlons are of little immediate value, as the 
desired "oorrectlons" for swept wings are not yet known with suffiolont 
confidence, Thence arlscs the need to approach the problem of wing 
loading in the second way mentioned nbovc. &hemann's valuable work 
UI this darcctlon has suoccoded UI cstnbllshmg from expurimcntal 
sourocs some very important guidjng principles; and his ncthod would 
appear to be capable of powerful empir~cnl development. 

There rcnains, however, the important goal of cstablishrng a 
reliable potential theory, in whxh aarofull thickness and boundary 
layers arc neglected. Garner's v=ew is that the conditzons essential 
to such a solution are much better satisfied by IUthopp's purely 
theoretical method than by K&houann's somi-ompirical method, 
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From a systematic series of calmalations of swept-wing loading 
the writer has formed an opinion of the accuracy and most useful 
application of vortex lattice theory and the vortex sheet theories of 
Weissingcr, Multhopp nndICkchensnn. The results provide s general picture 
of the effect of sweep and compressibility on 1lf-k slope and aerodynamic 
centre. It is recommended thst:- 

(i) An elaborate solution by Multhopp's theory chould be used 
when special accuracy LS required. 

(11) It should normally be possibic to choose a shorter versLon ' 
of Multhopp's theory which may be expected to provide a 
potential solution at least as quickly and more nccurstely than 
any other given theory. 

(iii) Vortex lattlcu theory is to be preferred when additIona 
oalculations of control characteristics or flutter derivatives 
are required for the same plan form and supreme accuracy is 
not essentrcl. 

(iv) We&singer's theory (i"ith a modified procedure) is to be 
preferred when ostlmatmg the effects of compressibility and 
sectional lift slope on suitable plan forms. 

(v) Kcchemann's theory, being essentially a lifting line theory 
with a semi-empirical correction for sweep, will roughly tackle 
a wide range of lateral stability derivatives and may allow 
for three-dimensional boundary lsyer characteristics. Its 
praotzcsl value should grow with experience. 

This note is intended to prepcare %e ground for two developments, which 
requre urgent study and Ln which vortex sheet theory must play an 
important port:- 

(a) The use of sectlonsld$$a in the pre&ction of nerodynamic 
charnderist'ics of szf62. wings. * 

.- -+.> 
(b) A method~of caloulation~~bf general appliostion to swept Win&P 

at high subsonic speeds. 

SUlIM.ryf 

--_ . 
Published with permission of the Dircotcr; Notional Physical Lrko~tory. 



-.2 - 

Surumr.y of Contents 

I. Introduction 

2. Theoretrcal Background 

2.1 Expermental background 
2.2 Future Theoretical RequrrtLents 

3* Results 

3.1 Llrt Slope 
3.2 AOr0dp31;uc centre 
3.3 Spanvase Londmg 
3.4 Local Aerodynenic Centre 

4. Vortex Lattloe Theory 

4.1 Use of P Functions 
4.2 Future Appllcat~.ons 

5- Wexsslnger's Theory 

5.1 Modified 3 Pant Solution 
5 .Z Future Applioat.tlons 

6. Multhopp's Theory 

6.1 Coirrputatlon and Accuracy 
6.2 Future Appllcatlons 

7. &hemnn's Theory 

7.1 Future Applioatlons 

a. Theoretical Formula for Lift Slope 

8.1 Elllptx Quarter Chord Pant 
8.2 Effect of Compresslblllty 

Y* Concluding Remarks 

10. Acknowledgement 

11 . References 

I - XII 

XIII 

XIV 

xv 

XVI 

Tnbles 

Solutions by Vortex Lattice Theory for 
WlngS 1 - 12 Respectively. 

Standard and iuio&fied Solutions by 
W'ersslnger's Theory for 0 Wings. 

Solutions by iiulthopp's Theory 
(111 = 15, 2 chordase) for 5 "hngn. 

CalculntcdVslues of 3Cfla 

CalculatedValues of Xerodynaxic Centre. 

Page 

4 

4 

6 

7 

; 
10 

10 

12 
13 

13 

14 
16 

16 

ia 
19 

20 

20 

21 

21 
22 

u, 

UC 

25 

77 1 38 

39 

40 

42 

43 

F1glXes/ 



-3- 

I* Four Series of Swept Plan Foiws 

2. Definition of Parameters 

3. Summary of Current Vortex Sheet Theories 

4. Comparative Theoretical Curves of &$% for Swept Yilngs 

it 
Delta Wings: 

t 

Poxted Arrowhead Nags: 

: 
Medium Tspered Arrowhead Wings: 
Cropped Wings of 45' Sweep-b&k 

5. Comparative Theoretical Curves of Aerodynamic Centre for 
Swept Wings 

z 

II 

Delta Wings: 
Pointed Arrowhead Wngn: 

: 
IVied3.w Tapered. Arrowhead VJuqp: 
Cropped Wings of 45' Sweep-back 

6. Comparativt Theoretical Spanwlse DistrLbutions of Lift 

; 

Ii 

Pointed Wing cf 45' Sweep-bark and Aspect Ratio 6: 
Ne&um Tapered Wing of 45" Sweep-back and Aspect Ratlo 2.64: 

: 
Wing A of 45" Swep-bsck and Aspect Ratio 1.714: 
Vkng C of 45' Sweep-back and Aspect Ratio 3.818 

7. Comparative Theoretical Local ::erodynamic Centres 

tj b" 
Pointed Wng of 45' Ywep-back and Aspect Ratio 6: 
Medium Tapered Wing of 45' %eep-back and Aspect Ratio 2.64 

8. Effect of S-deep-beck on Lrft Slope 

9. Aerodynauio Centre (a.~.) and Cllxptic Quarter Chord Point (li) 

Chart for i?: 
- fi) for Famly (a) 

10. Effeot of Compresslblllty on &&a at Subcrltzcal Speeds. 



-4- 

1* Introduction 

In the search for more accurate data on nerod.ynal;uc derivatives 
of wept wings, a reliable theoretical potential solution is an essential 
calculation. There arc many vortex sheet theories which approximate to 
such solutions for pings of zero thickness in inviscid flori belon the 
critical Nach numbor. In the absence of on analytically exact potential 
solution for any swept wing the inconsistency of the various theories is 
a fundamental drawback, if the effects o< v&n.g section and viscosity are 
to be understood. Fro,,1 this standpoint a theory is not necessarily 
enhanced by a favourable comparison T-fith experiment. Its intrinsic 
accuracy must be assured. 

The historical threads are Tathered from Ref+l (1949)) which 
reports on a special discussion of the problem of load distribution on 
finite swept-back wngs. At the suggestion of Gates this meeting agreed 
that studies should be made of families of plan forms related according 
to the linear perturbation theory of the effect of compressibility. 

Three such (6,X) families of four plan forms were selected, 
as shovm in Flg.1: - 

(a) Delta wings - 1,2,3,4: 

(b) Pointed arro;,hcad wings - 5,6,7,8: 

(c) ~led~~~ tapered arrowhead angs - 9,10,11,12. 

The geometrical parameters are defined in Fig.2. The four wings, shown 
in Ref.?, hf;.4(a), form a further set:- 

(d) Cropped wings of 45' weep-back - A,B,C,D. 

It should be noted that plan forms 7 and D are identical, as are 10 and. B. 

The recommended progrSnmi!e of calculations in Ref.1 has been revised 
in accordance with the development of the vnrious theories. The agreed 
experimental programme is in hand at M.I-..L. Consideration of the effects 
of wing thickness and viscosity nil1 be postponed till the experiments 
are completed, The present note is mainly concerned with potential 
vortex shtrt theories applied to the swp,L plzn i"orms of Fig.1. 

2. Theoretical Background 

A general approach to an accurate potential solution for a 
finite swept wing is considered in Ref.2; and a solution on that basis 
has been obtained.3 for a delta wing (Flg.1, Wing 2). The witer has 
applied a similar scheme to each of the wings in faJillly (d), but serious 
ill-conditioning of the equations .a 12 s prevented the use of all the 
solving points necessary in a reliable check solution envisaged in Ref.1. 
However, a separate report of this work ~11 be publishedcin due course; 
and results now being obtained on a simplified basis substantiate the 
conclusions of this note, as far as can be judged, 

Of the routine metnods discussed in Ref.1 only the vortex 
lattice theory has survived in current use. Ths theory is employed here 
with and without P functions in order that their value may be assessed 
G44.1 I* 

'A.R.C. 14,781 (Garner and ACLU, April, 1952). 

In/ 
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In U.S.A., Weissinger's method is favoured. As a result of 
compnrisons with vortex lattice theory in Ref.7 (Van Darn and DeYoung, 
1947) and subsequent development by DeYoung8 (1947), the method is shove 
to be of great value for wings of uniform sweep and taper. The use of 
a solving point at the three-quarter chord point of the "kinked" central 
section of a swept Iring is open to criticism. It is of interest to compare 
solutions in which it is omitted (65.1). Both types of solution have been 
applied to reIreescntative wings in pig.1. 

Since the discussion of Ref.1 two other distinct theories have 
been published. Multhopp's lifting surface theory9 (1950) may reasonably. 
claim to be the most accurate routine method; 

K&chemann's 
its computation however 

is elegant but not short. theory10 (1950) my reasonably 
claim to be the most rapid method of calculating snept+ing loading, but 
its limitations in accuracy must be clearly reoognized. Calculstions by 
K&ohemann's method are provided in Ref.11 (Dee, 1951). 

Some cofiparisons with a theoretical formula for lift slope and 
the elliptic quarter chord point for aerodynamic centre, as suggested in 
rief.12 (Bryant and Garner, 1950), are also included. The six methods 
of solution are swmarized as follows:- 

(I) Vortex Lattice 6 point (34): 
(2) Vortex Lattice 8 point (24.1): 

(3) rieissinger 4 point (35): 

(4) lklssinger 3 point (fj5.1): 

(5) Multhopp 16 point (56): 
(6) Khohemann 8 point (i7). 

The basic physical concept, demands of co,,lputation, distributron of 
solving points and advantages of each solution are set out in tabular 
form in Fig.3 and are more fully discussed later in the appropriate 
paragraphs. 

2.1 Experimental Background 

This programme of calculations for the families of wings in 
Fig.1 will be supported by low-speed tunnel tests on at least one wing 
in each family:- 

i.e., Family (a) Mng 2: 

Parlily (b) Wing 7: 
Family (c) \hQ 10: 

Faruly (d) All four icings. 

Pressure plotting at tl,o sections 1~111 provide some information on spanwise 
lond~ng and local aerodynamic centre. The practical requirements of 
chor&ise loading rC.11 be further deduced from mewurenents of the spanwise 
distribution of hinge moment on control flaps of iwo chord ratios, 
E = 0.2 and 0.4. The \nng section throughout is R.A.E. 102, on which 
systematic two-dimensional tests with both co trol flaps are being carried 
out at N.P.L. at a Reynolds number, R = log , which will be covered 
in the three-dimensional tests. 
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From the practical point of view It is desirable to be able to 
pre&ct the aerodynar~c derivatives of wings. The relative merits of 
vortex lattice theory and Yfeissinger’s theory have been discussed in 
Ref .I 3 (Toll and. Die&rich, 1948). The primary consideration here in 
relation to the prestnt fundamental approach is &ether a vortex sheet 
theory can be adapted to include wing sectional characteristics. The 
systematic experimental programme,outlined above may be used to Judge 
the practical olalms of any theory; but unless that theory can also be 
substantiated in potential flow it can hardly be used with confidence to 
e&mate the effects of wing sectional modifications and of changes in 
Reynolds number from model to full scale. 

2.2 Future Theoretical Requirements 

The need for more precise knowled&e of the capabilities of 
vortex sheet theories is associated with the modern trends towards lower 
aspect ratios and higher speeds. The characteristics of a wing at a 
subsonio itiach nwlber N are related to the incompressib e 
wing with its lateral dimensions reduced by a factor Jf+fY,pa$i~ 
effective reduction in thickness chord ratio favours the vortex sheet 
theories; but their reliability deteriorates with such a decrease in 
aspect ratio, since two-dimensional oonsldcrations are inherent in the 
assumed chordwise loadings and the choice of solving points. The adapt at ion 
of the current subsonic theories to transonic flow is a matter for 
intensive research. 

As aspect ratio decreases the ed.lphasis shifts from spanwise loading 
to chordwise loading; and various theoretical treatments on this basis 
for swept wings have appeared recently. A nc:i method14 (Lawrence, 195115 
will assist the practical probl&l for dcltd wings at least. Robinson’s 
(1950) theory for swallow tail wings 141 be a useful guide, when the 
trailing edge IS swept-back. Both these theories are less suitable for the 
plan forms selected in Fig.1 than for wings of very low aspect ratio. 
Rut they should form part of a comprehensive study of the theories available 
for calculating wing loading in transonic flow. 

It is hoped that this note ~11 help to prepare the ground for 
two developments in which vortex sheet theory must play an important part:- 

(a) The use of sectional data in the prediction of 
aerodynamic characteristics of swept wings: 

(b) A method of calculation of general application to swept 
wings at high subsonic speeds. 

3. Results 

Potential solutions for each of the wings shown in Fig.1 have 
been obtained by some of the following theories:- 

(1) Vortex Lattice theory (34) 

(2) Weissinger’s theory (g5) 

(3) Multhopp’s theory (g6) 

(4) Ktchenann’s theory (37) 

The solutions by vortex lattice theory for Wine;s’l,2, . . . . 12 are presented 
in Tables I,II, . . . . . XII respeotively. 
and without P fundLons (34.1), 

Each wing has been calculated with 
and Wings 2 and 10 by a third solution 

with additional chordwise terms. 

Solutions/ 
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Solutions by Weissinger's theory for Nings 1 2 5 7 9 and IO 
and family (13) (including Wings 7 and 10) are given in'Tkbie'XII1. In 
esoh case a modified 3 point solution in included, as explained in 35.1. 

Solutions by Hulthopp's theory for Wing 2 and family (d) are 
to be found in Table XIV. 

K&hemann applied his theory to Ving 2 in his original report" 
and calculations by his method for the four wngs A,B,C,D in family (a) 
are provided in Ref.11. 

Theoretical values of the lift slope &$,&a and the aerodynamic 
centre (measured as a fraction of the mean chord from the leading apex) 
are summarized in Tables Xv and XVI respectively. Compcrisons of 
acL/aa with a simple formula 

4 
38) 

elliptic quarter chord point ( 8.1) 
and of aerodynamic centre with the 
are included. 

3.1 Lift Slope 

As explained in 31 and Flg.1, the selected plan forms are 
arranged in four families: 

(a) Delta wings: 
(b) Pointed arrowhead wings:, 
(o) E'icdiun tapered arrowhead wings: 

(a) Cropped wings of 45' sweep-back. 

Some curves of i?CL/Sa for each farnly arc given in Fig.4; 
and all the calculations are summarieed in Table Xv. Comparisons of 
the standaud 6 point vortex lattice solution and Veissinger's standard 
4 point solution reveal that the former gives a consistently higher 
lift slope, the percentage difference increasing with sweep-back and 
being of the order 6% forA q 45'. Typical discrepancies of this order 
were fcund in def.7. 

Vhen P functions are introduced into the vortex lattioc 
calculations SC&a is lowered slightly. The removal of the central 
three-quarter chord solving point in Neissinger's solution has the 
effect of rsising acL/aa . The two theories thus modified are normally 
within j$. 

It is very probable that \ieissingerls standard solution always 
overestimates the effect of the central kink and that this effcot is 
underestimated lvhvhan his solution 1.8 modLfied (55.1). In four oases out 
of five, lift slopes calculated by hulthopp's theory are within O.$ of 
the mean of Weissinger's standard and modified values. Such consistency 
is encouraging; and having regard to the even better agreement betlieen 
Mulshopp's solution and the check solution3 for Ving 2 by contmuous 
numerical integration, the available evidence suggests that the accuraoy 
of multhopp's method is superior to that of the other routine vortex 
sheet theories. 

By comparisonK&hemann's method seems inconsistent, giving 
at times values of aCL/aa greater than vortex lattice theory and in the 
case of the pointed Mng 7 values lower than rieissinger's standard 
solution. 

The/ 
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The approximate forrniLa of equation (14) seems to be accurate 
xlthin t B, unless either the angle of saees-back exceeds 60' or the 
aspect ratio is less than 1.5. Beyond these limits the formula reads 
high and thus tends to underestinate the effective sweep-back n 1 (58) 
and not to allow fully for induced aerodynamic camber. 

The general effect of sweep on lift slope is shown in Fig.8. 
The dotted curves for wings of given sneep are deduced fromthe four 
full curves representing the calculations for a family of wings (Fig.1). 

3.2 Aerodvnanio Centre 

The aerodynamic centre by any linearised vortex sheet theory for 
an uncambered wing OCCUTS at the point of intersection of the axis of 
zero pitching moment and the centre line of the wing. The quantity a.o. 
is defined as the distance of the aerodynamio centre dolmstream of the 
loading apex measured as a fraction of the mean chord. 

Some ourves of a.c. for each family of wings (Fig.1) are given 
in Fig.5; and all the calculations are summarized in Table XVI. 

Although Veissinger's method predicts a negligible change 
of a.=. %thin a (6,X) family, vortex lattice theory suggests an 
appreciable increase in the quantity a.c. with decreasing aspect ratio. 
Thus there may be a rcanvard movement of aerodynamic centre associated. 
with compressibility at subsonic speeds. 

Falkner's standard vortex lattice solutions give a central kink 
in the local aerodynamio centre, 
here (34). 

but s systematic rounding off is used 
The effect of this IS shown in Table XVI to he more important 

than the introduction of P functions and two extra solving points (F113.3). 
There is no apparent improvement in a.c. through taking three chordwise 
solving points as in the 9 point solutions for Nings 2 and IO. 

One drwback to Wcissinger's theory is his strict adherence 
to the two-dimensional type of chordwise loading, which presupposes 
a local a.& on the quarter chord locus. Ho-ilever for swept sings the 
8.o. also depends on the spat-wise distribution of lift and this is 
partly covered in Wcissinger's standard 4 point solution. In the 
modified 3 point solution the conditions at the central so&ion are left 
free and are accounted for by smooth interpolation (i$.l), which 
probably exaggerates the chordvnse displacement of local a.c. The 
average of the standard 4 point and modified 3 point solutions 1s compared 
with the best vortex lattice solution (8 point rounded) and Nulthopp's 
solution in Table XVI, When these last trm agree the comp,arison vtiith 
the average value from Ylclssinger's theory is excellent. The discrepancy 
between Multhopp'n solutionsand vortex lattice theory for Wing 7 is due 
to the pointed tip and its influence on the calculated spanwise load~rg 
(§3.3). 

&henann's nethod is in fair agreement with Multhopp's theory for 
Wings 2, B (or 10) and C. But serious differences for Wings A and D 
suggest that KGchemann's method as a potential theory may only be suitable 
for medium tapered hings (0.15 <h <0.45). 

It is interesting to compare the caloulated aerodynamic centres 
vJith the goemetrically defined elliptic quarter chord li (Fi .2 and 
88.1), which is showm as a function of S and X in Fig.y(s . Theoretioal 7 
values of (a.0. - K) for the plan forms of family (a) are plotted in 
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Fuz;Y(b), where the variations arc quite as dependent on taper ratio 
as on aspect ratlo. N1th th1.s gu1dr andother thcoretlcal compnr1sons 
of a-c. and fi 1n Flg.y(a) the el11~1c quarter chord point may often 
be used with discretion to obtain rough estlnates of the aerodynamic 
centre within 2 0.035. 

As a general conclusion for most niiept inngs, It 1s ncoessary 
to use one of the more elaborate rout1nc vortex sheet theories to evaluate 
the posrtlon of the aerodynamic centre V!ltnin 0.0X!. If less accuracy 
is required kissrnger's method 1s recommended for \nngs of uniform 
wee:, and taper as follow: 

(1) Complete 4 pornt solution as set out in Ref.7, App. C; 

(2) Repeat the f1nol stages of (1) by motify1ng one e&&ion 
as suggested 1n 85.1 (modified 3 point solution); 

(3) Take the average of the a.c.'s ccloulated from the formulae 
approprratb to (1) and (2). 

The cor.r@ation should not exceed one day. 

3.3 Spanvlse Loading 

The span\.ise drstr1but1ons or" 11ft have been calculated for 
Wln.gs 7 and 10 by the s1x methods sur,unw1sed 1n F1g.3. The quantity 
c CLIP CL , representing the lift per ulut span divided by 1ts 
average value, is plotted against the spanw1sc distance n 
IO, A and C 1n Figs. 6(a), 6(b), 6(c) and 6(d) respectively. 

for VllngS 7, 

It 1s interesting to note that the two solutmns from 
Weelssinger's theory tend to give a fairly ~dc variation near the central 
section. k mean curve can be expeotcdto give a good estimate of the 
distribution of lift for most swept wngs. 

For the pointed wing 1.n R1g,6(a) K&chcnann's method appears 
untrustworthy, g1vin.g a nuoh reduced 1oatin.g near the t1p. The curves 
oorresponting to the methods of XulthopI, and Kkhenann have in cormilon 
a steep fitnte slope at the t1p, while the other theories shovl the more 
usual lnfln1'c.e slope associated vlth elliptic loading. Dy the nature 
of the kstr1but1on of solving points (Fig.3) these trio thcor1es are 
more likely to be correct near the t1p and this raises the problem 
of finite or infinite spanwlse pressure gradients near a pointed wing 
t1p. Although conventronal ~1ngs are not pointed, this bchavrour 1s 
of more than acodwuo 1nteres.t since tr1angularl4 and s-;dallou# ta1115 
wmgs of lo!! aspect rat10 are more aiienablt. to theoret1onl kentalent, 
which may ylcld results of general interest. Further it should be 
noted that the 1ncons1stcnt theoretical aerodfl?aGc ccntrcs calculated 
for Wing 7 are pr~ar1ly due to these dlfferenccs 1n the spanwise 
loading. 

The other ~!1ngs do not reveal ouch serlous d1sorepancles 1n 
sparwise loating by the hfferent theories, but Kkhenann's method 
appa.--xtly eives s&&t excess loading near the t1p for the w.ngs of lower 
aspect rat10. In F1g&(b) Multhopp's 16 point solution and the 8 point 
vortex lattloc solution (731th Falkner's P functions) arc ln&.stinguuAable. 

The calculations for the three (6,h) faml1es by vortex lattice 
theory give an estimate of the effect of compressibility on spanwise 
loading. The typrcal decrease 1n central loading at a given 11ft 
cocfficlent, CL , nay be seen for the delta fwily (a) in Tables I,II,III,IV, 

the/ 
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the I.42 decrease in CLL/CL (11 = 0) Yron Table III to Table 
representing a change in Mach ntier I?XL~ 0 to 0.661 for Wng 3. 
effect 1s rlore marked for the pointed fa&ly (b) and less marked 
the me&w tapered fni~ly (c), 

II 
This 

for 

Care is needed rn the calculation of spanwise loading vrhenever 
It differs appreciably fron elliptic. This occurs for pointed and 
untspered wings. Thf, treatment of iieissinger's theory recor.~ended in 
35.2 for obtaining aerodynamic centres should often suffice. 

3.4 Local kerodynanuc Centre 

The calculated local aerodynanlc centres for biings 7 and IO 
are plotttd in Pigs. 7(a) and 7(b) respectively. ' 

The deviation of iulthopp's local a.c. near the tip of the 
nedium tapered l.ing in Fig.7(b) is of interest and suggests considerable 
uncertainty in the chordwise prcssura dlstributicn In that region. 
Otherwise for both mngs the theoret?cnl ourves are in close agreerlent 
except near the central section. where--the-standard vortex lattice theory 
requires a spanv?ise.snoothing. 

The assured wing loati~w of the vortex lattice,theory gives 
an unacceptable central kink in the locus of the local a.~. for swept 
wings. By a procedure cxplainsd rn g4, the locus is rounded in the 

- 0.2<q<o.2. Tnis effectlvcly l.nproves the co;lparison betneen 
tit%ree thcorres in Figs. 7(a) and 7(b). 

No rzgorous routine procedure for incorporating the necessary 
change rn chordwise loading in the central region has been devised.. The 
artifices used by Hulthopp (56) and Kfichemsnn (67) are no nore conclusive than 
that proposed for vortex lattice theory. The nlost plausible treatment is 
given in l'lulthopp's theory, where the distribution of local 3.~. 1s 
effectively deterr.lrned for a rounded wing. As indicated in §2., it is 
hoped that further work on the lines of Ref.3 for arrowhead wings will 
provide useful inforIilation on the chordwse distribution of lift at the 
central section and the extent of its influence in a spawise direction. 

4. Vortex Lattice Theory 

Falkncr's4 use of a vortex lattlcc 1s essentially a technique 
for eQaluatlng down;ash. The question of accuracy has been exawned 
in Ref.5, where it is stat& by Fslkncr that the beneficial coupling 
effect of the lattice r@kes it unnecessary to obtain indrvidual values 
of the dolmwsh to great accuracy. Various rlethods of calculation are 
coi,rparcd and a nleasure of convergence is obtained, but there 1s no 
proof that vortex lattice theory tends to the exact vortex sheet theory 
as the lattice spacing becowes rnfiwtesinal. 

The pressure &stribution over a wing is represented by 

pb -  Pa 
--me- = 

PV2 
89 [Fe(n) cot 3 + F&C') sin Q + 12(Q) sin 203 
c 

where 8 is the usual chordvrse angumr w-ordinate given by 

x-x'1 = &(I - co9 0) * 

..* (1) 

The/ 
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The spanvise variables FO , F, , F2 me deterruned by satisfying the 
condition of tangent&l flov at ss many points of the plan form as 
there are unknoivns. Provided that both the leading snd traIli 
of the UP& are smooth, the dovnviash corresponding to equation "i 

dgSS 

1) is 
continuous over the plsn form and tierecess3ry boundary conditions are 
possible. But at the central kink of 3 ;iwept rring a logarithmically 
infinite downwash from exact integration cannot be avoided (Ref.2, 34), 
although the vortex lattice :;ives firiitc values there. The singularity 

a g,-p, 
m doimvmsh ar~sea vhcre there is a dlscontlnulty In -- ------- ; 

a0 & ( ) fV2 
this occurs where -- is discontinuous. and shovs for example in the 

kinked distribution?f local aerodynamic centre in Pig.T(b). The 
following smoothi% procedure has been used. 

Let D(n) be the distance of the local 2.~. dormstream of 
the lending apex. Firstly vnlues of 

c 2FO + 2F, - F2 
Dr(~) = x1 + _ -------_---_-- 

4 2Fo + F, 
..* (2) 

are calculatd fron the I~ressure tintributron in equation (I), It 
appears that Df(n) is sc~cely affected outboard of the solvir~ station 
n = 0.2 by the central kink. The sp,an%.isc gradient of Df(.r~) at this 

0.6 D' r 

Then for 

(0.2) = Df(O.10) - 8 Df(O.15) + 8 Df(0.25) - Df(O.30). 

-0.2 d Tl<o.2 , the local a.~. IS 3ssuiiitd to occur vhere 

I)(q) = Df(O.2) + 2.5 D$O.:) ('1' - 0.04). . . . (3) 

For this range of n, Df of equation (2) is replaced by D of equation (3)b 
the aerodynamic centre of the wing is therefore displaced through a 
distance 

4?rA 0.2 

EA(a.c.) = --- 
$ 

(D - D,)(F, + $1,) d7, , . . . (4) 

cL 0 

where A (a.c.) in the correction to the quantity 8.~. defined in 
83.2. The effect of equation (4) is shovn by the comparison of the 
standard and rounded 6 point vortex lattice solutions for iiings 1,2, . . . . 12 
ln Table XVI. 

Throughout the present calculations with a 21 x 6 lattice the 
ocntrai horseshoc vortices of sp%r&ce extent -0.05<ri<O.O5 and 
the central solving points, if nny, 
to the chord line at n = !: 0.025. 

are d~sphced. clounstresi~ to correspond 
With this small modification 

the 6 point solutions took boundary con&tions at + chord and 5/6 chord 
( i.e., 00s 0 = 0 2nd - 2/3) at the three seotions n = 0.2, 0.6, 0.8, 
the additional section ?1 = 0 being included for the 8 point solutions 
(Flg.3). 

The/ 
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The 9 point solutions for Vings 2 and 10 vere obtained with 
a 41 x 12 lattice, the centrsl vortices being displaced ba&ard to 
correspond to the chord line at 
being taken at + chord, 

?1 = 2 0.0125, and the solvmg points 
2/j chord and 5/6 chord at each of the scctmns 

11= 0.2, 0.6, 0.8. These solutions did not prove any more accurate 
than the standard 6 point solutions nith a 21 x 6 lattice. 

4.1 Use of P Funct>on3 

In the stsndzzd solutions by vortex lattice theory the spanwise 
variables in equation (1) for symetr~cal loading are of the-form 

F. = c7 (a0 + co+ + e,?+) ' .** (5) 

Experience has shown that a certain mprovemnt in accuracy is obtained 
when the spamnse load distribution is izodifred to be consistent with 
lifting lint thecry. When dc/dy is discontinuous, lifting line theory 
requires a continuous domwash with a sudden change of gradient. In the 
particular probiems of this note (Frg.1) such discontinurties are 
confined to the central section; and iu rief.16 (1947) Falkncr has 
reconwnded that, instead of equation (5), the follomng equation should 
be used:- 

vhere 

FC = Jr-7 (a0 + co112 + e&9 + PC P(v) ) . . . (6) 

P = &Pa + (1 - G:)Pb ) 

the quantities Pa and Pb being def'lned in r?ef.17, Table I. The 
factors of Pa and Pb have been deterruned to the nearest 0.05 from 
Ref.17, F1g.2 and the particular values for Wings 1,2, . . . . . . 12 are 
indicated in the respective tables. 
(6) with smrlar expressions for F, 

For each ving equations 5) aqd 
have been used for the 6 pomt 

and 8 point solutions rcspectlvely. 

However P functions do not affect the general form of equation (1) 
or the conslderstions of the logarithilic si~larity that follow. Thus 
the smoothing procedure outlmed m 34 1s stdl necessary lf 3 kinked 
distribution of aerodynauc centre is to be avoided. P functions therefole 
do not constitute a rigorous treotrlent of tne central region of a 
swept king. Based as they are on the lifting line theory they are not 
convmczng for the purpose of calculating aerodynamc cetircs. The 
8 pomt solutions should be Judged in relation to the ivprovment in 
accuracy in proceeding fron the more econo,llcal 6 point solutions. In 
the opinion of the witer the 16 point solutions by Xulthopp's theory 
(36) are exact enough to pmmt a pronouncemnt of the theoretical value 
of P functlon3. 

In the case of delta vings (L'lg.1, family (a)) P functions 
have a negligible effect co,,lpared with the difference in LWL/aa. between 
the 6 point vortex lattice solution and ?ulthopp's solution, and the 
change in 3.~. effected by the smoothing procedure of 54. 

For the arrowhead Vmgs 7 3nd IO the mprovement m aCl/&z is 
about 4C$ of the likely positive error in the 6 point solution and men 
better accuracy 1s obtained for the n.c. of the mdiw tapered !/in& IO. 
The use of P functions and the two additional solving points apparently 
gives slight but distinct mprovsimAs in the spanvise distributions of 
lift and aerodytm.~c centre. 
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It is thought that the cass for P functions is strengthened 
by the existing comparisons. %xccpt for delta wings appreciable accuracy 
is gained by using 8 point solutions in preference to 6 point solutions 
when calculctlng symmetrical swept-wing loading by vortex lattice theory. 
Against this mtst be set a 7C$ increase in computation. 

4.2 Future Applications 

(i) In calculations of swept-wing loading, as considered in this 
note, the vortex lattice theory nay be used xhen the plan fern of the mug 
is unsuitable for Weissinger's method and the superior accuracy of 
Multhopp's theory is not required. 

(ii) 'tuhcn vortex lattice theory is used, the mdifrcation to 
aerodynamic centre outlined in 34 should ali)ays be included. Tho 
improvement in accuracy through the use of P functions occasionally 
justifies the 7C$ extra labour involved (94.1). 

(Iii) The outstanding feature of vortex lattice theory is its 
flexibility. At the expense of extrme accuracy itis possible to treat 
a wide range of problems. The r.lethod is being applied to deflected control 
surfaces of partial span; the special chordwise loadings present no 
difficulty, and there is, furthcmore, freedo..~ of choice of solving 
points. 

(iv) In psrticulm vortex lattice theory gives a simplified treatment 
of the effect of co;,lpressibilitylg (Palkner, 1948) and will determine 
oscillatory derivatives of high frequency'9 (Jones, I 946). Neither the ampler 
nor the more rigorous vortex sheet theories can readily be applied thus. 

(v) It is tentatively suggested that by dividing a vortex sheet into 
spanwise strips instead of chordmse ones the technique of vortex lattice 
theory ra.ay be adapted to calculate the loading on ion aspect ratio wings 
of arbitrary plan form. 

(vi) The uniform simplicity of a vortex lattice makes for 
straightforward calculations, which are more likely to be handled 
successfully by electronic computing engines. 

5. Weissingerls TheorE 

The original L-method of Gelssinger (1942) has been expressed 
more suitably for computation with tabulated constant factors in 
Ref .7, Appendix C (Van Born and D~YOW, 1947), where the standard 
4 point solution IS doscribed. In this simplified theory the vortex 
sheet is concentrated at the quarter chord locus; and the downwashes 
due to this vortex line and its attendant trawling vorticity are used 
to satisfy the boundcry conditions at points on the three-quarter 
chord locus (Fq.3). 

This logical development of the lifting line theory can 
usefully be applied to a swept wing so long as its aspect ratio is not very 
low and.its sel.u-leading end semi-trailing edges are straight. This form 
of Weissinger's theory does not provide an estimate of the departure 
from two-dimensions1 chordwise loading, but may be used to deterru. e the 
spanwise distribution of lift and the aerodynamic ocntre of n wing 8 
(DcYoung, 1947). 
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Welsslnger’s standard 4 point solutxon takes one sixth of the 
tine required for the corresponding 6 point standard solution by vortex 
lattice theory. The speed of !:'eissinger's theory Justifies its use 
whenever its accuracy is comparable \.ith thot'of more elaborate methods. 
Results have been obtained for \hngs 1,7,5,7,9 and 10 and fsnuly (d) 
(1ncludin Wings 7 and IO) and are given in Table XIII. These show 
that aC L7 8, (Table XV) is consistently underestimated and that there 1s 
a tendency to underestimate s.c. (Table XVI). In the spanwise distributions 
of lift for a given CL the contributions from the central region are 
consistently underestinated (Figs. 6(a), 6(b), 6(o), 6(d)). 

5.1 icodified 3 Point Solution 

It is very probable that :lelssinger's standard solution always 
were&mates the effect of the central kink of a sl.ept ning. The theory 
is SubJeCt to the same fundamental criticism as vortex lattice theory, 
for the pressure distribution, represented by the first term of equation (I), 
logically produces a smgularlty in dowwash at the kinked central section. 
It is also pertxnent that the use of a solving point on the three-quarter 
chord locus 1s essentially based on l&o-dunensional conslderatlons, &ich 
are of little worth where the locus has a violent kink. 

It 1s therefore mtercstlng to replace the boundary condition 
at the central section by a relation between the unknotm values of the. 
non-dimensional oiroulation GV , defined as in Ref.7 by 

Circulation 
a_---__---- = Y(d = Gv > 

2sv 

VVT 
?I = cos -- (v = 1,2,3,4) . 

8 

If GV 1s taken in the symmetrical form 

VX 3v?r 5vx 
Gy = A, sm -- + A3 sin --- + A5 sin 

a 8 
-8" (v = 1,2,3,4) , 

It follows that 

0.3827 G, . 0.7071 G2 + 0.9239 G3 - 0.5000 G4 = 0 . l . . (7) 

The mobfled 3 point solution is obtained by usxtg equation (7) in place if 
the central boundary condition at V = 4. If the standard 4 point 
solution is being calculated, the modified 3 point solution is readily 
deduced with very little additional ComputatLon. 

The lift coefficient In the standard solution is 

1 

cL r7.A ydn 
s 
0 

%A 
x 

i- [o*3827 G' 
+ 0.7071 G2 + 0.9239 G3 + 0.5000 G4]* . . . (8) 

With/ 
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With the aid of equation (7) this becomes 

CL = r" (0.7654 G, c 1.&78 G3) 
4 

%A 
= ; (1.4142 G2 + G4) 

l ** (9)  

The aerodynamic centre in the standard solution is evaluated 
by Lonccntrating the lift on the quarter chord loous, and is given by 
the formula 

where 

cO s tanA 
a*c. : -- + ----w--M jj ) 

4E 'I 

0.3525 G, + 0.5030 G2 + 0.3440 G3 + 0.0404 G,+ 
7 = ---------_--_------_------------------------- , . . . (10) 

0.3827 G, + 0.7071 G2 + 0.9239 G3 + 0.5000 G4 

and the other quantities are defined in Fig.2. In a more general solution 
with a spanwise loading concentrated at a distance a(71J.c from the 
leading edge the aerodflamic oentre 

where 

CO 1 1 
a.c. = -- + 

s 

Idri 5 

4z 0 
/s 

rd+l , 

0 

I = y{rls tenn + c(Z - &jj , 

From the mod.ified 3 point solution the integrand Iv may be evaluated 
for v = 1,2,3 by substituting Z = & ; its central vclue 14 may 
be determined fmm an interpolational equation for Iv similar to 
equataon (7) for GV . Then from cquntions (8) and (9), At follows that 

00 0.7654 I, + '12478 I3 
a*c, q - -  f - - - - - - - - - - - - - - - - - - - - - - - -  

4: a(o.7654 G, + I.8478 G3) 

00 s 'canA 0.7071 (G, + G3) 
= --+ ------F- ------___---____ . . . . (11) 

45 a 1.4142 G2 + G4 

Coloulatlons of ?CI/C~ a and U.O. by Weissinger's standard 
4 point solution using equations 
3 point solution using',cquations 

and also by the modified 

Nulthoppls sclutio&~Lf$~ Wing 2 
h&e been compared with 
fo$.lj;.(d) (Fig.1). The 

tendencies to.undere&+~mate 8CL/aa and n.c. are.usually'wercorrected 
when the 4 point&c~lution is.re@aced by the 3 point solution. The 
central solving point cannot safely be ignored; md the formula (11) 
for aerodynamic centre probably exaggerates the displacement of the central 
local a.c, from the quarter chord locus. The average of the 3 point 
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and 4 point solutions is in good agreement with ILlthopp's 16 point 
solution, especially for Nings 2, 10 (or B) and C. 9~idenoe from 
Pigs. 6(a), 6(b), 6(c) and 6(d) suggests that the spanwise loading near 
the central section lies between !'/oissingcr's tiio solutions and that 
their mean will often provide a satisfactory estimate of the spanwise 
distribution of lift. 

5.2 Altur -_- -.c -:Llic:ltions 

(i) In calculations of swept wing loading Weissingerls theory is 
recommended, provided that the wng IS of constant weep and. taper, 
that details of chordwise loading arc unnecessary and that the superior 
accuracy of irulthopp's theory is not required. 

(ii) The follwing recommended procedure involves one day's computation:- 

(1) Complete the standard 4 point solution, as described in 
Ref.7, Appendix C. 

(2) Repeat the final stages of (7) oy replacing the central 
boundary condition oy equation (7) and using equations 
(9) ana (11) (§5.1). 

(3) Tske the sverage of (I) and (2) to give lift slope, 
aerodynsmic centre and spanwise loading. 

(iii) The speed of F!eissinger's method makes it suitable for estimating 
the effects of compressibility and sectional lift slope, nhich may be taken 
into account b an adjustment of plan form (Ref.20, Appendix 5; 
DeYoung, 1950 . 5 

(iv) DeYoun 
antisymmetrical 28 

has extended Weissinger's theory to problems of 
(1950) and spmetr~oal~~(1951) spanmse loadmgs 

including flal, deflections of partial span. In so far as such problems 
can be trentcd by considering a spnn\iise distribution of equivalent 
incidence without effects of local aeroclynamx centre, rolling and lifting 
characteristics of wngs of constant sweep and taper may be calculated. 

6. iiulthopn's Theory 

The most useful contribution to the problem of nwsptT#ing 
loading of recent years IS Multhopp's subsonic vortex sheet theory 
(Ref.9, 1950). To a very large extent thr method is soundly based; 
and an elegant scheme of computation Just brings the 16 point solution 
into the category of a routine calculation (Fig.3). A simple 4 point 
solution (m = 7, 1 chordwise) would take as long as a oorrespond3n.g 
solution by Weissinger's theory, would give at least as good accuracy 
and is applicable to any plan form, The determination of local 
aerodgrllamic centres would require at least an 0 point solution 
(m = 7, 2 chordwise), &kirch mould take spproximatcly half as long 
as a standard 6 point solution by vortex lattice theory and is reasonably 
expected to reduce the error. 

From the mathematics1 standpoint any given lifting surface 
problem has a unique solution. Since there is no such explicit solutron 
for any swept tVing, it is strictly impossible to obttlin an absolute oheck 
on any approximate calculation. But the unoertamtles in any theory are 
at most threefold (Ref.2, g2) and concorn 

(a) the assumed ping loading: 

(b) the evaluation of downwash: 

(c) the choice of solving points. 
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No approximate vortex sheet theory is impeccable as regards 
(0); however liulthopp's theory is undoubtedly the best in this re,spect 
from both chordwise and spanwise considerations (Ref.7, 23). 

The limitation (b) arises from an assumed vortex configuration 
or a simplified interpolation; of all routine methods discussed in this 
note Multhopp's theory again comes nearest to satisfying the requirements. 
His chordwise integrations are exact and are expressed as influence 
functions of two variables, which are presented once and for all in a 
series of charts (Ref.9, Figs. 1,2, .,. 6). It is the rapid process for 
evaluating these influence functions that makes 7Mthopp's method a 

reposition. 
%:~~:t3:o~E::~ f&) 

His method of approximate spanwise 
is similar to that of his lifting line theory22 

(19%) and is mathematically convergent. The rate of convergence 141th 
m is improved by Kulthopp's correation for a logarithmic singularity 
(Ref.7, 35.2). 

Another limitation arises in connection with (a). kulthopp 
effectively assumes a pressure distribution as it appears in vortex 
lattice theory in equation (1) without the term F*(n): viz. 

9, - P, 8s 
mm..---. = 

PV2 
-,' [FO(n) oot & + F,(n) sin 01 

8s 7 
[ 

2P = -- -cot$t--(cot$Q-2sinB) , 
c 2x n I 

. . . (12) 

where the unknowns 7 and P are to be determined at m spanwise 
stations 

rl = sin nz/(m t 1) [n = 0, +I, 22, . . . -a(m - I)] . +I. 

The evaluation of dowwashes at the kinked central section of a swept wing 
due to the pressure distribution of equation (12) is strictly meaningless, 
since the double integrals do not tend to a finite limit. biulthopp's 
smooth "interpolation polynomials ' for spanwise integration break do%n 
when the integrand has a sudden change of gradient. Thus for a kinked swept 
mng they give the wrong wing area and also an untrue finite limrting 
dowwash at the central section. Honever for a given value of m there 
is a small unique modification to the ordinates of the central chord 
(Ref.7, App. VI) such that integration of the "interpolation polynomials" 
will give correct areas; dowwashes may thenbe evaluated for this slightly 
modified smooth wing without obvious inoonsistencies. This treatment 
of the central scotion, though not rigorous, has more to commend it than 
the artifices used in the other theories: 

(i) Vortex lattice theory. Use of P functions (34.1); 

(ii) The recorm>ended procedure for Weissinger's theory (35.2); 

(iii) ?&ohenannts equivalent lift slope (37, equation (13)). 

These ConsideratLons establish the superiority of Nulthoppls 
theory; and in the opinion of the witer this theory may be used to 
&d.ge the order of accuracy achieved by the other theories discussed in 
this note. 
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Honever thorc are problems that are easily handled by vortex 
lattice theory but are not suited to ijlulthopp,pls theory, Oscillatory 
derivatives for nny frequency or flutter mode my be treated by vortex 
lattice theory19 (Jones, I 946)x, while the application of Multhopp’s 
theory is limited to low frequencies of the first order (Ref.23). 

Each influence function depends on tw variables of unrestricted 
range; and each linearly independent chord?iise loa&ng requi es a different 
influence function. By aay of contrsst vortex lattice theor A requires a 
single influence function, irrespective of chordwise loading, for whioh 
the spanwise variable is restricted to even integral values. This 
influence function may be evaluated at a glance from critical tables for 
particular vaiues of the spanGse variable. This simplifying feature of 
vortex lattice theory involves a loss of accuracy, but it means that the 
theory may be applied to problems with deflected control surfaces, wereas 
Multhoppls theory wuld necessitate an additrcnsl influence function+for 
eaoh ratio of control chord to wing chord. 

6.1 Computabion and Accuraox 

Calculations by Nulthopp’s theory have largely been confined to 
the 16 point solutions (m = 15, 2 chordwise). Results for Wing 2 and 
the vhole family (d) of Fig.1 are given in Table XIV, and have been used 
to assess the accuracy of other methods of calculation, 

An interesting spanwise distribution of lift is found near the 
tip of the pointed Wing 7 (or D). The curve of spankse loading in 
Fig.6(a) suggests that a steep finite gradient may occur near a pointed 
tip in place of the more usual infinite slope, exemplified by elliptic 
loading (33.3). This result requires further investigation and may 
have an important bearing on calculations for pointed wings. 

Multhopp’s,charts of influence fundions (Ref.9, Figs. 1,2, . . . 6) have 
been found difficult to read and check to the rac&rod nocuraoy. To eliminate 
this drawback these functions of two variaoles should be available in 
a tabulated form suitable for double linear interpolation; the speed 
of computation and accuracy would then be impmved. 

As suggested near the beginning of 36, it will often be 
convenient to carry out calculations by Flulthopp’s method for m = 7 
with 4 spanwise stations on the half wing, It should be noted that 
the values of avn given in Rcf.9, Table II&are incorrect and should 
read as follow:- 

i-_l-::i::-l-~~~~~~~~~~~~~ 

_-____ ____________ _^--_____--_~-_-___----- --------- 

_---------- ----------------- -I-Y-- 

The/ 

mm------I..-e- _______-------__------ 
*Available N.P.L. calculations for riing 2 (FL&-I) a G &van in A.R.C. 14 156 

ifariss Lehrian, July, (951). 
+This may be avoided in en approximate calculation idith the chordwise 

loading of equation (12) and suitably modified boundary oonditions. 
(Ref. 9, APP. II). 



- IV - 

The chief elonent of uncertainty in the mntrinslc accuracy of 
Multhopp's method 1s associated with his treatment of the kinked central 
section of a swept \;lng, The local acrodynanic centre in this reglon 1s 
most lllcely to be affected. Ho~vcr comparisons Tiith Ref.3 for a delta 
wing (Flg.1, Kng 2) are excellent (R~f.9, Fig. VIII). No very 
signlflcant discrepancies have yet been found lihen the number of spsnvrz3e 
variables, &(m + 1) for a syclnetrical problem, is halved from 8 to 4.. 
In particular, calculntlons for Wing 10 col.qare favourably as follows:- 

“-“-“-“-““““““” ““““““__“__“~__““““_““““““““““““””” 
lil=7 n= 7 m 2 15 

Solution ~""""""""""""_______""""""~"""""-""" 
1 ch. 2 ch. 2 oh. 

""""""""""""""""____""""""""""""""""""""""""""""""" 
acL/aa 2.701 2,771 2.735 

""""""""_"""_"""__"_""""""""~""""""""""~"""""""-""" 

-z (cq. (IO)) 0 .&I+1 0.436 0.436 
""""""""""""""""""""""""""""~"""""""""""""""""""""" 

a.c. . O.gj6 0.956 
""""""""""""""" "___"___"""____""_"_"""""""""""""" 

The extent to >-$hloh Xulthopp's theory can usefully be slmplifled to 
calculate aerodynamic centre remains to be investigated further. 

It seems likely that the theory ~111 deteriorate in detailed 
accuracy for nlngs of very 101, aspect ratlo, unless more than two terms 
<are taken In the ohord~rinc loa&ng. Serious departure from two-dimensional 
loading is bound to occur and the second tern of equation (12) can only 
approximate to this. A col?.parlson wzth Lawrence's method for a delta Ring 

and Robinson's method for a siiallo~i tall ping (Ref.15) would be 
EZZest . 

6.2 Future Appl3.catrons 

(i) For the problems th?.t It Kil t?cUe Multhopp's theory is 
distinctly supcrlor to other routme methods of colculatlng swept wing 
los&ng. Except for the smalles?; aspect ratios an elaborate solution by 
lilulthopp's theory should bL Us c ,cl when spec~l accuracy 1s requIreda 

(11) It should nomlnlly be possible to choose a simpler solution 
to provide anzxi*6rs at least 38 quickly and more accurate1 

Ji 
than other 

methods: Thus an 8 point solution (m : 7, 2 chordrlise by Flulthopp's 
theory would effectively replace a standard 6 point solution by vortex 
lnttico theory; and a 4 point solution (r.1 = 7, 1 chordwsse) by 1iiulthopp's 
theory mould replace a similar solution by iicisslnger's theory. 

(111) Computation by Kulthopp's method mould be improved if the 
influence functions llere av%l;ble in a tabulated+form suitable for double 
linear interpolntron instead of the charts in Rcf.9, Figs* 1,2, l *.. 6. 

(iv) Xulthopp has applied his theory to osoillatory derivatives of 
love frequency (Scf.23). This unpibhahcd work ;*ovides a useful methOd 
of c,?lculatin& the pltchlng derivative LI 

b' 
(v) The reliability of vortek sheet thcorios for wings of low aspect 

ratio needs a cor.lprehcnsive study in vdhioh 1lulthopp's theory is likely t0 
play an important pa+. Compz~otis liith LaT#rence'sl& method for a delta 
wing 2nd Roblnson's15 r.lethod for o'sva11o~ ta].1 Wing would be a useful 
first step. 

*Such tables (Rep. U/21/0505) are now available at the N.P.L. 
(Gthematics Division). 
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7. -L K&herlann's Theor 

For an unwept wing I&ohemnnn's theory reduces to the lifting 
line theoryj2. The basis of his modificstrons to lifting line theory 
is an effective change in the local lift slope cc and aerodynsmic 
centre ho at the central section associated with a given angle of 
swecl+ba&~ as folloris:- 

VI 
a @ = 2x 1 - --- 

c > 

AC 
, Ah, = --- . .., (1 

x 257 

Corresponding changes in sectional data at the tips ore obtained by 
substituting -/‘r for ,% in equation (13). The argument put forward 
in Ref.lO, App. I is unconvincing mcthematioslly rind the results should 
be judged entirely by comparisons with the more exact vortex sheet theories 
or with experiment. Serious inconsistencies with the other theories are 
clearly recognisable in Pigs. 4(d), 6(a), 6(b), 6(o), 6(d) and V(b); 
and comparisons nith experiment arc outside the scope of this note. 

The accuracy in local 3.0.~ calculated from equation. (13) near 
the centre of a swept ping, is hard to assess. PIulthopp's theory (H6) 
does not provide an exact treatment of this problem, so that the 
comparisons in Pigs.7(n) and 7(b) arc inconclusive. i3ut it is thought 
that calculations on the lines of Ref.3 for the \!lngs of family (d) 
in F’lg.1 nay help in this respect (32). 

Eking a mcdificd lifting line theoryK&hemann's method must 
be expected to become inaccurate at low aspeot ratios. It is found 
moreover that the calculated 3CL/ac, for Wing A of aspect ratio I.714 is 
1% higher than Multhopp's value (Table Xv). However the allowance for 
sweep on a semi-empitical basis can give fair accuracy as for Wing C of 
moderate nspcct ratio and conventionally small taper ratio11 (Dee, 1951). 
Without empirical modification KLchenana's theory is unlikely to handle an 
extensive range of plan forms with the desirable accuracy. The method may 
be applied to swept wings with the advantages and disadvantages of the 
lifting line theory for unswept rgings, of r&rich the outstanding merits 
are speed and adaptability. 

7.1 Future Apnlicctions 

(i) The practical value of K&henann's method lies in its simplicity, 
which permits a rough esttilnte of the spanwise distributions of lift 
and aerodynamic centre to be made in the shortest time. 

(ii) Serious inaccuracies in lift slope are found for wings of low 
aspect ratio (A <3) and fnvournblc comparisons of aerodynamic centre 
are confined to a very 1Llited rango of plan forms (Fig.V(b)). Kkcheuann's 
nethcd is untrustworthy as a potential theory for fundamental research. 

(iii) Being essentially a lifting line theory Klichcmann's method will 
tackle a wide range of lateral stability dcrivctives to 3 rough 
npproximction. 

(iv) Kcohemann's method is easily adapted to fit empirical results, 
such as effects of boundary layer on sectional date and three-dimensional 
characteristics near the centre and tips of swept wings. With experience 
the method should become a handy tool for designers. 

. 
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8. Theoretical Yormla for Lift Slope 

The curves in F1g.3 include lift slopes calculated f?ron an 
e~lplrical formula based on theoretical results 

where 7 IS a taper paraneter defined by liftin line theory and given 
the product of t;$o functions and 

idhich may be found in Ref.12, Tables 4(a) and 4(b) 

1s related to ..A , the angle of sweep-back of 
the quarter chord locus, by 

l *. (15) 

The formula (14) has been found to agree well with some experimentally 
determined lift slopes, but where a reliable estimate of the two-dimensional 
lift slope a, is available the practical formula (Ref.12, s5.2) 

acL 
m-s = A 

aa 

is to be preferred. 

. . . (16) 

Par the purposes of the present note equntzon (14) has been 
used for comparison with the various vortex sheet theories. The theoretical 
calculations of lift slope are summarracd in Table XV, &here the theoretical 
formula is shown to be a useful guide. The most serious discrepancies 
are between the formula and \ieissingerls theory for Wings 5 and 9, but 
for such extreme wings neither result can be trusted. It appears that the 
formula (14) is accurate r-nthin * s unless either the angle of weep-back 
exceeds 60' or the aspect ratio is less than 1.5. Be ond these limits 
the formula reads high. It is concluded that IJhhen A. is large 
equation (15) tends to overcorrect for the effective loss of s7reep in 
the central region, so that A' is virtually underestimated. 
Furthermore evidence for rcctnngular mn& -14 of loit aspect ratio suggests 
that the third term in the bracket of aqwtion (14) does not allow fully 
for aerodynxlic camber if A<l.5. 

The formula has been used as n basis for estmatxg~the effeotS 

of oompressibility on lift slope in @3.2. 

8.1 Elliptic Quarter Chord Point 

The elliptic qunrtcr chord point of a uniformly swept and tapered 
wing corresponds to its aerodynamic centre xihen elliptically loaded with lift 
conccntratcd along the quarter chord loous~ and it ocwrs at a distance 
liic' from., the leading apex such that 

. . . (17) 

4 



as defined geometrically in Fig.2. Fi I.S shown as a . . . . ^ function of the taper ratlo 
is correlated with 
for the wngs of the 

h ana r;ne snape parameter 
the values of the quantity a",.'~ij~rE2j9jlas'6d;~~t~td 
three (6,X) famllles (Fig.1) by vortex lattice theory and for Wings 2, 
8, B (or IO), C, D (or 7) by :;ulthopp's theory. This comparzson suggests 
that, oxceot for pointed wngsZ the theoretical aerodynamic centre will 
normally occur rVlthln + 0.05 o of the elllptlc quarter chord point. 
Except posslbl 
within a (6, X 

for polnted jilngs no very geat changes in a.c. occur 
family, although those calculated by vortex lattice theory 

are not negligible and imply an apprcclablc increase In 8.c. or rearward 
movement of aerodynamic centre lclth increase of iiach number. 
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The varlatlon betwen a.c. and fi for the cropped idings of 
45' s;ieep-bac!c In family (d) 1s sh&m In Flg.y(b). It should be remembered 
that the behaviour of (a.c. - E) 3.5 quite as deljendent on taper ratio 
as on aspect ratl3. For exai?plc (9.0. - Fi) ~111 be comparatively large 
and positive for swept-back inngs of constant chord. However it I.S 
considered that\mth discretion the elllptlc quarter ohord point may often 
be used to obtain rough estlplatcs of 8.c. -slthln 2 0.03. 

8.2 Effect of Compresslbllltx 

The calculation of the aerodynamic characteristics of a given 
nlng at a given subcrltlcal iInch nunber 14 presents no more ckfflculty 
than the oorrespondlng problcn for the same ;,ing In lncompresslble flow. 
Linear perturbations of velocity arc assumed in vortex sheet theorres and 
to th1.s approximation conpresslblllty is taken into account in steady 
flow by e 
f3 di?% 

rng the spanwise dlnenslons of the wing by a factor 
and by 3pplylng the factor l/i: to the aerodynarmc 

coefficients calculated for the equivalent ~nng in lnconpresslble flow. 

Thus, for example, the charncterlstics of Ming 2 (Flg.1) at a 
Xach number H = 0.745 (fi L: 2/3) , are related to those of king 1 
in rncompresslble floli, such that 

(C&J = ', (CL),,0 
P 

W2,$~ = ; (%.I), 0 , 
1 

and the effcd of II on aerodynaruc owtre for !?lng 2 1s merely the change 
in lncompresslble a-c. in changing from Nng 2 to 'ukng 1. Tlus quite 
small effect 1s not readily calculable. Allowance for compresslbllity is 
oompllcatcd by the loss of accuracy due to the lower aspect ratlo and 
larger sweep of the equivalent wing. But, as recwimended in 35.2, 
Vleissinger's l&hod (HLf.20) 1s convcnrantly quick for colculatlng the effeat 
of cor,~rcsslb~l~ty on lift slope, acrodynalfic centre and spamase 
losting, though the problem needs extensive study. Calculations by vortex 
lattice theory for the three (6,X) fartilles of IQ.1 show the effect 
of compressibrllty on the spanwise lo~d~g at 3 given CL (33.3). For 
exampla,Wng 2 show a 1% decreast ln ccntrnl ldndlng and. a >Z;% increase 
in tip loading as ?I changes from 0 to 0.745. 

A rough estinJtc of the theoreticA correction to lift slope 
for compresslbillty io suggested. qwlitntrvoly by the forruiln (14) in 38, 
and quantitatively by the result s of the resent calculations for the 
related wings of f3nllles (a), (b) 2nd (~7 and of Lawrence's cal.&!Alons 
for rectangular and trl;lngulw liings of 10~ aspect ratlo. 

Generallzed/ 
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General~ecd to mclude liaoh nur.ber, equotlon (14) becomes 

?JCL 0 --- 

aa ?!I 
= Ai& + 0.339(1 t q$ t 0.&4/m-' , 

%I = f(h) ’ id& 9 (Ref.12, Tsbles 4(s), 4(b)) 

1 
tan& = - tnnA 

P 

It follow that to the first order zn (1 - @) 

(awadbt 1 
_________ = ____-_____^_--__---------- ) 

mh.m, I - (1 - p) . G , (aCfla), 

1 a 
G = --- 

A $3 [” 
+ O-339(1 + Q + 0.064/&5&, = , . 

If the approxmate relntmn 

TM q f(h) l 0,10(2q$ 

1s used, It can be show that 

1 
G = ;,-,,,--;; [I t 0.043f(A)p0-$- 0.032p. -2/3] 

, 

[I + slnA' cos~v(tun_/\_- 2 tmA’)l l 

. . . (18) 

. . . (19) 

. . . (20) 

Equatmn (20) gives the lrr.lltrne fern 

1 
G = -- OOSA 

2°C 
as A-*w(b'-+n, pO+m). 

It is seen from equation (20) that 1.11 general G must be expected to 
depend on X , but in preparm& E'~g.10 It has been found that in relntion 
to the uncertainties m the true theoretionl. values of G the variations 
mth A are not mportant. Of the swx order 1s the varmtlon of G , as 
defined m equation (19), mth ii!. G 1s therefore regarded as a tindim-. 
of A and A , :ihloh has m prxtloe been estumted duect from 

0.75 , 
'k. 

equation (19) usmg ava~lablc cslculatlons and a value of B = 
whioh corresponds to ?r = 0.661. The curves for very low aspect rntio 
are speou&tlve and based.entlrely on the results given by Lmrence in 
Ref.14, Figs. 2 and 3. 
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For an swept wing it is possible to USC the curves of Fig.10 
and equation (19 to estimate the effect of compressibility on lift 3 
Slope provided that the data for incompressible flon is knoTin. The same 
procedure may be useful for correcting low speed experimental data. 

Y- Concluding Remarks 

This investigation of theoretical wept wing loading has provided 
solutions for the plan forms shown in Fig.1, From these a general picture 
(Fig.8) of the effect of sweep on lift slope and a chart (Pig.9) comparing 
theoretical aerodynamic centres nith corresponding elliptio quarter chord 
pomts have been obtained. As explarned in 38.2, the approximate effect 
of compressibility on lift slope at subcritical speeds may be estimated 
for any swept-back wing from Flg.10. There is a pronounced difficulty . 
in obtaining consistent results for pointed swept wings. 

The primary obJect of thrs note, however, is to compare the 
merits of vortex lattice theory and those of Veissinger, Multhopp and 
Kiichemann, and to suggest the port that each should play in the scene of 
future aerodynanics. A brief summary of the basic physical concepts, 
demands of computation, distributions of solving points and special 
advantages of the various methods of solution is set out in Fig.3. The 
general finding is that the more higUy developed methods achieve accuracy 
at the expense of greater lsbour and loss of adaptability. By including 
additional terms In the chordwise loading the application of a method 
may of course bc extended to derivatives of pitching moment and hinge 
moment. But the more precise evaluation of dowv~ash by Multhopp's theory 
is obtained by a means which discourages additional chordwise terms end 
is not very flexible. Thus there are problems for which the less acourate 
vortex lattice theory is more suitable. Furthermore lifting characteristics 
associated iilth phenomena affecting seotionnl data or with rate of yaw are 
more satisfactorily estimated by the simpler and. quicker theories of 
Weissinger or K(ichemann. 

The following recom;lendations are made:- 

(i) An elaborate solution by Xulthopp's theory should be used Ihen 
special accuracy is required. 

(ii) It should normally be possible to choose a shorter version of 
Hulthopp's theory &ioh may he expected to provide a potential solution 
at least as quickly and more sccurntely than any other given theory. 

(iii) Vortex lattice theory is to he prsferred when additional 
calculatrons of control characteristics or flutter derivatives sre 
required. for the same plan form and supreme accuracy is not essential. 

(IV) Welssinger's theory (with the procedure suggested in 5.2,(ii)) 
1:: to bc. prcfzrtid >ThhLn Lstimotiny: th L Gft-xts of compressibili y 2nd 4 
scot1or.d ltit slops on suitt.,blc plan l'oru~~ 

(v) KGchemann's theory, being essentially a lifting line theory 
vglth a semi-empirical correction for sweep, will roughly tackle a wide 
range of lateral stability derivatives and may allow for three-dimensional 
boundary layer chnracterrstios. Its practical value should gron with 
experience. 
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126 vortex, 6 point 
s tnndard Solu t1cn 

% = 0.10572 
‘ai = 0.03779 
% q 0.0601+6 
01 = -0.13352 
00 = -0.01308 
9 = 0.03586 

0 CU/ca = 2&T 
n.0. = 0.9428: 

m-e-_- 

r) 

--m-w* 

0 

0.05 

0.10 

0.15 

0.20 

0.25 

0.3 

0.35 

0.40 

0.45 

0.50 

0*55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

I .oo 

-I_- 

m.&L 

----- 

0.7333 

0.7650 

0.7976 

O,B310 

0.8654 

0.9008 

0.9374 

0.9757 

1 .Ol% 

I.0567 

1 .WYY 

I.1450 

1.1918 

1.2400~ 

1.2889 

i.3360+ . 
t. f , 

1.3768 

,.;ooz 

1.3767 

f.2154 

--- 

,ocal a.c. 

-------___d 

0.3485 

0.3231 

0.3031 

0.2893 

0.2827 

0.2796 

0.2763 

0.2722 

0.2675 

0.2624 

0.2567 

0.2507 

o.2443 

0.2376 

0.2306 . 

0.;2>5 

0.2164 

0.2092 

0.2023 

0.1956 

126 vortex, pout 8 
P = 0.6 P D + 0.4% 

"0 = 0.11304 
"1 q 0.02104 
00 = 0.05615 
"1 = -0.12273 
%I = -0.01137 
"1 = 0.03096 
PO = -0.10587 
PI = 0.23683 

1!+/>'(.- = 2.445 
a.=. = 0.9495a 

--a-- 

CI.dCL 

.-_-e-_---s 

0.7391' 

0.7700 

0.8008 

0.8329 

0.8661 

0.9008 

0.9369 

0.9746 

1.0140 

1.0550 

1.0981 

I.1430 

1.1857 

~I.2379 

1.2865 

I.3335 

I .37w 

I.3971 

1.3736 

1.2122 

-!- 

____----___ 

Locnl n.c. 

---_ I----- 

0.3614 

0.3362 

0.3157 

0.3006 

0.2917 

0.2866 

0.2811+ 

0.2761 

0.2705. 

0.2647 

0.2585 

0.2521 

0.2454 

0.2384 

0.2313 

0.7240 

0.2167 

0.2095 

0,2023 

0.1995 



TABLE II 

126 vortex, 6 pomt 
Standard Solu tmn 

a0 q 0.09975 
81 = 0.01642 
00 = 0.0284+& 
Oi = -0.07978 
BO = -0.01415 
el = .0.04033 

Winn 2. Vortex Lattice Theory 

126 vortex, 8 point 41 x 12 lattice 
P = 0.65 Pa + 0.35 q, 9 point aolu tion 

a0 = 0.10687 80 = 0.10547 
a1 = 0.00011 ai = 0.00481 
00 = 0.02125 
7 = -0.06288 

a2 = -0.00268 
GO = -0.01321 

OO = -0.00944 
el = 0.02917 

7 = 0.00129 
, 

= d.09160 c2 = 0.03389 
P.. 
p; E 0.20406 

eo = 0.03731 
e1 = -0.06197 

Q& = 3.j36 
a,c. = 0,9319~ 

a&i = = -0.04797 3.125 
a.c. = 0.92OC~, 

q/au q 3.134 
8.0. = 0.9273~ 

em_- 

rl 

m-m-, 

0 

0.05 

0.10 

0.15 

OS20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.5: 

0.6C 

0.6: 

O.-/C 

0.7: 

o.oc 

0.0: 

0.9( 

O.T! 

1 .O( 

7-- 

I Q/CL 
.--m-m-- 

0.7421 

0.7741 

0.8068 

o.u400 

0.0739 

.0.9086 

0.9443 

OrYGiO 

I'.01 09 

1.0581 

f .0907 

1.1410 

i.io43 

1.2290 

1.2737 

1.3164 

1 .j529 

1.3718 

I.3454 

I.1847 

ooal 8.0. 
--------- 

0.3312 

0.3052 

0.2850 

0.2714 

0.i654 

0.2635 

0.2k12' 

0.2505 ' 

0.2555 ' 

0.2522 

0.2400 

0.2452 

0.2415 

0.2379 

0.2343 

0.2310 

0.2200 

0.2254 

0.2235 

0.2223 

d-r-- -- 

. - - - -w-w  

bI/~L 

. - - - -w- -  

I.7472 

,.77@ 

).8093 

~&I2 

I.0741 

1.y001 

).9434 

1.9797 

I .0175 

1.0565 

1.0972 

1 .I393 

1 .I 029 

1.2274 

1.2722 

1.3150 

1.3512 

1.3699 

1.3434 

I.1825 

--e_---- 

ocal a.c 

-____---, 

0.3413 

0.3154 

0.2947 

0.2790 

0.2710 

0.2679 

0.2642 

0.2606 

0.2569 

0.2533 

0.2445 

0.2450 

0.2420 

0.2383 

0.2347 

0.2313 

0.2201 

0.2255 

0.2220 

0.2209 

--------. ,_---_---C. 

Q&L .ooal a.0. 

--------. .---------. 

0.7438 0.3219 

0.7759 0.295C 

0.8OU5 0.2756 

0.8502 0.2624 

0.8755 0.2572 

0.9100 0.2563 

0.9456 0.2552 

0.9820 3.2530 

I .o196 0.2522 

1.0504 0.2503 

1.0~06 $0.2402 

1.1402 0.2456 

1.1030 0.2427 

I.2268 0.2394 

1.2707 0.2357 

1.3127 0.2314 

1.3403 0.2267 

1.3663 0.2214 

1.3393 0.2155 

1.1707 0.2090 

.- 
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TABLE III 

Win . Vortex Lattlcc Thaow 

126 yortex, 6 point 
Standard Solutmn 

a0 = 0.09lY5 
01 = 0.00654 
00 = o.oojg1 
01 = -0.04107 

% = -0.oozy4 
3 = fi.02150 

126 vortex, 8 point 
i? = 0.65 Pa t 0.35 Pb 

a0 = 0.09881 

9 = -0.OOy18 
C-2 = -0.004y3 

Cl = -0.02188 
e. = 0.002go 

3c#c = 3.634 
a.0. = O.Yl77S 

e--t- 

tl 

T-_-- 

0 

0.05 

3.1 

c.15 

0.2 

0.25 

Oa3 

0.35 

0.4 

0.45 

0.5 

0.55 

0.6 

-CA5 

c.7 

0*75 

0.0 

0.05 

0.9 

0.95 

1 .O 

m----- - - - -  

-WC, 

--m-m-_-_ 

0.7527 

0.725L1 

0.0177 

‘, 0.0536 

o.w40 

6.9177 

L.9519 

::.yObC! 

1.0227 

1.0591 

I .o967 

1.1355 

id750 

1.2151 

1.2552 

I.2932 

I.3247 

1.3390 

I .3oyb 

I.1505 

---a----- 

Local a.c. 

--- ___________ 

C.321y 

0.2956 

C.2753 

0.2619 

0.2565 

3.2554 

(!.2541 

0.2525 

0.2507 

C.2480 

O.&b0 

0.2446 

0.2425 

' 0.2403 

0.2302 

0.2362 

0.2345 

Ct.2330 

0.2319 

0.2312 

--_-_dh---__ .-_ 

-------m-e_ 

%.dCL 

---- --------_ 

C-7578 

0.7CY3 

0.8202 

o.c51:: 

O.SZ4G 

O.Yl71 

O.Y5OY 

0.9856 

1.0212 

I .ovb 

1 .GY53 

1.134c 

1.1737 

I.2140 

1.25.$2 

1.2921 

1.3235 

I.3377 

1.3070 

1.14& 

-- ----- -__ 

looal a.0 

.-- -----_- 

0.3307 

0.3044 

0.2;;jb 

0.2690 

w.261.5 

3.2505 

6.2559 

0.2536 

0.2513 

0.2491 

0.2469 

0.2440 

0.2427 

0.2406 

0.2305 

0.2364 

0.2344 

0.2325 

0.23OC 

0.2292 

---- 
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Winp, 4. Vortex Lattice Theory 

126 vortex, 6 point 
Standard Solutmn 

% = 0.07711 
"I = -0.00024 
Oo = -0.01949 
01 = -0.00795 
00 = 0.00987 

? = O.OOOV2 

GCL/?C = 4.288 
8.c. = 0.9061: 

126 vortex, 8 pomt 
P = D.7C Pa + 0.30 pb 

"0 = 0.08376 

"I = -O.Olt+68 
% = -0.02871 
Cl = 0.01301 
"c = 0.01685 
"1 = -0.01499 
PO = -0.07732 

ac& = = 0.15716 4.272 
8.C. = 0.9og2E 

--es 

n 
a-- 

0 

o.c5 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

a.4 

0.45 

s.5 

0.55 

13.6 

3.65 

0.7 

0.75 

0.0 

0.65 

a.9 

0.95 

I .o 
w-v 

- - - - -  

W% 

-------m-w 

c.7735 

0.8064 

OS392 

0.a715 

0.9037 

0.9353 

0.9671 

0.9983 

1.0290 

i.0611 , 
I.0927 

1.1244 

1.1565 

i.ic70 

1.2192 

1.2472 

1.2697 

1.2753 

I.2408 

I .a40 

* 

--m--w-- 

Loco1 a.c. 

----------. 

0.3139 

0.2873 

0.2670 

0.2539 

G.2491 

0.2488 

@.24& 

0.240~ 

0.2475 

0.2469 

0.2462 

0.2454 

0.2446 

0.2433 

0.2421; 

3.241c 

0.2407 

0.2395 

0.2322 

C.2370 

x_- 

-----_____--_ 

WCL 
------___----- 

0.7729 

0.x55 

0.8300 

0.8702 

0.9023 

0.9341 

0.966s 

0.9976 

1.0296 

1.0611 

I.0933 

1.1254 

I.1579 

1 .lG99 

-1.2217 

1.2499 

1.2726 

1.2779 

1.2420 

I.0853 

-m-m ___--_ 

0.3209 

0.2943 

0.2735 

0.2592 

0.2524 

0.2503 

0,24ix 

0.2478 

G.2469 

0.2463 

0.2450 

0.2452 

0.2467 

0.2440 

0.2431 

0.2420 

e.2406 

0.2300 

0.2365 

0.2335 



__--. 

n 

--- 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0.55 

0.6 

0.65 

0.7 

0.75 

0.8 

0.05 

0.9 

0.95 

1 .o 

__I. 

'iv'inK5. Vcrtux Lnttioe TheoN 

126 vortex, 6 point I 26 vortax, 0 pant 
s tanaora so1ut1on P = 0.65 Pa + 0.35 Pb 

a0 = 0.07092 "0 0.10677 = 
9 = 0.02630 "1 = -0.04280 
c, = -0.05939 c., = -0.10105 

” 
9 = 0.15557 
eo = 0.16435 
9 = -0.42998 

3cL/3a = 1,625 
8.C. = ?,807yii 

.I 
7 = 0.23451 
00 = 0.19180 

Cl = -O.l+8053 
PO = -0.42298 

3 c$Al 
z ;.;;Yg38 

n.0. = 1:8355E 

L 

.-I__..- 

%/CL 
-e-m 

0.6500 

0.6837 

0.7202 

0.7595 

0.8022 

O,S@C 

0.8990 

0.9534 

1.0123 

q.0761 

I.1450 

4.2197 

1.3008 

1 .j899 

1.4894 

1.6035 

I.7419 

1.9262 

2.2159 

2.8684 

-I---- 

----------, 

local a.c 

---..------, 

0.4369 

0.3777 

0.3328 

0.3049 

0.2510 

0.3005 

0.3040 

0.3068 

0.3086 

0.3086 

0.3060 

0.3000 

0.2895 

0.2730 

0.2489 

0.2146 

0.1663 

0.0989 

0.0033 

a.1360 

-_------__-. 

CIdCL 

---_-----------. 

0.6356 

0.6714 

0.7122 

0.7549 

0.8004 

0.8487 

0.9004 

0.9559 

1.0159 

1.0804 

1.1501 

1.2255 

I.3073 

1.3973 

1.4977 

1.6135 

1.7540 

1.9418 

2.2383 

2.9057 

--. . . ----.----_ 

-e--e-. 

local a.< 

.--------. 

0.4808 

0.4224 

0.3752 

0.3411 

0.3227 

0.3162 

0.3134 

0.3121 

0.3112 

0.3097 

0.3065 

0.3003 

0.2900 

0.27% 

0.2499 

0.2155 

0.1668 

0.0980 

0.0002 

-0.1427 

l!AliLE VI/ 
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TABLE VI 

I“in.g 6. Vortex Lattice Thccq 

126 vortex; 6 point 
Standard Solutmn 

a0 = 0.06852 
a1 = 0.01704 
CA = -0.02456 
c1” = 0.03206 

eo = 0.05648 
9 = -0.11e986 

L x+ = 2,866 
8.0. q 1.7721; 

126 vortex, 8 point 
P = “.“‘=~a,+,;$; q, 

“0 
9 = -0:03072 
CO = -0.05697 
7 = 0.09631 
‘io = 0.07989 
81 = -0.19550 
PO = -0.28121 

= 0.51589 
Ccl/Co PI = 2.813 

n.c. = 1.7924; 

- - - - ,  

rl 

m-w- 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0.55 

0.6 

0.65 

0.7 

0.75 

0.8 

0.05 

0.9 

0.95 

1 ro 
-4-u- 

.---_--____ ----me_____ 

k/CL local a.0. 

.--------- ------e--m_, 

0.6756 0.4W-t 

0.7100 0.3654 

0.7461 0.3194 

0.7838 0.2897 

0.8234 0.2795 

0.8652 0.2802 

0.9096 0.2807 

0.9568 0.2809 

1.0073 0.2805 

I.0616 0.2791 

1.1202 0.2766 

I.1845 0.2724 

I.2553 0.2660 

1.3355 0.2568 

I.4283 0.2441 

1.5407 0.2267 

1.6843 0.2035 

1.8863 0.1725 

2.2103 0.1300 

2.9741 0.0749 

-----~ 

--__----_____ -m-- -w- .  

%dCL local a.l: 

-----e_____- ---------. 

0.6572 0.4525 

0.6939 0.3929 

0.7348 0.3452 

0.7765 0.3112 

0.8195 0.2938 

0.8638 0.2878 

0.9102 0.2843 

0.9550 0.2820 

1 .Olli 0.2802 

1:0670 0.2783 

1.1270 0.2750 

1.1929 0.2720 

1.2654 0.2662 

I.3174 0.2576 

14.424 0.2452 

1.5568 0.2279 

I.7039 0.2038 

1.9103 0.1710 

2.2489 0.1263 

3.0200 0.0652 



---- 

v 

-e-w 

0 

o,a5 

0.1 

0.15 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.G 

0.9 

(‘*O 
1 ..-S.“. 

- 33 - 

TABLE VII 

Wing 7, Vortox Lnttzco ‘I’heoq 

126 vortax, 6 point 126 vortex, 8 point 
Standard Solution P = 0.7 Pa + 0.3 Pb 

a, = 0.08112 
3 = -0.02465 
cO = -0.03895 
9 = 0.03740 
*cJ q 0.02716 
04 = -0.06889 

00 = 0.06371 
“I 

= 0~00922 
00 = -0.01411 

Ol 1 -0.01303 
00 = 0,00027 
9 = -0.03060 

PO 
' = -0.20074 

Pi = 0.36242 
XI/&x = 3.626 

a.0. = 1.7510; 
ic& = 3,6el8 

a.o. = 1.7363; 

%./CL 
-mm -- - - -. 

C.6903 

0.7336 

0.7697 

9.0063 

O&J+G 

0. w+s, 

1 .012l+ 

I.1105 

1.2263 

1.3751 

1.6017 

2.0944 

---------__- 

loon1 n.0. 

-----------. 

0.4152 

0.3546 

0.3000 

0.2774 

0.2660 

0.2647 

0.2622 

0.25Ll 

0.2511 

0.2400 

0.2222 

0.193c 

.----- -___--__ ----- .z+.- 

%TbL local a.c 

.__--_-_--___ ----___-_-_ 

0.6004 0.4329 

0.7179 0.3723 

9.75YO 0.3247 

0.7990 0.2900 

O.Gl+lO 0.2743 

0.9254 0.2653 

1.0164 0.2606 

1.1176 0.2567 

1.2366 0.2513 

1.3092 0.2412 

1.6206 0.2222 

2.1202 0.1076 

.-----e-e 

TAELE VIII/ 



-SW-- 

tl 

--w-W 

’ 0 

0.05 

011 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0.55 

0.6 

0.65 

0.7 

0.75 

O& 

0.05 

0.9 

0.35 

I .O 
-~ 
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TdBLB VIII 

Winn 8. Vbrtex Lattice Theoq 

126 vortex, 6 pomt 126 vortex, a point 
9 tnndord Solution P = 

a0 = 0.05803 
0.7 P, + 0.3 Pb 

9 = 0.004a5 
*e q 0.07113 

= -O.Oll+97 
a1 = -0.02042 

=0 
= -0.03452 

9 = -0.02224 
cO 
Z' = 0.01782 

ee = -0.00684 
4 

= 0.00842 

e1 = o,oo&!+o = -0.02301 
PO = -0.UJ22 

ac& 
= 0.26212 

3 CI/3a = 4.232 
= l.707az 

= 4.169 
0.0. a.0. = 1.7195;: 

----------- 

%./CL 

----------_ 

0.7100 

0.7540 

0.7903 

0.8271 

0.8640 

O.YOf7 

0.9400 

0.9792 

1 .oigo 

i.0610 

1.1060 

I.1534 

1.2046 

1.2624 

l.329tj 

1 JtllY 

1.5203 

1.6770 

1.3454 

2*5773 

-----_ 

--------e 

local a.0. 

-------me 

0.4OC6 

0.3476 

0.3007 

0.2700 

0.2504 

0.2575 

0.2563 

@.w+9 

0.2533 

0.2516 

0.2436 

0.2474 

LwtY 

o&w3 

0.2393 

0.2361 

0.2326 

0.2200 

0.2247 

0.21 go 

---------__-_. 

CL&L 
--------e-e_ 

0.7009 

0.7392 

0.7003 

0.0205 

O&606 

0.9006 

0.94oc 

0.9017 

1.0239 

1.0674 

1.1132 

1.l621 

1.2140 

1.2740 

1.342G 

1.4266 

1.5373 

1.6969 

1.9678 

2.6044 

___-__---. i 
10001 8.C :. 

-----___ 

0.4215 

0.3606 

0.3126 

0.2794 

0.2636 

0.2509 

0.2556 

0.2532 

0.2512 

0.2495 

0.2481 

0.2465 

0.2450 

0.2430 

0.2405 

0.2372 

0.2326 

0.2267 

0.2l(yc 

0.2072 

_1 
“ TARLE IX,, 
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i;iiqQ 9. Vortex Lattice Theor.y 

126 vortex, 6 point 
S tandord Solution 

% q o.omo3 
7 = 0.07762 
%I = 0.17721 
Ol = -0.29621 
eo = -0.03775 
e = 0.04457 1 

8CdCu = 1.722 
O.C. I 0.9698: 

----- 

rl 
----- 

0 

0.05 

0.1 

c.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0,5 

0.55 

0.6 

0.65 

0.7 

0.75 

0.G 

C.05 

0.Y 

0.95 

1 .o 
-- 

-. _-----_---- 

C&CL 

--.m------ 

U.G4G5 

OeG746 

0.9012 

0.92G2 

0.9555 

o.9031 

1.0105 

I.0375 

1.063G 

1 .OGLL+ 

1.1107 

i ,i 296 

I.1434 

1.1500 

i .I 469 

1.1i9c 

1.092&~ 

I.0252 

0.9039 

o&94 

--. 

A 

- - - - - - - - - -  - - -_ 

Local a.0. 

e- - - - -_-- - - - - -  

C.4125 

0.3754 

0.3460 

0.3254 

0.3143 

0.3076 

0.2936 

0.2903 

0.2793 

0.26G4 

0.2560 

0.2427 

0.2235 

0.2137 

0.19c3 

0.1023 

0.1650 

0.140? 

0.1314 

0.1135 

126 vortex, 8 point 
r = 0.55 Pa + 0.45 I$ 

"0 = 0.10578 

3 = = 0.04165 0.16119 
c: = -0.26335 
eo = -0.02872 
el = 0.02612 
PO = -0.24031 

= 0.4.!+125 
30& = 1.696 

a.c. = 0.97755 

Q.d% 

_--_--_m- 

O.GJ46 

3.~622 

O.GY22 

0.9219 

0.9517 

0.9010 

I .oovv 

I .03!3 

1.3655 

1.0912 

1 .I14 

1.1343 

I.1409 

1.1562 

1.1539 

1.1372 

1.1502 

i.0327 

0.91 LO 
. 

0.7052 

---v----e- 

local a.c 

----m---w 

~1.4376 

e.40c5 

0.3697 

0.3460 

0.3301 

0.31x 

0.3077 

0.2962 

0.2G42 

0.2715 

0.2502 

0.2443 

0.2298 

0.2147 

0.1991 

OJG29 

0.1662 

0.1403 

0.13o9 

o,112I+ 

- 
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TAxa x 
. 

Giing IO. Vortex Lot tice Th;ior:r 

i 26 vortex, 6 point I 26 vortex, 8 point 41 x 12 lattice 
S tnndnrd Solution P = 0.65 Pa + 0.35 Pb 9 point solution 

“P = 0.10794 a0 = 0.10238 
‘9, = -0.00707 a, = 0.0:?75@ 

no = o.oy224 
9 = 0.02483 
0" = 0.06623 
01 = -0.ioooy 
% = 0.~0~66 
01 = -0.01717 

' 
00 = 0.04702 7 = -0.06180 3 : :;:g; 
52 = 0.02268 01" = 0.02576 

"I = -0.04405 
-0.20381 

O2 E: 0.078Of3 
Pn = 

0.37477 
% = 0.0~160 
e.4 = -0.17430 

,XL/~C = 2,836 
8.C. = O.Y482Z 

-mm. 

v 

----. 

0 

0.05 

G.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.5c 

0.55 

0.60 

0.65 

0.70 

0.75 

0.00 

0.05 

3.yo 

0.95 

I ,oo 

.-----_- 

XI/CL 

.----m-m 

0.c501 

0.0762 

0.3025 

0.9206 

0.9549 

o.va11 

i.Qo69 

1.4324 

1.0572 

i.oi304 

I .I019 

1.1207 

1.1350 

I.1439 

I.1442 

1.1316 

1 .I010 

1.0412 

0.9321 

0.7265 

------_- 

Local a.3 

------_-_ 

0.3695 

0.3314 

0.3025 

0.2831 

0.2747 

0.2719 

0.2605 

0.2644 

0.2590 

0.2545 

0,2406 

0.2420 

0.2343 

0.2270 

0.21G6 

0.2096 

@A 995 

O.lGY7 

OJ7Otr 

0.1673 

Pi = 

?CI/hL = 
n.0. = 

I  

2.796 
0.9571c 

ao$s 
a.c. 

z -0.09951 
= 2.855 
= 0.9422~ 

L---m-. 

%/CL 
_-----___. 

OS361 

0.063-) 

o.0935 

0.9222 

3.3500 

Q.?707 

1,006C 

1.0327 

I.0506 

l.OD2Y 

I.1055 

1.1253 

1.1407 

+,I503 

1.1514 

I.1396 

1.1OYl 

1.0496 

Q.9390 

0.7327 

-------m__ -  

K  - - - - - - - - -  

II -- 

-e-----m_ 

Looal a.c, 

--------_. 

0.3606 

0.3224 

0.2Y37 

0.2749 

0.2674 

0.2650 

0.2637 

0.2611 

0.2570 

0.2539 

0.2492 

0.2436 

0.2371 

0.2294 

0.2206 

0.2105 

0.1930 

0.1360 

0.1714 

Q.1552 

!AELEX 



- j7 - 

m-m_. 

r) 

-----, 

0 

0.05 

0.1 

0.15 

C.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0.55 

0.6 

C.65 

0.7 

0.75 

0.0 

0.05 

0.9 

0.95 

I .o 
---_ 

126 vortex, 6 point 
Standard Solution 

% = o,oa!+21 
n1 = 0.00820 
00 = 0.024U4 
Cl s -0.03734 
00 = cs.02110 
9 = -0.02264 

EL/&a = 3.559 
a.0. 3: o.gf+125 

126 vortex, 8 point 
p = 0.65 2, + 0.35 Pb 

il 0 o.cy757 q 

*I = -0.01877 
% = o.00705 
Cl = 0.000b3 
00 = 0.03454 

- -_L_ 

WCL 
e-w 

0.8575 

o.fx35 

C.YCY3 

0.9347 

0.9590 

0.9044 

l.cm5 

1.0320 

I .0.54u 

1.0759 

1.0953 

1.1124 

1.1250 

1.1342 

1.:1.35P 

.l.iZT 

I.0969 

1 ,o&?o: 

O.Yjil 

0.7362 

5 0.3526 

0.3144 

0:2C53 

0.2660 

0.2594 

0.2501 

0.2565 

0.2546 

0.2523 

0.2436 

0.24b5 

. 0.2429 

0.23a9 

0.2343 

c.2293 

c-:2237‘ 

0.2176 

.012109 

0 :a30 

0.1961 

-.-_ 

\ 

---- 

local O.C. 

----___- 

----. -_-_--__ 

* C&IL local a.0 

__--_-___ -w--e__ 

0.0434 C.3669 

0.0711 0.3286 

O.YCO3 0.2904' 

3.92& 0.2776 

o .%56 0.26G6 

0.951y 3.2620 

l.OC74 0.2505 

I.2322 0.2553 

1.0561 0.2524 

1.0785 0.2494 

1 .cygo 0.2463 

1.1171 0.2429 

1.1314 0.2391 

1.1406 0.234C 

1.1421 0.22130 

1.1324 0.2240 

1.103? 0.2174 

1.0500 0.2bYj 

Ci9456 0.2015 

0.7420 0.1920 



\Firg 12. Vortm Lattice Theuq 

126 vortex, 6 point 126 
Standard Solutlm 

vortex, 0 pcmt 
i? ; 

% = '!.07430 
L.7 I', + 0.3 If& 
a 0 C.08475 = 

a, = '3.b.1343 a 1 = -O*~Ji717 
co = 0,:rwLI2 

= -o.w!l7y 
cJ = -0 .Li?577 

9 c 1 = O.LJl!JD5 
Co = 0.02145 
"1 = -0.w2y0 

00 = 0.03260 
e1 = -3.03641 
PO = -0.12289 

‘3C&h = 4.050 
PI = 3.22106 

a.c. = O.Y38OE 
x&l = 4.ou7 

a.=. = o.y433; 

- 38 " 

--- 

rl 

--_- 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

3.4 

J.45 

3.5 

3.55 

3.6 

2.65 

3.7 

3.75 

3,c 

).U5 

3.9 

2.95 

I .o 

--- -----mm -------- I--~ ------_--_-_ 

%/CL loco1 a.c. cI.& 
.---- ----- ---e-_---m _---___- ---_ 

O.ci661 0.3471 3.2522 

0.0921 cJ.jo36 0.c7yy 

0.9175 0.2795 0, ilox 

0.9425 !?.2610 C,.9365 

0.9664 0.2544 9.9625 

0.9394 0.2536 0.9c70 

1.0119 0.2526 1.3110 

1.0332 0.2514 I.2335 

1.0532 O.&Y9 1.0547 

1.0724 Cl.2462 1.0750 

I.0694 0.2462 1.oy2y 

1.1042 0.2439 I.1087 

1.1164 0.2414 I .I%10 

1.1235 0.23G5 1.1290 

l.l%l+l 0.2352 1.1310 

1.1151 9.2316 1.1225 

l.OGY3 0.2277 1.0~60 

I .oj69 0.2235 I.0442 

O.Y377 -0.2190 0.y4.47 

0.73~6 0.2142 0.7452 

-m 

.-_ 
-- 

1 

. 
-_-________ 

0.3572 

0.31G6 

0.2X6 

0.2&3 

0.25CX 

0.2555 

0.2530 

0.2509 

0.24~1 

0.2474 

0.2456 

0.24% 

0.2414 

0.23m 

0.2357 

0.2320 

0.2277 / 
I 

0.2227 i 

0.2170 / 

0.2104 i 

m--m_- -! 

. 
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--------_ 

1 0.9239 

2 0.7071 

3 0.3827 

410 

3c&a = 

a.c. = 

TABLZ XIII 

Welssinger's Theory: Standard 4 Point Solutions 

C-----. 

wing I 
------ 

0.2891 

0.5271 

0.6895 

0.7429 

2.343 

0.9158 

-m-e_. ,--__-- 

wing 2 Wing 5 
------, .w..___- 

0.2454 0.:574 

0.4500 0.3352 

0.5984 0.4674 

0.6501 0.4905 

3.039 1.5305 

0.9128 1.7462 
_-_-__. ,-o___- 

-- 

~ 

-- 

Values of yn 
,-u-w-- 

Wing 7 
,-e--m_ 

0.1008 

0.2439 

0.3619 

0.3893 

3.487 

1.7102 
----mm 

--_--- 

Wing. 9 

0.3194 

0.5696 

0.7047 

0.7259 

1.5955 

0.9354 
--e--w, 

m-_-m-- 

Wing IO 

_----mm 

0.2734 

0.4776 

0.5907 

0.6098 

2.681 

0.9363 
------ -, 

-I- 
I 
I- 

-, 

__---_, 

Wing A 
-w-_-m 

0.3157 

0.5675 

0.7107 

0.7444 

2.088 

0.6924 
---m-m, 

. . I  .-.--mm-~ 

Wing C 
.------, 

0.2208 

0.3774 

0.4795 

0.4980 

3.129 

1.2375 
.--M-G. 

D.C. (as a fraotron of E from the leading apex) 

00 s tann 0.3525yj + 0.503&2 + 0.344&3 t 0.0404~4 
= ..-+ -m----s . __---____------__-__--------------------- 

lf.e 6 0.3827~~ t 0.7071~~ + 0.9239y3 + 0.5OOoVq 

Wemsmger's Theory: Modified 3 Point Solutions 

--------------c----________________c____------------------------ 

Values of yn 
e----e- --e-o-- -_-_-___-_-__-_-___------ 

Tilng 2 Wing 5 Wing 7 Wing 9 Wing 10 Wing A Hmg 0 
VC--..- 

0.3178 0.2247 

0.5719 0.3853 

0.7201 0.5008 

0.7650 0.5524 

0.7211 1.3016 
--m--e_---_ -----_--_l---_----__---------------------- 

a.c. (as a fraction of Y3 from the leading apex) 

OO 8 tanA 0.7071 (Yl + Y3) 
= __ + -m-w_-- . _-_--_------------- 

4E c' 0.7654~~ + 4.8478~~ 

TABLE XIV/ 



Ndttiow's Theom. 2 chordmse, 15 Spanwise 

Wnp; 2 

&MkL = 3.05c a.=. = 3.9327; 

3CL/dn = 

---___--____---_--_----- 

n = 

-- 

Yn = 

: 

0 1 

0.7619 0.7552 

P n = -0,04841-c,.ol6~ 

IWal 
a.c.= 0.3135 0.2722 

---I-- c-------. 

'ihng A 

2.1360 a.0. = 0.683~'c 

---- 

2.7347 n.c. = 0.9561: 
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TABLE XIV (Continued). 

w&Q 

?CL/Oa = >.2OjJ 

----m-e. -------_----_-_-------_ 

itim D (or 71 

;'$,/2, = 3.5521 rl.0. = 1.70166 

Table Xv/ 



TABLElXV 

CaJ.culated V&es of aGL/aa 

Vortex Lattice !Pheory ~eissinger s Theory 
-- --e____ 

21/6 21/6 1 41/12 
klthopl 

s tanaan3. Modified Mean m = 15 
bz A ?r A &point 3 point 9 point 4point 3pint 2 ohordwis 

I 
2 

t 

2 

;: 

9 
10 
If 
12 

% 
0 

4.32 
2$& 
3.96 
5.20 

A i.?r4 
B 2.640 
G 3.010 
D 6,200 

0.143 40.4 
~ 0.143 36.9 

0.143 29.4 
0.943 20.6 

0 71.6 
0 56.3 
0 45.0 
0 36.9 

0.309 63.4 
0.339 45.0 
0.309 33.7 
0.3av 26.6 

0.556 45.0 
0.309 45.0 
0.222 45.0 
0 45.0 

i&h 

3:6uu 
4.232 

2.036 

3.600 

2&5 
3.136 
3.635 
4.272 

1.606 
2.313 
3.626 
4.169 

1.696 
2.796 
3.515 
4.007 

3.125 

2.855 

2.796 2.355 

3.626 

2.343 2.375 2.359 
3.039 3.082 3.06C 

I.530 4.613 4.572 

3.4c7 3.605 3.546 

I.595 
2.601 

I 

1.6&? 

‘I 

1.61G 
2.764 . 2.722 

2.000 2.119 2.104 2.136 2.52 
2.601 2.764 2.722 2.735 2.09 
3.129 3.291 3.210 3.2& 3.15 
m&7 3.605 3.M 3.552 3.31 

3.552 3.31 

2.735 2.09 

3.23 
2,370 
3.c40 

::Z 

1.770 
2.723 
3.438 
3.951 

I.708 
2:+33 
3.452 
3,950 

2.170 
2.733 
3.356 
3.440 
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FIG. I 



FIG 2. 



M&hod Concept Computabon Solwnq POli-bS Advantage of M&hod 

Vortex 2 l/6 Vortax 4-6 days 
Lattice Lattlca 

6 pt. 

Vortex Ditto wkh 7-10 days 
ml Accuracy zk?%?R 

Sliqht1y 
Lattice P Functlom 

8 pt. 

Waisslnqar 5lmpllflad b-1 da 
’ 4 Pb LICtlnq SvrCaca 

Walssinger chtto wkhovt %-I day 
3 pb. Cantral Point 

Multhopp Continuous 8-12 days 
Llftlng Svrfaca 

Kkhamann Modlflad <‘/2 day 
8 pt. LGtincj Line 

71 S$zd a;$ ;z~;-;;ty 

Summary of Currant vortux 5haa.t; Thaor-las 
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(b)Pointed arrowhead 
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/‘ 

/I 
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(d)Cropped w’mg6 of 45O~weepback 

_--- 

C. 

a6 

0 I ’ / I” 1 
0 

, I 
2 3 

+A ’ 

r--l 4 
6 7 8 

- --_---- -- 6 pt Vortex L’attice 1 I 
------- 8 pt. Vortex Lattice (P fun&tons) 

L) -..- .- .- 4 pt. Welssrnger 
- ---- 16 pt Multhopp 

* ---.- Refs IO,1 I Kuchemann 
Formula (EQ (la>,). LJ- 

I . 



093 
ac 

0.92 

0 90 

a c. 

0.98 

0 97 

0.96 
ac 

0.95 

-a.-.- 6 pt Vortex Lattice 

l ---- 8 pt Vortex Lattlc.e(Pfunctions) 

-*a- 4 pt Wemmgw 

O-- 16 pt Multhopp 

+ -*- Refs. IO,11 Kicchetwann 

- Elllptc Tarter chord 

0 I 3 4 A 6 7 8 

bparatlve theoretlcal curves of aer’odynamic centre for svgpt winp_ 

i3C denotes the posltlon as a fvactton of the mean chord ffom the 

apes d the p!an f?,ml 



------- 6 pt. Vortex Lattice 

..-..-.- 4 pt. Weissinger 
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--- 16 pt Multhopp - 
-.-.-- Ref.11 Ktichemann .- 
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0.2 

O-I 

0, 
0 0.1 0.2 0.3 O-4 0.5 0.6 

r) 
Comparative iheoteticat spanwke di&ributcons of lift on a pointed 
w‘lng of 45 sweepback and aspect ratlo 6. 
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Ref II Kkhemann 
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0.2 

0. 
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Comparative theoretical sp_aTwise dlskributions of I\f t on a 
medium tapered wing of 45 sweepback and aspect ratioZ64. 



FIG 6c. 

05 

04 -._-_-- 4 pt Welsslnqe,r- 
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FIG 9. 

I 
(a) Chart for i 

l8- ?t, (defined in Rq. 2) 
----- k for sper;~al A (Fig. I) 

I b- 
a G (measured as a fraction 

of &he mean chora from 
the leadrng apex) 

. 
14- 

b pt. Vartex Lattrce 
0 lb pt Multhopp 

12 
L 

or a.c 

I01 

(b) (a.c. -k) for family(d) (F‘rq. I). 
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28th September, 1951 

For reasons expressed xn 36, the writer considers that of the 
wallable vortex sheet theories Lulthopp’s method will provxle the most 
reliable solution for swept rmng loadmg in potential subsonro flow. 

At the outset of a oaloulatlon by blulthopp’s theory rt 1s 
neoessary to prescribe: 

(i) the number of spanmse solmng stations m = 3,5,7,11,15,23 or 31. 

(11) the number of choL^d,~xe pivotal points per station, N=l m-2. 

The conslstenoy of the theoq and the extent to ILCh lt can 
usefully be smpllfled by reducing m has been snvestqsted tither by 
obtaining three solutmns: , 

m(N) = 7(l), 7(2), 15(2) 

for each of five w~n@(s [Plg.l, Winks 2, A,B,C,D]. 

The follomng derlvotlves are tabulated below: 

8% 
m-m 

(a m radrans) 
aa 

a.o. (memored as a fraction of E from the leadzng P&XX) 

7 (spanmse centre of pressure on the half wng). 

Table/ 
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----------------------C-------_---------r------__--_--_-__---_____- 

Derivative Solution Wing 2 Wing A WOE B Wing C Wing D 
-----mm ---_-- *-__-------- -_----_--.. ---- -------_- - --_.._---_-__,___-____ -_ 

a% 3.064 2.130 2.701 3.184 3.606 
m-w :; 

ii 
3.071 2.152 2.771 3.251 3.471 

aa 15 2 3.050 2.136 2.735 3.204 3.552 
-----m-m- ----..- ----m--m---_-- --_-.. ------_---- ------..-- -- -_-__-_---__ -_ 
------------_--------------- -----.. -------- .-_--__ --- --_----__,__----__ -- 

;: 
'I 

0.9142 0.6955 0.9411 I.2459 1.6952 
a.0, 0.9180 0.6846 0.9363 1.2355 1.6493 

15(2 0.9327 0.6838 0.9561 1.2623 1.7016 
___--_r-_-___,_-_----- -- -,.-_--_-__..---_ -- _-.._-__----.____-____________ -_ 
-^-___L---___.___-____________I___ ---- __--..--_---__..__------..------- -- 

irIultho= (Hef.9, App.VII) has stated that a reasonable choice 
of the number of spanwise stations is 

For the five wings calculated above in incoalpressible flow, il = 0 t 
m should thus exceed the values given in the following table: 

Wing B C D 
3A 720 5"' 7.9 11.5 18.0 

The table of calculated derivatives su&ests that, if this 
a% 

onterion is satisfied., --- may be obtained 7aithi.n I$, the aerodynamic 
aa 

centre within about 0.015 C, and, provided that N = 2 , the spanwise 
oentre of pressure within about 0.001s. In the special case of a 
pointed wing, e.g., Wing D, the accuracy may not fall quite within these 
limits, but the use of iiulthopp's theory is still recommended as it 
permits a concentration of pivotal points near the pointed tip. The most 
significant discrepancies arise in connection with the aerodynamic centre, 
but the interesting conclusion is that these are not primarily associated 
with the central kink. 

Three spawise loadings and local aerodynamic centres, calculated 
for each of the five wings, are given in detail in Table XVII, where 
X denotes the position of the local 8.c. as a fraction of the local 
~9%~ from the leading edge. It is advisable to include two chordwse 
terms vixen calculatzn& spanwse loading as none of the 7(A) solutions is 
fully satisfactory. Naturally it is neoessary to take N = 2 for the 
purpose of obtaininS local a.~., but there is nothing in Table XVII to 
suggest that more than two chordtlise terms are needed. In fact when 
the criterion for m is approximately satisfied (as for Wings 2, A and B), 
the agreement at the crucial 'kinked' central section T- : 0 is 
impressive. Furthermore except for the pointed riing the notable feature 
of solutions with insufficient sparwise stations is that X,.,, is 
underestimated on the outer half of the icing. This explains the underestimate 
of 8.0. exhibited in the table of derivatives for the T(2) solutions. 

The/ 
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vie.: 
The use of a chordwise pressure distribution from equation (12), 

pb - Pa 0s Y 
------- = -- 

[ 

2P 
-- cot $0 + -- 

pv* 0 2n 
(cot $ - 2 sin 0) 

7c I 
in potential flow acmss the outs sections is just as valid for swept 
wings 8s for unswept wings. It is concluded that Multhopp's theory is of 
general application, but that it nay be unduly laborious to obtain extreme 
accuracy for wings of high sspect ratio A>5. 

As a further indication of the degree of accuracy ln the central 
region the downv#ash from the 7(2) and l5(2) solutions have been evaluated 
at the displaced root three-quarter chord points, i.c., at pivotal points 
used respectively in 7(l) and 15(l) solutions. The values of the ratio 
of dowmash at 0.75 c to the angle of attack a are given below, 
corresponding values of unity being already satisfied at 0.3455 c and 
0.9045 c* 

These ccri@ariscns inspire confidence in the intrinsic accuracy of 
a!ulthopl3's theory, especially as it seer>= unnecessary to satisfy the 
boundary conditions along wre than two loci to establish values of the' 
local lift and aerodynamic centre. 

!PAE&E XVII/ 
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TABi& XVII ---- --- 

liulthopp’ s Theory 

m-_____- 

rl 
I------ 

0:3827 
0.7Q71 
0.9239 

-----e-e 

O"382, 
0.1071 
o-9239 

_-mm__-.. 

OE13827 
0.7071 
0.9239 

w-m-__-- 

&27 
O.pS/l 
o-9239 

-..----e- 

0:3a27 
0.7071 
0.9239 

---_--_- 

I-’ 

_-. 

--. 

.----___-_---_-----_------ 

CLL c 
Values of ---- 

CL a 
.----_--------_---------- 

Solut IOIl 
7(l) 7(2) 15(2) 

----____-_----_---__------ 
1.271 1.289 1.296 
1 .I818 1 .I77 1.130 
0.892 0.887 0.883 
0.496 0.489 0.403 

_-__-----_--__------------ 
1 .I97 1.220 1.223 
1.164 1.169 1.169 

0.943 0.928 0.537 0.511 ::;:1 
.--_----------_----------- 
1,178 1.206 1.203 
1.158 1.159 1.160 
0.951 0.943 0.941 
0.561 0.537 0.538 

__-____--_-__-_----_------ 
1.188 I.219 1.224 
I ,165 1.163 '1.166 
O.?34 0.923 0.917 
0.564 0.548 0.540 

_____________-_-________L_ 
1.327 1.399 1.361 
1.273 1.293 1.255 
0.856 0.811 0.823 
0.266 0.205 0.293 

_-m--c 

WIG 

---m-e- 

2 

----_... 

A 

---w-o. 

B 

------- 

c ’ 

_____-. 

D 

--_____ 

Values of x,,,, 

_-_-____-______-________ 

0.291 0.333 0.331 
0.250 0.239 0.258 
0.250 0.220 0.238 
0.250 0.187 0.193 
--------_---__-_--_----- 

0.293 o-353 o-334 
0.250 0.243 0.244 
0.250 0.187 0.191 
0.250 0.121 0.127 
-------------_-c-__----- 
0.308 0.368 0.366 
0.250 0.241 0.264 
0,250 0.207 0.228 
0.250 0.134 0.152 
---___-----_-__---_----- 
0.324 0.366 0.378 
0.250 0.229 0.260 
0.250 0.220 0.237 
0.250 0.179 0.130 
--_-_----_-_--_--------- 
0.346 0.360 0.381 
0.250 0.228 o-239 
0.250 0.250 0.222 
0.250 0.277 o-253 
-__--_------_-------__I_ 

. . 
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