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Foreword
..By..
‘ L., W. Bryant
of the Aerodynamics Division, N.P. L.

14th October, 1951

To appraise the conclusions of this paper 1t 1s noccssary
to distinguish two methods of approach to the problem of wing loading.
The first method, actively pursued at the National Physical Laboretory,
1s to seek an accurate thin wing potcntial solution, later to be
developed to take account scmi-empirically of aerofoil thickness and
boundary layers, with a finel appeel to experiment, The second
method sceks at the outset %o coordinate experimental results,
making usc of potentiel thoory in a less rigorous monner thon an
the first method, to evolve a rapid process of computation reliable
enough for practical usc.

The present investigation 1s concerncd solcly with the
farst method of approoch, the concept of reaching an accurate
solution for a thin wing an potential flow and the rclative promise
of the various caputational procedures so far proposed to achieve
this, The necessary accuracy to be sought by the basic potential
theory depends on the particular vang characterisiics which are to
be computed., But i1t sppeors thet for distrabubions of local 1lift
and acrodynemic centre every effort should be made to arrive at the
most reliable solution possible waithout prohibative labour.

For this purpose the speed end consistency of Multhopp's metheod
promises wcll, but morc work is nceded to asscss 1ts accuracy with
regard to local asrodynomic centre; and thas basic investigataion
is proceeding. Howcver, the genoral conclusions in this paper
seem to be well supported by tho cvidence of comparstave rosults
from the availeble theoories,

An soppeal %o cxperlment for & chock on the validity of a
particular potential theory is not at this stage of real help,
becauge all experimental results have to be “corrected" for thickness
and boundary loycr effects before thoy becone comparsble with theory.
The obJect of secking & trustworthy theory is preciscly to find out
how to make these "corrections" for a wide range of plan form,
acrofoll scction, Reynolds nuaber and Mach number,

From the standpoint of the designér asrodynemicist, these
fundamental considerstions are of little immediete veluo; as the
desired "corrections" for swept wings are not yet known with sufficicnt
confidence, Thence 4ariscs the need to &pproach the problem of wing
loading in the second way mentioncd above, Klicheasrn's valuasble work
in this darcction has succecded in cstablishing from expoerincental
sources some very important guiding principles; and has method would
appear to be capable of powerful empirical development.

There remains, however, the important geal of cstablishing a
relisblc potential theory, in which aerofoil thickncss and boundary
layers arc neglected. Gernor's view is that the conditions essential
tc such a solution are nuch better satisficd by Mullhopp's purely
theoretical method than by Kucheuann®s scmi~czpiricel nethod.
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Sunrary

From a systematic series of caloulations of swept-wing loading
the writer has formed an opirmon of the accuracy and most useful
application of vortex lattice theory and the vortex sheet theoracs of
Weissinger, Multhopp and Klichemanne The results provide a general picture

of thc effeet of sweep and compressibility on 1ift slope end acrodynamic
centres It is recommended that:-

(1) An elaborate solution by Multhoppt!s theory should be used
when special accuracy 1s reguared. .

(11) It should normally be possiblc to choose a shorter version
of Multhopp's theory which may be expected to provide a

potential solution et least as quickly and more accurately than
any other given theory.

(121) Vortex lattice theory 18 to be preferred when additional
calculations of control characteristics or flutter derivatives

are required for the szme plan form and sufreme accuracy 18
not essential,

(iv) Weissinger's theory (with a modified procedure) 1s to be

preferred when estimating the effects of compressibility and
sectronal 1ift slope on suitable plan forms.

(v) Kuchemann's theory, being essentially = lifting line theory
with a semi-emprrical correction for sweep, will roughly tackle
a wide range of lateral stability derivatives and may allow
for three~dimensional boundary layer characteristics. Its
practical value should grow with experience.

This note is intended to prePafeEEHe ground for two developments, vhich

requare urgent study and in which vortex sheet theory must play an
importamnt part:-

(n) The use of sectional-ddta in the prediction of aerodynamic
characteristics of aswept wings.

(v) A methdd of calculatloégg% general application o swept wings
at high subsonic speeds. ’

Swnmar
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1e Introduction

In the search for more accuratc data on aerodynamic deravatives
of swept wings, a2 rcliable theoretical potential. solubion 1s an egsential
calculation. There arc many vortex sheet theories which approximate to
such solutions for wings of zero thickness an wnviserd {lou below the
critical Mach number. In the absence of on anclybically exact potential
golution for any swept wing the inconsistency of the varlous theories is
a fundamental drawback, 1f the effects ol wing section and viscosity are
to be understood. Froa vhis standpoint a theory is not necessarily
enhanced by a favourable comparison with experiment. Its intrinsic
accuracy mst be assured.

The historical threads are mathered from Ref.1 (1949), which
reports on a specral discussion of the problem of load distribution on
fimite swept-back wings. At the suggsstion of Gates this meeting agreed
that studies should be made of families of plan forms related accordang
to the linear perturbation theory of the cffecct of compressibility.

Three such (&,7\) famlies of four plan forms were selected,
as showm in Pig.ts-
{a) Delta wings = 1,2,3,4:
(b} Pointed arrovhcad wings - 5,6,7,8:
(c) Mediun tapered arrovhead wings = 9,10,11,12.

The geometrical parsmeters are defined in Fige2. The four wings, shown
in Ref.1, Fig.h(a), form a further set:-

(d) Cropped wings of 45° sweep~back - 4,B,C,D.
It should be noted that plan foras 7 and D are identiczl, as are 10 and B.

The recomnmended programme of caleculations in Ref.1 has been revised
in accordance with the development of the vorious theories, The agreed
experinental programae 1s 1n hand at NoP.l. Consideraticn of the effects
of wing thickness and viscosity vwill be postponed $111l the experiuents
are completed, The present note 1s naanly concerned with potential
vortex sheed theories applaed fo the swert plan lorms of Frgele.

2 Theoretrcal Backsround

A general approach to an zcourate potential solution for a
finite swept wing is considered in Refv2; and a solution on that basis
hag been obtained” for a delta wang (Figet, Wing 2). The writer has
applied a similar scheme to each of the wings in famly (d), but serious
ill~gonditionang of the eguations has prevented the use of all the
solving points necessary in a reliable check solution envisaged in Ref'sl.
However, a separate report of this work will be publishedtin due course;
and regsulbts now being obtained on & simplified basiz substantiate the
conclusions of this note, z2s far ag can be judged.

Of the routine methods discussed in Ref.1 only the vortex
lattice theory has survived in current use., This theory is employed here
with and without P functions in order that their value may be agsessed

(8Le1)e

*A.R.C, 14,781 (Gormer and Acwa, April, 1952).
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In U.5.4,, Weigsinger's method is favoured, As a result of
compariscons with vortex lattice theory in Ref.7 (Van Dorn and DeYoung,
1947) and subsequent development by DeYoung® (1947), the method is shown
to be of great value for iangs of umiforn sweep and taper. The use of
& solving point at the three-quarter chord poaint of the "kinked" central
section of a swept wing is open to criticism. It is of interest to compare
solutions in which 1t is omitted (85+1). Both types of solution have becn
applied to representative wings in Fig.l.

Since the discussion of Ref.1 two other daistinct theories have
been published. Multhopp's 1ifting surface theory? (1950) may reasonably
clain to be the most accurate routine nethod; its computation however
is elegant but not short. Kuchemann's theary?0 (1950} nay reasonably
claim to be the most rapid method of calculating swept-wing loading, but
its limitations in accuracy rust be clearly recognized. Caleulations by
Kuchemann's rethod are provided in Refs11 (Dee, 1951).

Some comparisons with a theoretical formula for 1ift slope and
the elliptic quarter chord point for aerodynanic centre, as suggested in
Refe12 (Bryant and Garner, 1950), are also includeds The six methods
of solution are swmarized as follows:=

(1) Vortex Lettice 6 point (84):
(2) Vortex Lattice 8 point (8L.1):
(3) weissinger L point (35):

(L) Werssinger 3 point (B5.1):

(5) Multhopp 16 poant (36):

(6) Kuchemarm 8 point (87).

The basic physical concept, demands of cowputation, distribution of
solving points and advantages ol each solution are set out in tabular
form in Fige3 @nd are more fully discussed later in the sppropriate
paragrephse ,

2.1 Fxperimental Background

This programme of calculations for the families of wings in
Figs1 will be supported by low-gpced tunncl tests on at least one wing
in each family:~-

iece, Pamily (a) Wang 2t

Fanily (b) Wing 73
Famly (c) Wing 103

Faruly (d) A1 four wings.

Pressure plotting at two sections 1all provide some information on spanwise
loadang and local aerodynamic centres. The practacal requirements of
chordwise loading will be further deduced from measurements of the spanwise
distribution of hainge moment on control flaps of tuo chord ratios,

E = (0.2 and Ok« The wang section throughout is R.AE. 102, on vhich
systcmatic two~dimensional tests with both cogtrol flaps are being carried
out at NwP.L., at a Reynolds numbexr, R = 10° , whach will be covered

in the three-dimensional tests.

Frony/
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Prom the practical point of view 1t is desarable to be able to
predict the aerodynamic derivatives of wings. The relative meritas of
vortex lattice theory and Weissinger's theory have been discussed in
Refe13 (Toll and Diedcrich, 1948). The prinary consideration here in
relation to the present fundamental approach 1s vhether a vortex sheet
theory can be adapted to 1include wing sectional characteristics. The
systematic experimental programme outlined above may be used to Judge
the practical claims of any theory; but unless that theory can also be
substantisted in potentizl flow 1t can hardly be used with confidence to
eastimate the effects of wing scectional nodifications and of changes in
Reynolds number fron model to full scale.

2.2 Puture Theoretical Reguirements

The need for more precise knowledpe of the capabilities of
vortex sheet theories i1s assocrated with the modern trends towards lower
aspect ratics and higher speeds. The choracteristics of a wing at a
subsonic Mach nunber WM are related to the incoupressible flow past a
wing with 1ts lateral dimensions reduced by a factor 1 =~ Me « This
effective reduction in thickness chord rotio fovours the vortex sheet
theories; but their reliabality deterrorates with such a decrease in
aspect ratio, since two=dimensional considcrations are inherent in the
assuried chordwise loadings and the choice of solvang points. The adaptation
of the current subsonic theorics to transonic flow is a matter for
intensive research.

As aspect rotio decreases the euphaosis shifts from spanvise loadaing
to chordwise loadang; oand varaous theoretical ftreatments on this basis
for swept wings have appeared recently. A ncw nethodls (Lavrence, 1951?
will assist the practical problen for dclte sangs at least. Robinson's 5
(1950) theory for swellow tarl wings will be a useful guide, when the
trailing edge 18 swept-back. Both these thcories are less suitable for the
plan forme selected in Faig.l than for wings of very low aspect ratio.
But they should form part of a comprehensive study of the theories available
for caleculating wing loading in transonic flow. .

It is hoped that this note will help to prepasre the ground for
two developments in vhich vortex sheet theory must play an important part:-

(a) The use of sectional data in the prediction of
aerodynamic characteristics of swept wings:

(b} A method of calculation of general application to swept
wings at high subsonic speeds.

3« Results

Potential solutions for each or the wings shown in Figet have

been obtained by some of the following theories:-

(1) Vortex Lattice theory (8k)

(2) Weissinger's theory (85)

(3) Multhopp's theory (26)

() Kichenann's theory (87)
The solutions by vortex lattice theory for Wlngs'1,2, sses 12 are presented
in Tables I,II, +sees XII respectively. Lach wing has been calculated with

and without P functions (§L.1), and Wings 2 and 10 by a third solution
with 2dditional chordwise terms.

Solutions/
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Solutions by Weissinger's theory for Wings 4,2,5,7,9 and 10
and family (d) (aincluding Wings 7 end 10) are given in Table XIII. In
sach case a modified 3 point solution in included, as explained in §5.1.

Solutions by Multhopp's theory for Wing 2 and family (d) are
to be found in Table XiV.

Kilchemann applied his theory to Wing 2 in his original report!®
and calculations by his method for the four wings A,B,C,D in family (d)
are provided in Ref.11.

Theoretical values of the 1ift slope 0Cr/8a and the aercdynemic
centre (measured as a fraction of the mean chord from the leading apex)
are sunierized in Tables XV and XVI respectively. Conperisons of
0Cr/0a with a simple formule é§8) and of aerodynamic cenfre with the
elliptic quarter chord point (88.1) are included.

3.1 Inft Slope

As expleined in 81 and Fige1l, the selected plen forms are
arranged in four families:

(a) Delta vangs:
(b) Pointed errovhead wings:
(¢) Tedium tapered errowhead wingst

(d) Cropped wings of §5° sweep-backs

Some curves of 3Cr/8a for each fanily arc given in Fig.;
and all the calculations are sumparized in Table XV. Conparisons of
the standard 6 point vortex lattice solution and Weissinger's standard
L point solution reveal that the former gives a consistently higher
11ft slope, the percentage difference increasing with sweep~back and
being of the order 6% for A\ = 45°. Typical dascrepencies of this order
were found in Ref 7o

When P functicne are introduced into the vortex latticc
calculations 8Cr/0a 18 lowered slightly. The removal of the central
three-quarter chord solving point in Weissinger's solution has the
cffect of raising 9Cr/00 «+ The two theories thus modified are normally
within 3%

It is very prcbable that Veissinger'!s standard solution always
overestimetes the effcet of the central kink and thot this effcet is
underestimated when his solution 1s modified (85.1). In four oases out
of five, laft slopes calculeted by lulthopp's theory are within 0.5% of
the mean of Velssinger's standerd and modified values. Such consistency
is encouraging; and having regard to the even better zgreement betuneen
Malchopp's solution and the check solution? for Ving 2 by continuous
nunerrcal aintegration, the available evidence saggests that the accuracy
of wmultheppts method is superior to that of the other routine vortex
gheet theories.

By comparison Kuchemann's method seems inconsastent, giving
at tines values of 3Cp/da greater than vortex lattice theory and in the
cage of the pointed Wing 7 values lower than weissinger's standard
solution.

The/
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The approximate forrula of equation (14) seems to be accurate
within & 3%, unleuss erther the angle of swecp~back exceeds 60° or the
aspect ratio is less than 1.5, 3Beyond these linits the formula reads
high and thus tends to underestimate the effective sweep-back /\ ' (88)
and not to allew fully for induced aercdynamic camber.

The general effect of sweep on lift slope is shown in Fig.8.
The dotted curves for wings of given sweep are deduced fron the four
full curves representing the calculations for a family of wings (Fig.1).

3e2 Aerodynanic Centre

The aercdynemic centre by any linearized vortex sheet theory for
an uncarbered wing occurs at the point of intergection of the axis of
zero patching noment and the centre line of the wing. The quantity a.c.
is defiped as the distance of the aerodynamic centre downstream of the
loading epex measured as a fraction of the mean chord.

Some curves of a.c. for each family of wings (Fig.1) are given
in Fige.5; and all the calculations are swmmarized in Table XVI.

Although Veissinger's method predicts a negligible change
of a.c. within e (§,2\) family, vortex lattice theory suggests an
appreciaeble 1ncrease in the quantity a.c. with decreasing aspect rataio.
Thus there uay be a rearward novement of aerodynamic centre associated
with compressibility at subsonic speeda.

Falkner's standard vortex lattice sclutions give a central kink
in the local aerodynamic centre, but a systematic rounding off 1s used
here (§4). The cffect of this i1s shown in Table XVI to be more inportant
than the introduction of P funchtions and two extra solving points (Fag.3).
There is no apperent improvement in a.c. through tsking three chordwise
golving points as in the 9 point solutions for Wings 2 and 10.

One drawback to Weissinger's theory is his strict adherence
to the two-dimensional type of chordwise loading, which presupposes
a local a.ce. on the quarter chord locus. However for swept wings the
a.cs algo depends on the spamnase distribution of laft and this is
partly covered in Weissinger's standard 4 point solution. In the
modified 3 point solution the conditions at the central scciion are left
free and are accounted for by smooth interpolation (f5.1), which
probably exaggerates the chordwise displacement of local a.cs The
average of the stendard L point and rmodificd 3 poaint solutions 1s compared
with the best vortex lattice solution (8 poini rounded) and lulthopp's
golution in Teble XVI. When thesc last two agree the comparison with
the average value from Weissinger's theory is excellent. The discrepency
between Multhopp's solutions and vortex lattice theory for Wing 7 is due
to the pointed ta1p and i1ts influcnce on the calculated spanwise loading

(8343)

aichenann's method iz in fair agrecment with Multhopp's theory for
wings 2, B {or 10) and C. But serious differences for Wings A and D
suggest thet Kichemenn's method as a potentisl theory mey only be suitable
for mediun tapered wangs (0.15 <A <0.45).

It is interesting to compare the calculated serodynamic centres
with the goemetrically defined elliptic querter chord h (Fig.2 end
8841), which is shown 2s a function of & and % in Fig.9(a). Theoretiocal
values of (a.ce = B) for the plan forms of famly (d) sre plotted in

Fig.9(w)/
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Flg;9(b), vhere the varintions arce quite as dependent on taper ratio
as on aspcet ratioc. With this guide and other thcoretical comparisons
of a.ce and R 2n Fig.9(a) the elliptrc quarter chord point may often
be used with discretion to obtain rough c¢stimates of the acrodynamic
centre within % 0.03%3.

As 2 general cenclusion for most swept wings, 1t 15 nccessary
to use one of the more elaborate routinc vortex sheet theories to evaluate
the position of the acrodynamic centre witnin 0.028, If less accuracy

is required VWeissinger's method 1s recommended for wangs of uniform
sweep and taper as follows:

(1)} Complete 4 point solution as set out in Ref'.7, Appe C;

(2) Repest the final stages of (1) by modafying one eguation
as suggested in 85,1 {modified 3 point sclution);

(3) Take the average of the z.ce's calculoted from the formulae
appropriate to (1) and (2).

The computation should not excced onc day.

3.3 Spanvise Loading

The spanuise distrabutions of 11ft have been caleculated for
Wings 7 and 10 by the six methods swmarized in Pag.3. The quantity
¢ Cp1/@ Cf, , representing the 1ift per umit svan divided by ats
average value, is plotted against thc apanwise distance 7 for wings 7,
10, A and C 1in Fags. 6(a), 6(b), 6{(c) 2nd 6(d) respectively.

It 1s interesting to note that the two solutions from
Weilssinger's theory tend to give 2 fairly wadc variation near the central
section. A mean curve can be expected to give a good estimate of the
distribution of lift for most swept wings.

I'or the pointed wing in Pig.6(a) Kuchcmann's method appears
untrustworthy, giving a much reduced loading near the tip. The curves
corresporidang to the methods of Multhopp and Klchemann have in comaon
a steep fimte slope at the tip, vhile the other theories show the more
usual infimte slope asscciated wath elliptic loadaing. DBy the nature
of the distribution of solving points (Fig.3) these two theories are
nore likely to be correct near the tip and this raises the problenm
of finite or infimite spanwise pressure gradients near a pointed wing
tip. Although conventional wangs are not pointed, this bchaviour 1s
of more than academic interest since traiangularil and swallow t21115
wings of low aspect ratio are more arenable to theoretical treatment,
vhich may yield results of general interest. Further it should be
noted that the inconsistent thecretical aerodynanic centres colculated

for Wing 7 arc prusarily due to these differencces in the spanwise
loadlng.

The other vings do not reveasl such serious discrepancies in
spanwise loadang by the dafferent theories, but Klichemann's method
apparently gives slight cexcess loading ncar the tip for the wings of lower
aspect ratio. In Fig.6(b) Multhopp's 16 point solution and the 8 point
vortex lattice solution {with Falkner's P functions) are indastinguishable,

The calculations for the three (8,A) famlies by vortex lattice
theory give an estimate of the effect of compressibility on spanwise
loading. The typical decrezse in central loading at a given 11ft
coefficient, Cr , nay be scen for the delta family (o) in Tables I,II,III,IV,

the/
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the 1.4% decrease in Cry/C;, (m = 0) rron Teble III to Table II
representing a change in Mach number fron O to 0.661 for Vang 3. This
effect 1s nore merked for the pointed family (b) and less marked for
the medium tapered family {(c).

Care is needed in the calculation of spanwisge loading Jhenever
1t differs appreciably from elliptic. Thais occurs for pornted and
untapered wings. The treatment of Velssinger's theory recommended in
85,2 for obtarning aerodynamic centres should offten suffice,

344 Local Aerodynamic Centre

The calculated local aerodynanic centres for Wings 7 and 10
are plotted in Figs. 7(a) and 7(b) respectavely,

The deviation of lulthopp'!s local a.cs. near the tip of the
nedjum tapered .ing in Fag.7(b) is of interest and suggests considerable
uncertainty in the chordwise pressure distributicn in that region.
Otheruise for both wings lhe theoret:ical cwrves are i1n ciose agreenent
except near the central section. where.the- standard vortex lattice theory
requires a gpanwise. smoothing.

The assuned wing loading of the vortex lattice, theory gives
an unacceptable central kink in the locus of the local a.c. for swept
wings. By a procedure cxplained in 84, the locus is rounded in the
region = 042< M <0.2, This effectively improves the comparison between
the three theories in Fags. 7(a) and 7(b).

No rigorous routine procedure for aincorporating the necessary
change in chordwise lozding in the central region has been devised. The
artifices used by Multhopp (86) and klichemann (§7) are no more conclusive than
that proposed for vortex lattice thecrye. The most pleusible treatment 1s
given in Multhopp's theory, where the distribution of local z.c. 18
effectively determained for a rounded wing. As indicated in 82., 1t 1s
hoped that further work on the lineg of Ref.3 for arrovhead wings will
provide useful information on the chordwise distribution of 1aft at the
central section and the extent of its influence in a spanwise direction.

L. Vortex Lattice Theory

Falkncr‘sh use of a vortex lattice 1s essentially a technique
for evaluating dovnwash. The question of accuracy has been examined
in Ref.5, vhere 1% 1s stated by Falkner thot the bheneficial coupling
effect of the lattice makes 1t unnecessary to obtaip individual values
of the downwash to great accuracy. Various niethods of calculation are
coniparcd and a measure of convergence 18 obtained, but there is no
proof that vortex lattice theory tends to the exact vortex sheet theory
as the lattice spacing becomes infinitesinal.

The pressure distribution over & wing 1s represented by

Pp = Py 8s .
meme— = Fo(n) cot 28 + F1(‘q) sin & + J5(n) sin 26] vee (1)
PV c

vhere © 1s the usual chordwise angu.ar co-ordinate given by

x =x; = 2e{1 = cos8) .

The/
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The spanwise wvariables Fo, Fq , F2 are deterruned by satisfyang the
condation of tangential flow at as nany points of the plan forw ag
there are unknowns. Provided that both the leading and traila edges
of' the wing are smooth, the downwash corresponding to quatlonn%1) is
continuous over the plan forn and thermecessary boundary conditions are
possible. But at the central kink of 2 swept wing s logarithrucally
infinite downwash from exact integration cannet be avoirded (Ref.2, §h),
although the vortex lattice gives finite valucs there. The singulerxty

0 [Pp =P
a
in downwash arises vhore there 1s o Jdiscontinuity in == | ===--=- H
09 am pve
this ccours where == 18 disconbtimous, and shows for example an the

om
kirked dastribution of local aerodynamic centre in Fig.7(b). The
following sroothing proccedure has becn uged.

Let D(n) be the drstance of the local a.c. downstrean of
the leading apex. Marstly values of

Df(n) = X, + 7 mmmoTmssosssoe "o (2)

are calculsted fron the pressure dastribution in equation (1). It
appears that Df(ﬂ) 18 scarcely effected outhoard of the solvang station
M = 0.2 by the central kink. The spamwisc gradient nf Dp(n) at this
whation 18 caloulated from the for.ula

0.6 Dl (0.2) = Dp(0.10) = 8 Dp(0wi5) + 8 Dp(0425) = Dp(0430)s
Then for =0.2<$1<0,2 , the local a.c. 15 asswicd to occur vhere
D(n) = Dp(0.2) + 2.5 DY{0.2) (42 = 0.04) . ees (3)

For this ronge of M, Dy of equation (2) is replaced by D of equation (3)§
the aercdynamic centre of the wing 1s therefore displaced through a
distance

. 0.2
- Lrh
CA(I—‘l.C.) = -6_ / (D - Df)(IﬂO - .‘.12,511) dn , P (l;.)
L ¢
where A (ae.cs) 18 the correction to the quentity a.c. defined in
B83.2, The effect of equation {4} is shown by thc comparison of the

standard and rounded € poinl vortex lattice sclutions for Wings 1,2, eeee 12
in Table XVI.

Throughoul the present coleulations with a 21 x 6 lattice the
central horseshoc vortices of spanvise extent ~0.05<{Mn<0.05 and
the central solving points, 1 any, are displaced douwnatrean to correspond

to the chord line ot 7m = X 0,025. With this smell modafication

the 6 point solutions took boundary conditions at & chord and 5/g chord
(iseey, cos & = O and = %/3) at the three seotions m = 0.2, 0.6, 0.8,
the ad%ltlonal section mM = O being included for the 8 point solutions
(Flg-5 .

The/
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The 9 point solutions for wings 2 and 10 were obtained with
a 41 x 12 lattlce, the central vortices being displaced backward to
correspond to the chord iine at n = % 0,0125, and the solving points
being teken at % chord, 2/; chord and 5/g chord et each of the scctions
m = 0.2, 0.6, 0.8, These golulions did not prove any more accurate
than the standard 6 peint solutions with a 21 x & lothice.

Lel Use of P Functions

In the stondard sclutions by vortex laottice theory the spanwise
variables an equation (1) for syrmetrical loading are of the  forn

FO = YVl - T’iz (ao + COT]Z + eOT]z") 4 e (5)

Experience has shown that a certain vuprovenent in accuracy is chtained
vhen the spanwise load distribution ig iodified to be consistent waith
1afting 1ine theary, Vvhen dc/dy 218 discontinuous, lifting line theory
reguires & continuous dosnwash with a sudden chenge of gradient, In the
particular problems of this note (Fig.1) such discontinuities are
confined %o the central section; and in Ref.16 (1947} Falkner has
recomiended that, instead of equation (5), the following equation should
be used:=

]

VA (ag + c0n2 + eonh) + Pg p(n) , e (6)

Fo
vhere

Y

i

eP,+ (1 - 8) P,

the guantities P, and Py being defined in Ref.17, Teble I, The
factors of P, end Py have been deterraned to the nearest 0,05 from
Refs17, Fige2 and the porticular values for VWings 1,2, sessee 12 are
indicated in the respectivc tables. For each wang eguations 25) and,
(6) with similar expressions for F, have been used for the 6 point
and 8 poant solutions rcspectively.

However P functions do not 2ffect the general form of equation (1)
or the considerations of the logarathiiic singulacity that follow. Thus
the smoothing procedure outlined 1n 84 18 st11l necessary if a kirked
dastribution of acrodynanic centre is to be avoided, P functions therefore
do not constitute a rigorous trestrnent of tne centrel region of a
swept wange Based os they are on the lifting line theory they are not
convincing for the purpose of calculating acrodymamnc cemres. The
8 point solutions should be judged in relation to the improvement in
accuracy in proceeding fron the more econonical 6 point soluticns., In
the opinion of the writer the 16 point solutions by dulthopp's theory
(%6) are exact enough to permit a pronouncercnt of the theoretical value
of P functions.

In the case of delta wings ([Fige1, family (a)) P functions
have a negligzible effect coupared with the difference in 3Cr/d0 between
the 6 pownt vortex lattice solution and Multhopp!s solution, and the
change 1n z.c. effected by the smoothing procedure of §k.

For the arrowhead Wings 7 and 10 the improvement in 9Cr/da 1s
about 40% of the likely positive error an the 6 point solution and mucn
better accuracy is obtained for the a.c. of the mediun tapered Ving 10,
The use of T functions and the two additionsl sclving points apparently
gives slight but distinct improvenents an the spanwise dastributions of
lift and serodynomiic centre.

It/
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It is thought that the case for P functions is strengthened
by the cxasting couparisons. IExcept for delta wings appreciable accuracy
is gained by using 8 point solutions in preference to & point solutions
vihen calculating symmetrical swept=wing loading by vortex lattice theory.
Lgainst thas wust be set a 70% increaze in computation.

Le2 Futurc Applications

(1) 1In c2lculations of swept-wing loading, 2s considered in this
note, the vortcex lattice theory may be used vhen the plan form of the wing
is unsuitable for Weissinger's method and the superior accuracy of
Multhopp's theory is not reaquared.

(it) vwhen vortex lattice theory is used, the modification to
aerodynanic centre outlined in 84 should always be included. The
improvement in accuracy through the use of P functions occaslonally
justifies the 707 extra labour irvolved (84e1).

(211i) The outstanding feature of vortex lattice theory is its
flexibility. At the expense of extrene accuracy it is possible to treat
a wide range of problems. The method 1s being applied to deflected control
surfaces of partial span; the special chordvise loadings present no
difficulty, and there 1s, furthermore, freedoa of cheice of solving
points.

(av) 1In particular vortex lattice theory gives a simplified treatment
of the effect of comprcsslblllty18 (Palkner, 1948) and w1ll determine
oscillotory derivetives of high frequency'9 (Jones, 1946). Heither the zimpler
nor the more raigorous vortex sheet theories can readily be applied thus.

(v) Tt 1s tentatively suggested that by dividing 2 vortex sheet inlo
spanwise strips instead of chordwvise ones the technique of vortex latfice
theory nay be adapted to calculate the loading on low aspect ratio wings
of arbitrary plan form.

(vi) The uniform simplicity of a vortex lattice makes for
straightforward calculations, which are more lakely to be handled
successfully by electronic computing engines.

He Weissinger's Theory

The oripinal Lemethod of Werssinger® (1942) has been cxpressed
more suitably for conputation with tabulated constant facters in
Ref.7, appendix C (Van Dorn and DeYoung, 19%7), where the standard
4 poant solution s described. 1n this sinplified theory the vortex
sheet 18 concentrated at the quarter chord locus; and the downwashes
due to this vortex line and its attendant trarling vorticity arc used
to satisfy the boundary conditaions at points on the three-quarter
chord locus (FaZ.3).

Thas logical development of the lifting line theory can
usefully be applied to a swepbt wing so long as 1ts aspect ratio 18 not very
lov and.its semi-leading and scmi-trailing edpes are straight. Thas form
of Weissinger's theory does not provide an estimote of the departure
from two=dimensional chordwise loading, but nay be used to dﬁternlge the
spanvige drstribution of lift and the aerodynamic centre of a wing
(DeYoung, 4947)s

Weilssinger's/
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Welssinger's standesrd L point solution takes one sixth of the
tine required for the corresponding 6 point standard solution by vortex
lattice theory. The speed of Weirssinger's theory justifies 1ts use
whenever its accuracy is comparable with that' of more elaborate methods.
Results have been obtained for \Wings 1,2,5,7,9 and 10 and family (4)
(1ncluding vangs 7 and 10) and are given in Table XIII. These show
that 8Cr/0a (Table XV) 1s consistenily underestimated and thaet there is
2 tendency to underestimate a.c. (Table XVI). In the spanwise distributions
of 1laf%t for a given Cp the contributicons from the central region are
consistently underestimoted (Figs. 6(a), 6(b), 6(c), 6(a)).

5¢1 Itodifared 3 Point Scolution

It 1s very probable that VWeissinger's standard solution always
overestimates the effect of the central kink of a2 swept wing. The theory
is subject to the same fundamental criticism as vortex lattice theory,
for the pressure distribution, represented by the first term of equation (1),
logically produces a singularity in dounwash at the kinked central section.
It is also pertinent that {the use of a solving point on the three-~quarter
chord locus 1s essentially based on two-dimensional considerations, vhich
are of little worth where the locus has a violent kark.

It 1s therefore intercsting to replace the boundary condition
at the central section by a relation between the unknown values of the,
non-dimensional circulation G, , defined as in Ref.7 by

Circulation
----------- = Y(n) = G'v »
2sV
when
T
N = C0S == (V = 1:2’3,&-) .
8

If Gy 1s taken in the symmetrical form

VT 3VR Bvnr
Gy = Ay sin == + Ag 51 === + Ag sin == (v = 1,2,3,k),
8 8 8
1t follows that
0.3827 G4 = 047071 Gy + 049239 Gg = 0,5000 G, = O . eee {7)

The modified 3 point solution is obbtained by using equation (7) in place of
the central boundary condition at v = 4. If the standard 4 point
solution 1s being calculated, the modified 3 point solution is readily
deduced with very little addational computation.

The lift coefficient Ln the standard solution 1is

1
CL = ZAf'YdT}
0

T
= == [043827 Gy + 07071 Gy + 049239 Gz + 045000 GL]- ees (8)
A

With/
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With the ard of equation (7) this becomes

RA )
Cr, = =- {0.7651 G1 + 148476 G})
A
> ' s (9)
A
= m- (1 024.1’-].2 G'2 + GL)
& J

The aerodynamic centre in the standard solution is cvaluated

by concentratlng the 1ift on the quarter chord locus, and 18 given by
the formula

where

ﬁ T e 1 o 7 O L 0 L R YL L P A el e ok e s 3 LR ] (10)
0.3827 Gy + 0.70714 G2 + 0.9239 G3 + 0.5000 G,

and the other quantities are defined in Fig.2. In a more general solubion
with a spanwise loading concentrated at a distance 1{n).c from the
leadaing edge the aerodynamic centre

Co 1 1
2eCe = -:+fld‘r] Ef'yd‘n ’
Lc
4] 0
where
I = vy{ns ten A\ + (2 - D},

From the modified 3 point solution the integrand Iy may be evaluated

for v = 1,2,3 by substatuting 1 = F} itc central value I, may

be dctermlncd from an interpolational equation for Iv sinilar to

equataon (7) for Gy « Then from cquations (8) ond (9), 1t follows that
i

% 0e765k4 1y + 148478 Iy

a.o. = + ------------------------

b8 B(04T65k Gy + 1.8478 G3)

o & tan/\ 0.7071 {6y + G3)
e 4 mmmmeims mmmesaccoeeeDe . ees (11)
45 & 1ebAL2 Gy 4 Gy

Coalculations of OC[Ma and a.c. by Veissinger's standard
L point solution usn.ng:, equations EB; and (10; ard algc by the modified
3 poant solution u31ng Lauations (9) and (11) have béen compared with
Multhopp's solutions for Wing 2 and the whole family (d) (Fige1). The
tendencies to underestlmate acL/a@ and a.c. ore.usually - overcorrected
when the &4 p01ntwsolnt10n is.replaced by the 3 point golution. The
central solving point canriot safely be ignored; and the formula (14)
for aerodynamic centre probably exaggerates the displacement of the central
local asce from the quarter chord locus. The average of the 3 pownt

and/
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and 4 point sclutions 1s in good agreement with iulthopp's 16 point
solution, especially for VWings 2, 10 (or B} and C. Bvidence from

Figs. 6(a), 6(b)}, 6(c) and 6(d) suggests that the spamase loading near
the central section lies between Velssinger's two solutions and that
their mean wall often provide a satisfactory cstimate of the spamiise
distrabution of lift.

52 tuture Syolicoations

(i) In calculations of swept wing loading Weissinger's theory is
recommended, provided that the wing 1s of constant sweep and taper,
that details of chordwise loading arc unnecessary and that the superior
accuracy of Ifulthopp's theory 2s not rcquired.

(11) The following recommended procedure involves one day's computation:

(1) Complete the standard 4 point solution, as described in
Ref+7, Appendix C.

(2) Repeat the final stages of (4} by replacing the central
boundary condition oy equation (7) and using equations

(9) and {(11) (85.1).

(3) Take the average of (1) and (2) to gave 11ft slopc,
aerodynamic centre and spanwise loading.

(112) The speed of Welssinger's method makes 1% suitable for estimating
the effects of compressabilaty and scctional 1lift slope, vhich may be taken
into account by an adgustment of plan form (Ref.20, Appendix B;

DeYoung, 1950).

(iv) DeYbung has extended Weissinger's theory to problems of
antisymmetrical?0(1950) and symmetricald1(1951) spammse loadings
including flap deflections of partial span. In so far as such problems
can be treatcd by considering a spanwise distribubtion of equavalent
incidence without effects of local aerodynamic centre, rolling and lifting
characteristics of wings of constant sweep and teper may be calculated.

6. ilulthopp’s Theory

The most useful contrabution to the nroblem of swept—wing
loadang of recent years is Multhopp's subsonic vortex sheet theory
(Ref.9, 1950)s To a very large extent the method 1s soundly based;
and an elegant scheme of computation just brings the 16 point solution
into the category of a routine caleculation (Flg.}). A saimple L point
solution (m = 7, 1 chordwise) would take as long as a corresponding
sclution by Welssinger's theory, would give at leagt as good accuracy
" and as applicable to any plan forms The determination of local
aerodynanic centres would require at least an 8 poant solution
{m = 7, 2 chordvise), vhich would take approximately holf ag long
as a stendard 6 point solution by vortex lattice theory and s reasonably
expected to reduce the crror.

From the mathematiczl standpoant any given iifting surface
problem has & unrque solution. Since there 18 no such explicit sclution
for any swept wing, 1t 1s strictly impossiable to obtain er absolute checdk
on any approximate calculation. Bubt the uncertaanties in any theory are
at most threefold (Ref.2, B2) and concern

(a) the assumed wing Joading:
(b) +the evaluation of downwash:

(¢) the choice of solving points.

No/
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No approximate vortex sheet theory 1s impeccable as regards
(c); however iulthopp's theory is undoubtedly the best in this respect
from both chordwise and spanwise considerstions (Ref.9, 83).

The limitation (b) arises from 2n assumed vortex configuration
or a samplified interpolation; of all routine methods discussed in this
note Multhopp's theory again comes nearest to satisfying the requirements.
His chordwise integrations sre exact and are expressed as influence
functions of two variables, which are presented once and for all in a
series of charts (Ref.9, Figs. 1,2, «ss 6), It is the rapid process for
evaluating these influence functions thet mekes Multhopp's method a
practical corputing proposition, His method of approximate spanwise
integration (Ref.9, 85) is similar to that of his lifting line theory22
(1938) and 1s mathematically convergemt. The rate of convergence uith
m is improved by Multhopp's correction for a logarithmic singularaty

(Refe9, 85.2).

Another limitation arises in connection wath (2). hulthopp
effectively assumes a pressure distribution ag it appears in vortex
lattice theory in equation (1) without the term Fp(n): viz,

Py = D 8s
—————— S = - [Fo(n) cot % + Fy(n) sin 6]
pve c
8s | ¥ 24
= == f=-cot 0 + -~ (cot 6 - 2 sin Q) , ees {12)
¢ | 2% =

vwhere the unknowns ¥ and p are to he determined at m spanwise
stations

M = sin nv/(m+ 1) [n = 0, #1, +2, see (m=1)] &

The evaluastion of downwashes at the kinked central section of a swept wing
due to the pressure distribution of equation (12) is strictly meaningless,
since the double integrals do not tend to a finite lamit. Xulthopp's
amooth "interpolation polynomrals" for spanwise integration break down

vhen the integrand has a sudden change of gradient. Thus for a kinked swept
wing they give the wrong wing area and also an untrue finmite lamiting
downwash at the central section. However for a given value of m there

is a small unique modification to the ordinates of the central chord

(Ref.9, Apps VI) such that integration of the "interpoiation polynomials"
will grve correct areas; downwashes may then-be evaluated for this slightly
modified smooth wing without obvious inconsistencies. This treatment

of the cembral scction, though not rigorous, has more to commend 1t than
the artifices used in the other theories:

(i) Vortex lattice theory. Use of P functions (84.1);
(ii) The recommended procedure for Weissinger's theory (§5.2);
(i1i) Xlchemann's equivalent laft slope (87, equation (43)).
These consideratilons establish the superiority of Multhopp's
theory; and in the opinion of the writer this theory may be used to

Judge the order of accuracy achieved by the other theories discussed in
this note.

However/
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However therc are problems that are easily handled by vortex
lattice theory but ere not swited to lulthopp's theory. Oscillatory
derivetives for any frequency or flutter mode may be treated by vortex
lattice theory!? (Jones, 1946)%, while the application of Multhaopp's
theory is limited to low freguencies of the first order (Rsf.23).

Each influence function depends on two variables of unrestricted
range; and each linearly independent chord:ise loading requires a different
influence function. By way of contrast vortex lattice theoryﬁ requires a
single influence function, irrespective of chordwise loading, for which
the spanwise variable is restricted to even integral values. This
anfluence function may be evaluated at a glance from cratical tables for
particular values of the spanwise varieble. This simplifying feature of
vortex lattice theory involves a loss of accuracy, but it means that the
theory may be applied to problems with deflected control surfaces, vhereas
Multhopp's theory would necessitate an additicnal influence function®for
eaoch ratio of control chord to wing chord,

6+1 Computapion and Accuracy

' Caleuwlations by Multhopp's theory have largely been confined to
the 16 point solutions {m = 15, 2 chordwise), Results for Wing 2 and
the vhole famly {d) of Fig.1 are given in Table XIV, and have been used

to assess the accuracy of other methods of calculation.

An interesting spanwise distribution of 1ift is found near the
tip of the pointed Wing 7 (or D)« The curve of spanwise loading in
Fige6(a) suggests that 2 steep finitc gradient may occur near a pointed
tip in place of the more ususl infinite slope, exemplified by elliptic
loading (83+3)s This result requires further investigation and may
have an irmortant bearing on calculations for pointed wingse

Multhopp's charts of influence functions (Refa9, Figse 1,2, «as 6) have
baen found difficult to rcad and check te the required nccuracye. To eliminate
this drawback these functions of two varaiavles should be available in
a tabulated form suitable for double linear intcrpolation; the speed
of computatlon and accuracy would then be improved.

As suggested near the beginning of 86, it will often be
convenient to carry out calculations by Multhopp's method for m = 7
with L spanwise stations on the half wing, It should be noted that
the values of ayy B&iven in Ref.9, Table III,are incorrect and should
read as follows:=

Aym for m = 7
o A e o o o e e, e S e e R O i e Y S e by -
v,n -3 =] +1 +3
r——— T o P -‘h ———————————— J —————————————— e e 5 o
-2 03599 0.3879 0.034% 0,006L
e i e i o e e e P Y e e e i ey P il et L ety
4] 0.,0280 063943 035843 0.,0280
A e 0 e o i o S n it B o . P v sy e Y i A R A i e e P J——

The/

¥available NoPaLe celculations for wing 2 (Figel) afe glven in AJR,C, 14,156
. Miss Lehrian, July, 4951).
This may be avolded in an opproxiucte calculation with the chordwise

loading of equation (12) and suitably modified boundery conditions,
(Ref. 9, App. II),
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The chief cloment of uncertainty in thc intrinsic accurscy of
Multhopp's method 1s associoted with his trectment of the kinked central
section of a swept ving, The local acrodynanic centre in this region is
most likely to be affected. Hovevcr comparisons with Ref.3 for a delta
wing (Fig.1, Wing 2) are excellent (Rcfs9, Fige VIII). No very
significant discrepancies have yet been found vhen the number of spanwise
voriables, +{m + 1) for a symnetricsl problem, is halved from 8 to L.
In particular, calculations for Wing 10 coupare favourably as follows:-~

m= 7 m =-; ) --_;1; 1;
Solubion 0 eeem b b — ]

1 che 2 ch., 2 che

| BCL/am 2.7M L 2.7 24735

1 (eq. (10)) Oelilyt 0ul4 36 04436
----------------------------------------- o o e e

’ B4Ce - 0.936 0.956

The extent to whach Multhopp's theory con usefully be simplified to
calculate aerodynamic coentre remains to be investigated further.

It scems likely thot the theory will deteriorate in detailed
accuracy for wings of very low aspect ratio, unless more than two terms
are taken in the chordwisc loading. Serious departure from two-dimensional
loading is bound to occur and the sccond term of equation (12) can only
approximate to this. A comparison with Lawrence's method for a delta wing
(Ref.14) and Robinson's method for a swallow tail wing (Ref.15) would be
of intercst.

6.2 Future Applications

(i) Por the problems thot 1t wall teckle Multhopp's theory is
distinctly superior to other routine methods of calculating swept wing
loading. DExcept for the smallest aspeet ratios an elsborete solution by
Hulthopp's theory should be uc 'd when special accuracy is required.

(11) Tt should normally be possible to choose a simpler solution
to provide angwers at least os quickly ond more accurately than other
methodst Thus an 8 point soluticn (m = 7, 2 chordwise} by Multhopp's
theory would effectively replace o standard 6 point solufion by vortex
latbicc theory; and a L point solution (m = 7, 1 chordwise) by Multhopp's
theory would reploce a similar solution by Welssinger's theory.

(11;) Computation by liulthopp's method would he improved if the
influcnce functions vere availcble in a tabulated*form suitable for double
linesr interpolation instead of the charts in Ref.9, Fagse 1,2, eees 6o

(iv) Multhopp hag applied his thcory to osclllatory derivatives of
low frequency (Ref.23). This unpublashed work 3 ovides a useful method
of calculating thoe pitching derivative mé .

(v) The reliebility of vortex sheet theorics for wings of low aspect
ratio needs a comprehensive study in which Multhopp's theory is likely to
play an important part. Comparisons with Lawrence!std method for a delta
wing and Robinzon's15 nethod for a'swaellow tanl wing would be a useful
first stcps

7/

*Such tables (Rep. MA/21/0505) are now available at the N.P.L.
(Mathemotics Division),
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7+ Kuchenann's Theory

For an unsvept wing Kichemann's theory reduces to the lifting
line theoryi2. The besis of his rodificatrons to lifting line theory
is an effective change in the local 1ift slope 2o and cerodynamic
centre h, at the central section associated with a given engle of
sweep~back A\ as follows:-

2A Ne
a(} = 27 [1 = we- 3 Ahc = e . sey (13)
b 2R

Corresponding changes in scctional data at the tips are obtained by
substituting =~ /\ for /A 1in equatzon (13)s The argurnent put forward
in Ref.10, App. I 1& unconvincing methematically and the results should

be audped entirely by conparisons wath the more exact vortex sheet theories
or with experinent. Serious inconsistencies with the other theories are
clearly recognizable in Pags. 4(d), 6{(a), 6(b), 6(c), 6{(d) and 9(b);

and comparisons with experinent arc outside the scope of this note.

The accuracy in local a.c., calculated fron equation (13) near
the centre of a swept wing, is hard to assess. Hulthopp's theory (H6)
does not provide an exact treatment of this problen, so that the
corpparisons in Figs.7(a) and 7(b) arc inconclusive. But it is thought
that calculations on the lines of Ref,3 for the wangs of famly (d)
in Pigs1 nay help in this respect (82).

Being a modified lifting line theory Kichemann's method must
be expceted to become inaccurate at low aspect ratios. It is found
moreover that the calculated 3Cp/6a for Wing A of aspect ratio 1.71k4 is
18% higher than liulthopp's value (Table XV). However the allowance for
sweep on a semi-empirdical basis can give fair accuracy as for Wing C of
moderate aspect ratio and conventionally small taper ratioll (Dee, 1951),
Without empirical modification Kiichemana's theory is unlikely to handle an
extensive range of plan forms with the desirable accuracy., The method may
be applied to swept wings with the advantapges and disadvantoges of the
1ifting line theory for unswept wings, of which the outstanding merits
are speed and adaptability. '

7.1 Future Applications

(i) The practical value of Klchemann's method lies in its sinplicity,
which permits a rough estinete of the spanwise distrabutions of lift
and aerodynamic centre to bc nade in the shortest time.

(ii) Serious inaccuracies in 1ift glope are found for wings of low
aspect ratio (A <3) and favourablc comparisons of aercdynamic centre
ere confined o a very linited range of plan forms (Fig.9(b)). XKlichenann's
nethed 1s untrustworthy os a potential theory for fundamental research.

(iii) Being essentially a 1ifting line theory Kichemann's method will
tackle a wide range of lateral stability derivatives to a rough
approxinotion.

(iv) Xichemonn's method is easily adapted to il empirical results,
such as effects of boundary layer on secticnel deta and three-dimensional
chaeracteristics near the coentre and tips of swept wings. With experience
the method should become a handy tool for designers.

8»/
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8. Theoretical Forrula for Lift Slope

The curves in Fage.3 include 1ift slopes calculated from an
erparical formula based on theoretical results

oM A 2n cos‘/\i' -t
R SN [— ~ + 0.339(1 + T) + 0406k [ ~=mmmmmemm g e (18)
da 2n cos /\' A

vhere 7T 18 a taper paoraneter defined by lifting line theory and given
approxamately as the product of two functions f(A) and
A
gl =———— ~====}, 3vhich may be found in Ref.12, Tables L(a) and 4(b)
2% cos /\!
respectively, andH/Ax' 15 related to .\ , the angle of sweep-back of
the quarter chord locus, by

0.8
t&n/\_‘ = 1 = —remmm—- tan/\o cne (15)
A+ )

The formula (44) has been found to agree well with some experimentally
determined 1lift slopes, but where a reliable estinete of the two-dimensional
1aft slope a4 13 available the practical forrula (Ref.12, 85.2)

84 COS_
A e 200 (16)
A

is tc be preferred.

For the purposes of the present note equation (14) has been
used for couparison with the various vortex sheet theories, The theoretical
calculations of lift slope are surmerized in Table XV, where the theoretical
forrmla is shown to be a useful guide. The nost serious discrepancies
are between the forrmula end Veissinger's thcory for Wings 5 and 3, buf
for such extreme wings neither result can be trusted. It appears that the
forrmlo (14) is accurate within £ 3% unless either the angle of sweep-back
exceeds 60° or the aspect rotio is less thon 1.5. Beyond these limits
the formula reads high. It is concluded that when is large
equation (15) tends to ovecrcorrect for the effective loss of sweep in
the central region, so that ' is virtually underestimated.
Furthernmore evidence for rectangular w1ngs14 of low aspect ratio suggests
that the third term in the bracket of equotion (14) does not allow fully
for acrodynonic camber if A <7.5.

The forrula hag been used as o basis for estimeting.the effects
of compressibility on 1ift slope in 38.2.

8¢t Elliptic Quorter Chord Point

The clliptic quortcr chord point of 2 uniformly swept and tapered
wing corresponds to its acrodynemic centrc when elliptically loaded with lift
conccentrated along the guarter chord locus; and it cccurs at a distance
he frow the leading epex such thot .

2h
= memeasos— + = tanA

2(1 $ h) an

1 1 =2 16 -L
= mee—————— 1 e o — - :4. - = 6 [N K] (1?)
2(1 + ) = 3
as/



- 95 -

as defined geometrically in Fig.2. R 1s shown as a function of the taper ratio
A and the shape parameter & 1um Flg.9(a), vhere it is correlated with

the values of the quantity a,c. (B3.2) as calculated for the wings of the
three (5,%) families (Fig.1) by vortex lattice theory and for Wings 2,

A, B (or 10}, C, D (or 7) by Iulthopp's theory. This comparison suggests
that, excevt for pointed wings, the theoretical serodynsmic centre will
normally occur uwithin * 0,05 © of the elliptic quarter chord point.

Except possibly for pointed uaings no very great changes in a.c. occur
within a (§, h{ famly, elthough thosc calculated by vortex lattice theory
are not negligible and imply an apprccrable inerease 1n a.c. or rearward
movement of acrodynamic centre iath increase of jlach number.

The variation betueen a.c. and R for the cropped wings of
45° sweep=back in family (d) 1s shéwn in Fig.9(b). It should be remembered
that the behaviour of (a.c. ~ A) 13 quite as dependent on taper ratio
as on aspect ratio. For exarple (a.c. = H) 1all be comparatively large
and positive for swept-back wings of constant chord. However it is
considered that wath discretion the elliptic quarter chord point may often
be used to obtain rough estimatcs of a.c. ~athin * 0.03.

8.2 Effect of Compressibility

The calculation of the aerodynamic characteristics of a given
wing at a given subcritical ilach nunber 4 presents no more difficulty
than the corresponding problen for the same wing in incompressible flow.
Linear perturbations of velocity arc assumed in vortex sheet theories and
to this approximation compressibility is taken into account in steady
flow by reduging the spanwise dimensions of the wing by a factor
B o= 1 - MS and by applying the factor 1/p to the aerodynemic
coefficients calculated for the equivalent wing in incorpressible flow.

Thusg, for exarple, the characteristics of Vang 2 (Fig.1) at a

liach number M = 0.745 (B = 2/3) , are related to those of Wing 1
in incompressible flow, such that

-

1
(CL)2,M = E(CL)1,0

1 &
Capy = =l g

J

and the effecet of 1i on serodynsruc centre for hwang 2 1s merely the change
in ancompressible a.c. 1n changing from Wing 2 to Wing 1. This quite

small effect 1s not readily calculable, Allowance for compressibility is
complicated by the loss of accuracy due to the lower aspect ratio and
larger sweep of the equivalent wange. But, as recommended in 85.2,
Weissinger's nmethod (Ruf.20) 1s converwently quick for celcuwlating the effect
of compressibility on lift slope, ccrodynasiic centre and spanwise

loading, though the problem needs extensive study. Calculations by vortex
lattice theory for the three (&, A} fanilies of Fig.1 show the effect

of compressibility on the spemase loading ot a given COp (83.3), For
example, Wing 2 shows a 1% decrease in ocntral loading and a >2% increase
in tip leading as 1! changes from O to 0.745.

A rough estimatc of the theoreticul correction to Llift slope
for compressibility is suggested qualitatively by the forrmla (14) in 88,
and quantitatively by the results of the present caleulations for the
related vings of families (o), (b) and (cg and of Lawrence's caloulations
for rectangular and triangulor wings of low aspect ratic.

Generalized/
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Generalized to include liach nunber, equation {(1l) becomes

oCy, -
=) = Alpyg + 0.339(1 + ) + 008/ VED T, ves (18)
o fu
where
Py = Ag/2m cos/\'
Ty = f(A) . glpy) , (Refu12, Tables 4(a), 4(v))
1 0,8
tan /! = = tanf\ |1 = mmameeeee |,
B AB(1 + )

Tt follows that to the first order an (1 = §)

"""""""" = “"“'---—“--“'-’“"”'*:-" » "o e (19)
(501/60.)0 4 - {1 =B) « G (acL/sa.)O

where
1 9
G = j-\ 5“ [PM + 0.339(1 + TM) + 04064/ Pf’"jﬁ =1"°
; =

If the approximnste relation

T = £(A) . 0.10(2py)E

18 used, 1t can he shown that

G = mmemeseeee [+ + 010h3f(7\.)p{)-:&— 0,052PO-Z/3]
27 cos A

(1 + st A\ cos/\!'(tan/A ~ 2 tan /A')] eve (20)

Equation (20) gives the lamting form

1
G = ==oc0s/\ as AP (At A, poaw).

27
It is seen from eguation (20, that in general G must be expected to
depend on h , buf in preparing Fig.10 1t has been found thet in relstion
to the uncertainties in tne true theoretical values of (G the varistions
with A are not irportant. Of the ganc order is the variation of G, as
defined i1n equation (19), with 3. G 1s therefore regarded as a function -
of /\ and & , vhich has 1n practice been estinated direct from
equation (19) uwsang availsble calculatzons and a value of f$ = O.'?5 ’
which corresponds to ! = 0.661s The curves for very low aspect ratio
are speculataive and based. entirely on the results given by Lawrence in
R9f01h, Figs. 2 and 3.

.

For/
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For any swept wing 1% 1s possible to usc the curves of Fig.10
and equation (19) to estinate the effect of comprcssibility on laft
slope provided that the datz for incounpressible flow is known. The sane
procedure rnay be useful for correcting low speed experinental data.

9. Concluding Remarks

This investigation of theoretical swept wing loading has provided
solutions for the plan formg shown in Pigels Fron these a general picture
(Fig.8) of the effect of sweep on 1ift slope and a chart (Fag.9) comparing
theoretical acrodynamic centres with corresponding elliptic quarter chord
points have been obtolned. As explained in 88.2, the approximste effect
of compressibility on lifi slope at suberitical speeds may be estimated
for any swept-back wing from Firg.10. There is a pronounced difficulty
in obtaining consistent reaults for pointed swept wings.

The primary object of this note, however, is to compare the
merits of vortex lattice theory and those of Weissinger, liulthopp and
Klchemann, and to suggest the part that each should play in the scene of
fuburc zerodynanics. A brief surmary of the basic physical concepts,
denands of computation, distributions of solving points and special
advantages of the various methods of solution is set out in Fig.3. The
general finding is that the more highly developed methods achieve accuracy
at the expense of greater labour and loss of adaptabilaity. By including
additional terms in the chordwise loading the application of a method
nay of course be extended to derivatives of pitching moment and hinge
nonent. But the more precige evaluation of downwash by Multhopp's theory
is obtained by a meens vhich discourages addational chorduise terms and
is not very flexable., Thus there are problens for which the less accurate
vortex lattice theory is more surtable. Purthermore lifting characteristice
agsociated with phonomena affecting seotional data or with rate of yaw are
more satisfactorily estimated by the simpler and quicker theories of
Weissinger or Klichemann.

The following recormmendationg are madei=

(i) An elaborate solution by lulthopp's theory should be used shen
special accuracy is required,

(ii) Tt should normally be possible to choose a shorter version of
Multhopp's theory vhaich nay be expected to provide a potential solution
at least as quickly and nore accurately then any other given theory.

(i1i) Vortex lattice theory 1s to be preferred when addrtional
calculations of control characteristics or flutter derivatives are
required for the same plan form and suprern¢ accuracy is not essential.

(1v) Weissinger's theory (with the procedure suggested in %5.2,(ii))
16 to be prefoerred vhen cotimrting the offcets of compressibility ond
swotroncl 12t slope on suatcoble plon formas.

(v) Kicherann's theory, being essentially a lifting line theory
with a semi-erpirical correcticn for sweep, will roughly tackle a wide
range of lateral stabilaty derivetives and may allow for three-dimensional
boundary layer characteristics. Its practical value should grow with
experience. -
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TABEN I

Vortex Lattice Thecry

126 vortex, 6 point

126 vortex, 8 point

Standerd Soluticn P =0.6 ¥, + 0.4 By
Bo = 0.10572 a5 = 0.11304
8 = 0.05779 a9 = 0,02104
Cy = 0.06046 oy = 0'05615
o1 = -0.13552 ny = -0,12273
g, = =0.01308 gy = =0.01137
61 = 0.03586 84 = 0'03098
Po = -0.10587
Pt = 0.23083
¢ CI/OO. = 2,401 _ T Ul/‘;(: = 2.4k}
a.0. = 0,9,.28¢c a.c. = 0,9,.95¢
— S
n CLL/CY, Local n.cCe Cr1/Cr, Local a.c.
0 07333 0.3485 0,7391° 043614
0,05 047650 043231 0.7700C 0.3362
0410 0.7976 04303 0,8008 0.3157
0.15 08310 0.2893 0,8329 0.3006
0,20 0.565. 0.,2827 0, 8661 0.2917
0425 0,9008 0.2758 0.5008 0.2866
0430 0.9376 0.2763 0.9369 0.284L
0¢35 049757 0.2722 0.9746 0.2761
0440 4.0454 0.2675 1,0140 0.2705"
0445 1.0567 0.262) 1,0550 0.2647
0.50 10999 0.2567 41,0981 0.2585
0,60 141918 0e240.3 1.1897 0.2454
0.65 | 142400 0.2576 1.2379 0.2384
0,70 1,2889 0.2306 * 142665 0.,2313
0475 | 1.3360. .| 042235 1,3335 0.2240
0,80 1,3768 |  0.216k 13704 0.2167
0.85 14002 042092 1.3971 0,2095
0490 13767 0.2023 1.3736 0,2023
0495 {42154 C.1956 1.2122 00,1955
1,00

TARLE 17/
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TABLE II

Vortex Lattice Theory

126 vortex, 8 point

I x 12 lattice

Standard Solution P = 0465 P + 0,35 By 9 point solution
ae = 0409975 ag = 0.10687 ag = 0.10547
a; = 0401642 8y = 0400011 ay = 0,00481
oy = 0402844 o, = 0.02125 ap = =0,00268
oy = =0,07978 oy = =0.06288 ¢, = =0.01321
6o = =0.01445 8, = ~0.00944 o; = 0,00129
81 = uol0m35 81 = 010291? 02 = 0.03389
, Py = =0,09160 8 = 0403731
p1 = 002014}.06 61 = —0 .061 97
oy = ~0,04797
0 /Fa = 33 3C/0a = 3.136 0Cr/0c = 3.125
8.0, = 0492738 asca = 0,9315C a.c. = 0,9206¢
n | Om/Ci iLocal a.o. | CLL/Cy |Local ascal OLL/CL |Local ae0.
1
U L et LR -
0 Cu71.24 0.3312 07472 043413 0.7438 0s3219
0051 047741 043052 047788 043154 047755 042950
0.10; 0.8068 0,285¢ 0,8093 042947 0.8085 0,2756
015 | 060400 0.2714 08412 042798 0.8502 042624
0e20 | 048739 | 0.265h [ 0,074 | 0.2718 | 0.8755 | 0.2572
0e25| 0eS086 0.2635 049084 042679 0.9100 042563
0430 OuS4L3 0.2642" || Ca9h3h 042642 09456 0.2552
0,35 0.9610 042585 * || C9797 042606 0.5820 042538
040 140189 0,2555 || 140175 042569 11,0196 042522
OS5 | 140581 0.2522 1.0565 042533 1,050, 0.2503
0.50 | 1.0967 | ©.2480 || 140972 | 0.2495 | 1.0936 | .0.2482
0.55| 141410 0.2452 1.1393 0,258 1.1402 0421456
0.60| 141843 0.2415 1.1829 042420 1.,1830 042427
0.,65] 14,2290 0.2379 1.2274 0.2383 1,2268 0.2394
0,70 142737 0,2343 1.2722 0.,2347 1.2707 042357
0,751 143164 042310 1.3150 0.2313 1.3127 0e2314
0.80| 143529 0.2280 1.3512 0.2281 1.3403 0.2267
0,85 143718 0.2254 143699 042253 1.3663 0.2214
04901 143454 0,2235 143043k 0.2228 || 1,3393 0.2155
0.95| 1.4847 | 0.2223 || 1.1825 | 0.2209 | 1.1787 | 0.,2090
1.00

TABLE II1I./
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TABLE III

Vortex Lattice Pheory

126 vortex, 6 point

., 126 vortex, B8 point

Standard Sclution P = 0.65P; + 0,35 Py
ag = 0409195 a, = 0.09884
84 = 0.00654 ay = =0,00918
0 = 0400391 ¢ = =0,00430
o3 = -0,04107 ¢, = =0.02188
Go = —0.002914. 60 = 0000290
oy = J.02150 2y = 0.00786
Py = -0.084124
1 = 0018124-?
801/%¢ = 3.63h _ S0 = 3,635 _
8eCs = 0,91770 a,.c, = 0.9214e
1 - C11,/Cy, Local a.c. Cr1/Cr, looal a.o,
—————— I 0 S e 4 7 St i St ] kS e e S — T 5 A S T R -
¢ 047527 C.3219 C.7570 0.3307
0405 147850 042956 C.7C93 O 3040
D41 0.8177 0.2753 0.3202 0.2036
Cal5 | 048506 0.2619 0.8510 0.2690
042 0 BOL0 0.2565 0.8040 Ue2615
0.25 09177 0e2554 09171 Je2585
043 (49546 0e2541 0.9509 C.2559
035 (1,9868 0.2525 C.9056 0.2535
O 1,0227 0.2507 1.0212 0.2513
05 1,059 C.2458 1.0576 0.2491
0a55 141355 0.2446 141340 J-INNT
0.6 11750 0.24,25 1.1737 0,227
1Ca65 1.2151 02403 142140 C.2L06
Ca75 142932 042362 1,2924 0,236l
0.8 13247 0.2345 1.3235 042344
0.35 143350 Ce2330 143377 0.2325
049 1.3096 0e2319 1.3070 0.2308
.95 11505 0.2342 11484 0.2292
1,0
S U ¢ ]
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TABLE IV

Wing L. Vortex Lattice Thecry

126 vortex, 6 point

Standard Solution P
8, = 0.077114
ay = =0.00024
0, = -0.01949
o = -C.00795
8, = 0400987
a0/ 2c 144288

L J
Q
Y A
#on

0.9061¢

126 vortex, 5 point

= 0,76 Py + 0.30 Py
8g = 0.08376
a_! = ~0 001 ,-I-68
Cy = ~0.02871
cg = 0.01301
e, = 0,01685
gg = -3.01499
Po = ‘0.07732
py = 0.15716
dcrha = 272
a.c, = 00,9097

I i 7

n O/, local a.c. Cr1/Cr lomal a.oq
0 0.7735 043139 0.7729 03209
0405 04 806L. 0.2073 +3055 0,293
Ouf 0.,0392 0.2670 C.8380 0.2735
015 0.8715 02539 C.0702 0.2552
G2 049037 02491 049023 0.252}
0e25 049353 0,2483 049341 C.2503
C3 0,967 0,258, 0,9660 042400
0.35 049903 0.2480 049976 Q.24738
Ouly 1.,0298 042475 1.,0296 Co2465 .
Ol 140611 0. 2465 140611 0.2463
Ca5 1.0927 0.25462 1.0933 0.2450
Cu55 11200 0.2454 1,125, C.2452
VNS 141565 Q42h46 141572 0.2LL7
0e65 1.1678 02430 1.1859 0,240
047 1.2192 042428 1.2247 0.25.34
0,75 1,272 0.2418 1.2499 0.2420
048 142697 0.21,07 1.2726 0.24,06
0.05 1,2753 0.2395 1.2779 C.230
049 1,254,080 6.2382 1.2428 0.2365
0495 1,0840 ¢.2370 1.0053 C42335
1.0 :

]
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VCARLE V

Wing 5, Vorkex Inttice Theory

126 vortex, 6 point 126 vortex, & point
Standard Solution P = 0.65P, + 0.3 By
a, = 0.07092 ag = 0410677
a1 = 0002630 6.1 = -0.01‘280
c, = =0.05939 o, = =0.10105
cq = 0.15557 cy = 0423451
6 = 0416435 op = 0.19180
e = =0,42998 g = =0.48053
p, = =0.42298
Py = 0.79938
30r/Pa = 1,625 0Cg/"a = 1.606 _
Ba4Cy = 1 .80795 a.c, = 1 085550
Cr1/CL, local a.o. Cr1/Cr, local a,o,
046500 0.4.369 0.6356 0.4808
04,6837 0.3777 0.671L 04224
04,7202 0.3328 0.7122 0.3752
0.7595 0.3049 0.7548 0. 3411
0,8022 042670 0,800l 0.3227
0,8L8¢ 043005 0.8487 0.3162
00,8990 04,3040 C.9004 0.3134
0.953L 0.3068 0.9559 0.3121
1.0123 043086 ' 1.0159 0.3112
1.0761 0.3086 1.0804 0.3097
11450 0,3060 141504 0.3065
1.2197 043000 1.2255 0.3003
143008 0.2895 143073 0.2900
143899 0.2730 1.3973 0.2738
144890 0.24,89 14977 0.2499
1.6035 0,216 146135 0,2155
17419 0.1663 1.7540 0,1668
1,9262 0,0989 1.9418 00,0980
2,2159 0.0033 2.2383 0.0002
2.868) 01360 2,9057 «0,1427
SN N RN RN
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TABLE VI

Vortex Lattice Thcory

126 vortex, 6 point
Standard Solution

126 vortex, 8 point
P = 0.65P, + 0,35 Py

a2, = 0.06852 ap = 0,09304
a4 = 0.0170h ay = -0.03072
c, = =0,02456 c, = -0,05697
e, = 005648 ag = 0.07989
ey = -0,14986 g4 = =0,19550
p, = -0.28121
8C;/da = 2,866 _ 0Cr/ta = 2.813 _
BeCle = 1 .77210 8.Ce = 1 0792)4'0
________________________________________________ RV
1 Cr1/Cy, loocal a.c. C11,/Cy, local a.cd
0 0.,6756 0.4 25, C.6572 0.4525
0,05 0,7100 043651, 0.6939 0.3929
0.1 07461 043194 0.734,8 0,352
Ce15 0.7838 0,2897 0.7765 0.3112
0.2 0.823% 0.2795 0.8195 0.29383
Q.25 " 0.865R2 0.2802 0.8638 ¢.2878
0.3 0.5096 0.2807 0,9102 0.2843
0435 0.9568 0,2809 0.9550 0.2820
O 1.0073 0.2805 1.01114 0.2802
Uelth 1.0616 C.2791 1;0670 0.2783
0.5 1.1202 0.2766 1.1270 0.2758
Ceb5 1.1845 0.272 141929 0.2720
0.6 142553 0.,2660 1,265, 0.,2662
0465 1.3355 0.2568 13074 0.2576
0.7 1.4283 Oe24lt 14402 0.2452
075 1.,5407 0,2267 1.5568 0,2279
A}
0.8 1.68,3 0.2035 1.7039 0.2038 \
0.85 1.8863 0.1725 1.9103 0.1740
049 2.2183 041308 2.2L86 0.1263
0,95 2,9741 0.0749 3.0209 0.0652
1.0

TABLE VII/
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- Vortox Lottice Theouy

126 vortex, 6 pein
Standard Solution

t

126 vortex, 8 poin

t

P = 0.7 Pa + 003 ?‘b

0.0 = 0.0637“ aD = 0008112
E‘.1 = 0900922 31 = "00021}-65
o, = =0,01444 ¢, = -0,03895
01 = "‘0.01 503 01 = 0103?}4—8
e, © 0.00827 o, = 0.02716
61 = "'0.03060 01 = “0.06889
P, = -0.20074
(Cpf0a = 3,688 3C/0a = 3.626 _
2.Ce = 1473630 ne0. = 1.,75108
1 C11/Cy, local 2.0, C11/Cg, local &.Ga
A e b W el S— .t s v - N W S S et g ey S Sy v s Ve S g - — —| ———————————— i
G C.6903 Cali152 0,630L. 0.4329
Ued5 0.7336 043546 0.7179 0.3723
Ot C.7697 Q.3000 0.7550 Q.3247
0,15 20,8063 0277 0.7998 0.2500
0¢3 0.9249 042647 0,925, 0.2653
Oy 1.0124 0.,2622 1.0164L 0.2606
Ca5 1.1405 0425 1.1176 0.2567
046 1,2263% 042511 1.2366 0.2513
047 13751 042400 1,3892 Ce2412
0.0 1.6017 C.2222 1,6206 0.2222
Ce9 2,094, 0.1930 2.,1202 0.1876
1 .O
I -———u-—l.—_.—-__.-—.... i e e e S . ., R R W W . e b s e B S e e N . o8 P -

TABLE V1I/
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TABLE VIIT

Wing 8. Vértex

Tattice Theory

126 vortex, 6 point
Standard Solution

126 vortex, 8 p

oint

P = 0.7F, +0.3 P

a, = 0.05803 ag = 0.07113
8y = 0.C0LEBB a4 = ~0,02042
e, = =0.01497 ¢, = =0.03452
01 = —0.022214. 01 = 0,01 782
e = =0,00684 ep = 0,00842
e, = 0,00840 ey = ~0,02301
po = "0-11\\-722
py = 0.26212
36100 = 4.232 00r/Ca = 44169 _
a.cy = 1.,7078c 8.0 = 1,7195¢
- e - - Ll et el o Ll o, R P a——— o v e e e pae S S - -1
n Cr1/CL, local a.c. Cr1/Cr, lccal a.c.
0 0e 7100 0440086 0.7009 0.4215
0,05 047540 043476 0.7392 0, 3606
0415 0.3271 0,2700 0.8205 0,279
042 C+8640 002581 0.8606 0.2636
0.25 0,9017 042575 0.90C6 0.,2589
Co3 04,9400 02563 05408 0.2556
0u35 0.9792 Q2549 0.9847 Q.2532
Coly 1,0198 0.2533 1,0239 0.2512
Ouli5 1.0610 0+2516 1.0674 0.2495
045 1.1060 0. 2L56 1,1132 0.,2481
0455 141534 o2l 7l 1.1621 0,2465
0.6 1.20L6 Co2lilty 12148 0.24.50
07 1,3298 0.2393 1.,3420 0.2405
0.75 1119 092361 14266 0.2372
0s8 1.5203 042326 1.5373 0.2326
0,85 1.6778 0,2268 1.6969 0.2267
0.9 1,945, 02247 1.9673 0,210
0495 2.5773 042198 2,604 0,2072
1.0

“TABLE I¥/



126 vortex, 6 point

Wing 9 »

TABLE IX

Vortex Lattice Theory

126 vortex, 8 point

Standard Solution P o= C.55F, + 045 PB
a, = 0.08803 a, = 0.10578
By = 0.07762 By = C.OL165
o, = 017721 o, = 0.16119
o; = -0,20621 oy = =0.26335
6, = =0.03775 e, = -0,02872
ey = 0.04L57 ey = 0.02612
P, = -0.24034
P1 = OLI-LI-'I 25
0Cp/fta = 1,722 _ 10/ = 1,69 _
a.cs = 0,9698c a,¢. = 0.9775¢
) C11/CL local a.0. Cr1/Cr, local a,cq
e — “—ﬁﬁh—d—mnﬂJMHﬂ-d T — R s 48 B gy A — T ke WP AR g A AP g v
o] UeSL85 U125 G 0346 4376
0.05 00746 043754 0.0622 0.L0C5
Oy 04,5042 043460 0,3922 043697
0.5 0.9282 0325 0.9249 04 3460
0.2 049555 043143 0.9517 043304
0e25 049833 043076 049010 0.3100
Cu3 41,0105 042996 1.0099 0,3077
0.35 1,0375 02903 1,030 0,2962
Ceoltp 10630 042799 1.0655 0,202
05 1,088 042600 1.0912 0.2745
045 1.1107 0.2560 IREINN 0,2582
0455 141296 0.2L27 1.1343 0,204 3
0.6 1 L3 0.2255 14409 0.2293
0465 1.4500 02137 1.1562 Ce2147
0.7 1 W1LE9 0.1903 141539 01991
0.75 1.1290 0.1823 1,1372 0.1829
048 41,0928 0.1658 1,1302 0.1662
0.85 1,0252 01409 1,0327 0.4480
09 049039 Ou131), 0.9160 041309
0495 0e699L 0.4435 0.7052 Oe192L
1,0
| —

— TABLE X/
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W x 12 lattice
9 poant sclution
ao = 0 11 0258
a; = 0.00750
a. = =0,00955
c% = =0,00435
e; = 0.02576
6‘0 = 01091 60
gy = =0 o1 7430
82 = =0 009951
aC]'_/a(L = 20855
a.c, = 0,9,220
————————— —1——.—-——————.—-.-
CLI/CL looal a.Ce
08563 043606
U.0025 0s 3224
0.9086 0.2937
0.9300 0.2749
0.9602 0.2674
0,9056 0.2658
1.0103 Ce2637
1.0347 Cv2611
10500 0.2578
1.0797 0.25%9
1.0598 0.24592
1.1170 C.2436
1.1299 Ce234
1.1372 0.2294
141360 0.2206
14123 0.2105%
1.0925 041990
1.03314 0.1860
0.9253 Ou1744
0.7216 Q.1552

TABLE X
Ying 10, Vortex Lettice Thoory
126 vortex, 6 point 126 vortex, 8 peint
Standard Soluticn = 0,65 F, + 0.35 By

a, = 0.09224 a, = 01079

ﬂ-1 = 0.02483 n1 = "'O .OO?O?

o, = C.06623% o, = 0.,04782

oy = ~0,10009 oy = ~0,06180

6, = 0,U0966 e, = 0,02268

31 = b0001 71 7 (31 = =0 .O}.]J.[.O5

P. = -3,20384

P4 = O.BTATZ

CL/0c = 2,836 _ 301/ 0u = 2,796 _
a.Ce = 0,9482¢ a.cy = C.957c

L] CL]’_/CL local a.si CIl/CL local a.c,.

0 0.8501 043695 0,8361 043020
0,05 | 0.8762 0.3311 0,063y 03500
G110 | 00,3025 0.3025 048935 G.3198
Os15 | 0,9206 028031 9222 0.2979
020 | 00,9549 Qw2747 0.9508 0.27353
0.25 0.95011 042719 N.9757 0.2707
0.3 | 1.0069 02685 1,0060 Je2 720
035 | 1.0324 C 2604 10327 Ca2672
00 | 1.0572 02590 1.0556 0.2644
Oel5 | 10004 0.2545 1.0829 0.2555
060 | 11019 0.21,836 11,1055 0.2493
0s55 | 1.1207 00,2420 1.1253 0.24.26
0460 §.41350 0u23L9 141007 0.2354
065 | 141439 042270 11503 0.2276
C 70 | 141442 0.2186 1.1514 0u215
0s75 | 1.1316 0.2096 141396 042099
(.80 | 1.1010 0.199% 1,1092 U.1599
085 | 1.0442 015697 10456 C.18C9
3490 | 0.9324 041738 049350 01771
0495 | C.7265 Ce1673 C.7327 0.1642
1,00 T

TABLE X



Wing 11.

-)"!?...

TARLE AT

126 vortex, 6 point

Vortex Lattice Thoory

126 vortex, 8 point

Standerd Solution P o= 0,655, + 0,35 By
ag = 0,08421 ng = 009757
ay = 0,00820 a, = =0,01877
co, = 0,024,084 o, = 0400705
oy = =0,03734 ey = 0.00003
8 = 02110 0, = 0,03L54
oy = =0.0226 ey = -0.05084
p, = =0.16019
. Y p.‘ = 0.293h—2
/i = 3,559 20;/8a = 3.515
De4Cq = 0.914.123 AsCoy = 0-9\’.}.796
n Cr1/Cr, local a.c. Cr1/C, local a.ce
0 0.8575 043526 C.0L30 043669
0.05 03035 SIEIINN 00711 0.3206 -
0.4 045093 042053 09003 5,296,
0415 049347 0.2668 049200 02776
Ca2 049598 Q4259 3.9556 0.2666
0425 O o 9044, 0.2534 0.9319 0.2620
G35 1,0320 042546 1.,0322 042553
Dok 1,0548 0,2523 1.,0561 0.2524
045 1.0759 C 42496 1,0735 04249k
045 1.0953 02465 1.0590 0.2L63
0.55 11124 020259 11171 0.2429
0.6 1.1258 0.2339 11314 0,239
Giss 141342 Ce2343 1.1466 00,2340
0.7 1.1350 0.2293 11421 0.2298
075 | 1.1205 0.2237 141324 042240
043 10965 02176 1.1050 0.217h
0.85 1.,0420; 042109 1.,0500 0.2099
0.9 C.9304 0:2038 0956 0.2015
0495 Ue7362 041561 0.,7420 041920
1.0
———— e . ~ ~—— . e e e e i ad

TABLE_XI1/



126 vortex, 6 point

wing 12,

TARLE XI1

Vortox Lmitice Theury

126 vortux, 8 point

Standard Solutiun e o= (7P, + 0.3
a, = .07430 a, = C,08L75
&y = el w3 ty = =077
GO = 0 .00882 GC) = =), K./Uf)??
S = =L 1979 ¢, = 0.01085
o, = 0.02145 6, = 0,03260
g = -0,01298 gq = =0,03641
p, = -0.12289
py = 0.22186
%0rf0a = 4,050 _ (Cr/da = h.Ou7 _
c. = 0,9380c a.c, = 00,9433
) Cr1/Cr, local a.c. Cr1/Cy, local a.clf
0 0.08661 D& 3L71 0.0522 C¢e3572
0605 .39 0, 3036 0.06799 0316
01 0eM75 042795 0,%C36 0a200
Oat15 0.9425 0e2610 9365 U263
042 0,966, Ov2500 0.9625 | 0,2508
0425 0.909,% 02536 0.9C70 Ce2555
0.3 1,04119 042526 11,0110 042530
0435 1,0332 Oe2511 1,335 042509
O oly 1,0532 Vo299 1,057 i 0,249
UVal5 1.0724 Ce2l32 1.0750 0,247
05 1,009 02462 1.0929 e 2155
0455 1.104.2 0wl 39 1.1007 02436
0ub 1.1164 Qo2 1l 1.1240 02111,
0465 1.1235 042305 1,1290 042330
0475 1.1151 Y2316 1.1225 0.2320
0,8 1.0093 042277 1.0968 | 0.2277 ;
Ca85 1.0369 00,2235 1,042 042227 ;
0aS 0.9377 Cu2990 049447 042170 s
0495 0,739 Co21l2 0. 7452 0,210l |
|
= S - ——
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TABLE XITT

Weissinger's Theory: Standard 4 Point Solutions

s, 8 tanA
— - rf —————— - .
Lz c

o g

a.c. (as a frection of € from the leading apex)

0.7071 (¥4 + v3)

B T o . i e s S st s s R

0.765ky, + 1. 81;.78Y3

TABLE XIV/

——— "

—— -

ni Nnp Values of v
o e = 0 g [ T e oy ot e e e -
Wing 1 |Wing 2 [Wing 5 { Wing 7 | Wing 9 | Wang 10| Wing A
hur e o s e e . e o . e i e b e e -]s.- ------- = s o e 1 e e A8 0 e e
1 10.9239 | 0.2891 | 0.2454 | 04757k | 01008 | 0.3194. | 0.2734 | 0.3157
2 10,7074 1 0.5271 { 0.4500 | 0.3352 | 0.2439 | 0.5696 | 0.4776 | 0.5675
3 10.3827 1 0.6895 | 0.5984 ( 0.4674 | 0.3619 | 0.7047 | 0,5907 | 0.7107
4L 1D 0.7429 | 0.6501 | 0.4505 | 0.3893 : 0.7259 | 0.6098 : 0.7L4L
ac‘L/OG = 2.343 3,039 1.5305 | 3.487 1.5955 | 2.681 2,088
a.c. = 0.9158 [ 0.9128 | 1.7462 | 1.,7102 | 0.9354 | 0.9363 | 0,6924
a.c. (as a fraction of & from the leading apex)
e, S ten/A  0.3525v¢ + 0.5030vp + 0.3440y3 + 0,040y
= e o e § e ot a1 e R et
L 3] 0.,3827v4 + 0-7071Y2 + O.9259Y3 + O.EOOOYA
Weissinger's Theory: Modificd 3 Point Solutions
T T T T T T T T T T e T T
n . n, Values of vy
------- —n-"-'-———ﬂr—"-*-"-'-—"--——"'-—-————'-""————-——-----'-—-——--1
Wing 1 |VWing 2 | Wang 5{ Wing 7 | Wing 9 { Wing 10 Wing A
it e —————— e e e e e e g e o e et -1 --------
1109239 | 0.2909 | 0.2467 | 0.1617 | 0.1024 | 0.3236 | 0.2767 0.3178
2 10,7071 1 0.5308 | 0,4529 | 0.3424 | O.2462 | 0.5785 | 0.4846 0.5719
2 10,3827 1 0.6976 | 0.6056 | 0,4888 | 0.3715| 0.7231 | 0.6067 | 0.7201
4]0 0.7610 | 0,6673 | 0.5427 | 0.4469 | 0.7656 | 0.6476 | 0.7650
407/0a = 2.375 {3.082 |1.643 | 3,605 | 1.642 | 2.764 2,113
a.c. = 0.95770.9559 | 1.8437 | 1.8443 | 0.9768 | 0.9787 | 0.7211
b SN




MultHopp's Theory.

-~ L0 =

TABLE XTIV

2 chordwilse, 15 Spanwise

3Cha = 3.050 84Cs = 0.93276
n = ¢ 1 2 3 L 5 6 { 7
Ny = O | 041551 [ 043827 [0,5556 [0.7071 |0.0315 {0.9239 10.9808
v, = 0465069 0.64201] Ce599771 0453319 |0.44590 [0,35227 10,2L.539 (0412659
Ly = -0 404 064]-0.01728|=0/0010L. 104001 33 [0.00553 10,00951 [0.01404 [0.01332
Incal
2.c. = 0.3309 _9.2769 (_):2582 0.2475 10,2577 |0.2230 |0.1929 0.1408__
Vang &
3Crn = 2,1360 a.0, = 0.6330¢
e B e LR o o e e e e
n = 0 1 2 3 N 5 6 7
—yn = 047619 1 0.7552 | 0.72025 046690 |0.5302|0.4620 {03204 [0.1637
Bp = =04 O4BUA|-0 4 01677| 0.00L21 {0.02074 10.03442 |0.04225 10.03926 |0,02372
Iocal
oz 01 |QeEree |02 (02190 [1900 [0-1985 [o-rems [0t
Wing B {or 10)
90 fa = 2,7347 a.ce = 0495613
n = o 1 2 3 L 5 6 7
Ty = 0462309] 0.62291 0.60066]0455517| 0.45739] 0.39523| 0. 27841 014320
By = «0405508|-0,02500 -0,00844 | 0,001 57| 0, 01077] 0,02108|0,02717} ©.01962
Looal
8.C. = 0,366l |0.2901 | 0.2640 10.2472 |0.2279 |0.1967 [0.1524 | 0.1131

Wing C/




TABLE XIV (Continued).

Wing
aCrf0a = 3,2039 a.¢. = 1,26230
- S e e e e e S e e -
n = 0 1 2 3 b 5 6 7
Yp o= 04513311 0.51270| 043369 044445 0,30472| 0. 31364] 0.22686| 0,11901
Up = =0.04757|<0,01825|-0.0043, | C.0M 60| 0,004B8] 0,00831| 0,01405| 0,01502
Loeal
8,0, = 0.3783 | 0.2856 | 0,2599 | 0.246h | 0,2373 | 0.2235] 0,1884 0.1238_*
Wing D (or 7)
(0/e = 3.5521 a.c. = 1,70163
n = 0 1 2 3 4 5 6 7
Yo = 04400EY CabiOl65 Ca3745| 00 31L5Y| 0421.368| 0416601 0,00660( 0401300
By, = ~C.03456~C.00676| G400L10| 0400766 0400675] 0400301-0.00025(<0. 00053
Local
BeCe ® 0.3806 | 0.2667 | 0.2390 | 0,2256 | 0.2223 | 0.2319 | 0.2533 | 0.2768
Table XV/




TABLE XV

Calculated Valmes cf 3Cr/%a

Vortex Lattice Theory Weissinger's Theory ) "
*311 thopp Kuchemann || Pormulp
21/6 21/6 41/12 || Standard | Modified | Mean i m = 145 Refs. 10, 11 || Eq-1k
King A A 6 point| 8 point| 9 point|| 4 point | 3 point 2 chordwise

1 2 0.1 1—!—5 li-B -II- 2 czli}-" 2 011-145 2- 51!—:5 2. 375 20 359 2- 370
2 3 0,143 | 36.9 Ja13h 3.136 34125 3.039 3.082 34060 34050 3.23 3.C40
3 L Oetl3 | 2944 3.63, 3.635 34550
N 6 Outh3| 20.6 || Le208 1272 ‘ 42500
5 2 0 71.6 1,625 1.606 1.530 1.613 1,572 1.778
6 L 0 5643 2,366 2.513 2.723
7 6 0 45.0 || 3.680 3.626 34807 34605 3.546 3552 3.3 3e438
8 8 Q 3649 he232 L.169 3551
9 | 4432 | 0u389| 63.4 | 1.722 1.696 1.595 1.642 1.618 1,708
10 | 2o6h | 04329 45.0] 2.836 2.796 2.855 2,601 2.76L 2.722 2,735 2.89 24733
11 396 C.3891 33.7 34559 3.515 3e452
12 5428 0,309 26.6 1,050 1..CO7 3,958
A 1ML | 04556 45,0 2.083 2.119 2,10k 24136 2.52 24170
B 2,640 | 0.309| 45.0| 2.836 2,796 2.955 2.681 2.76M 2,722 2,735 2,89 24733
C | 3.018{ 0,222 45.0 3.129 3.291 34210 3420k 3.15 34156
D | 6.000] © 15.0 || 3.688 3.626 3.437 3.605 3 5L6 3,552 3.31 3,440

TABLE XVI/
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Method Concept Computatton Solvmg Points Advantage of Method
Vortex 21/6  Vortex 4-6 days I o o o Wide Apphicabiity
Lattice Latbice | o o © Limited Accuracy
6 pt. at Centre and Tipe
Vortex Ditto  with 7-10 days b o o o Slightly  Improved
Latktice P Functions 6 O o o Accuracy ak Centre
8 pt. '
weissinger Simplified Yo-1 day E Rapid Evalva tion
A pt Lifting Surface o o o o of Spanwise Loading
1
weissinger | Ditto  without V21 day : Oovercorrecktion for
% pb. Cenktral Point ! o 0 o Inaccuracy &t
' Central Kink
Multhopp Continvous 8-12 days o C 0 00O0Q] Supericr Accuracy
Lifting Surface : ideal Solving Points
o) 0000
Kuchemann Modified <2 day <:> 0 0 000K Speed and Adaptabihity
8 pt. L¥ting Line ; Not Good Accuracy
of Courrent Vortex Sheet  Theories

Sum mary
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0 4 (d)Cropped winge of 4§°gweepback
L
3 -
6 pt Vortex Lattice
3¢ > ~--=u—= 8 pt.Vortex Lattice (P functions)
— - = .- 4 pt. Weissinger
& A — ———— 16 pt Multhopp
— —ee— Ref5 10,11 Kuckhemann
Formula (Eq, (|4)>.
O { ]
S) 1 2 3 4 5 6 7 8

A

, , ac -
Comparative theoretical curves of —= for swept wings.
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o O—— 16 pt Multhopp
09 + Refs, 10,11 Kuchemann -
o8 ~—— Ellptic  gparter chord —
Q-7
°es | 2 3 4 , 5 6 7 8
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For reasons expressed in §6, the writer considers that of the
available vortex sheet theories nulthopp's method will provide the most
reliable solution for swept waing loading in potential subsonic flow.

At the outset of a calculation by dulthopp's theory 1t 1s
necessary to prescribe:

(1) the number of spamvise solving stations m = 3,5,7,11,15,23 or 31,
(21) the number of chordwise pavotal points per station, N =14 or 2.
The consistency of the theory and the cxtent to iiich 1t can

usefully be simplified by reducing m has been investigated further by
obtaining three solutions:

(W) = 7(1), 7(2), 15(2)
for each of fave wings [Figel, Wings 2, 4,B,C,D].
The following derivatives are tabulated below;
dCy,
S (q, in I‘adlans)
da

a.c. (measured as a fraction of & from the leading apex)

n (spanwise centre of pressure on the half wing)

Teble/



0cy, 7(1 3,064 24130 24701 34184 3,606
" 7(2 3.071 2,152 2,774 3251 3474
da 15(2 3.050 2,136 24735 3.2Ch | 34552

721 049142 | 0.6955 | 0.9411 | 1.259 | 1.6952
24Ca 7(2 0.9180 | 046846 | 00,9363 | 1.2355 | 1.6493
15(2 0.9327 | 0.6838 | 0.9561 | 1.2623 | 1.7016

_ ) 0.4200 | 0.4369 | 04407 | 0.4388 | 0.3989 ?
M 722? 04220 | Cul316 | Cuh363 | 0.4347 | 0.3855
15 Oeli212 7 0.4324 | 0.4361 J 0.4328 | 0.3938

Multhopp (Ref.9, App.VII) has stated that a reasonable choice
of {the number of spanwize stations is

n> 341 - M2 .

For the five wings calculated above 1n incompressible {low, 1t = 0,
m should thus exceed the values given in the following table:

Wing 2 A B c D
34 9.0 541 749 1145 1640

The table of ca%culated deravatives sugrests that, 1f thas
¢
eriterion is satasfied, —:E may be obtained sathin 17, the aerodynamic
da
centre wathin about 0.015 @, and, provided that N = 2 , the spanwise
centre of pressure within about 0.,0013. In the special case of a
pointed wing, €.g., Wing D, the accuracy may not [2ll quite within these
limits, but the use of ilulthopp's theory is still recommended as 1t
permits a concentration of pivotal points near the pointed tip. The most
gignificant discrepancies arise in comnection with the aerodynamic centre,
but the interesting conclusion is that these are not primarily associated
with the central kirk.

Three spanwise loadings and local aercdynamic centres, calculated
for each of the five wings, are given in detail in Table XVII, vhere
X5,0, denotes the position of the local a.c. as a fraction of the local
chord from the leadang edge. It 1g advisable to include tuo chordwise
terms when calculating spamase loading as none of the 7(1) soclutions is
fully satisfactory. WNaturally i1t 1s necessary to take N = 2 for the
purpose of obtaining local a.c., but there s nothing in Table XVII to
suggest that more than two chordwise terms are needed. In fact when
the criterion for m 18 approximately satisfied (as for Wings 2, A and B),
the agreement at the crucial 'kinked' central section n = 0 is
wpressives, PBFurthermore except for the pornted waing the notable feature
of solutions with ansufficient spanwise stations 1s that X;, ., 1is
underestiinated on the outer helf of the wing. This explaing the underesitimate
of a.ce exhibited in the table of derivatives {or the 7(2) solutions.

The/
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The use of a chordvirse pressurc distribution from eguation (12),

vize:
Pb = Py 8s {7y 2u
....... = == == cot 0 4+ =~ (cot ¥ -~ 2 8in 0)
pV2 c 27 o

in potential flow acrosg the ocuter sections i1s just as valid for swept
wings as for unswept wings. It is concluded that Multhopp's theory is of
general application, but that it may be unduly laborious to obtain extreme
accuracy for wings of hagh aspect ratio AD> 5,

As a further indication of the degree of accuracy in the central
region the downwash from the 7(2) and 15(2) solutions have been evaluated
at the displaced root thrce-quarter chord points, iscs, at pivotal points
used respectively in 7(1) end 15(1) solutions. The values of the ratio
of downwash at Q.75 ¢ to the angle of attack a are given below,
corresponding values of unity being already satisfied at 0.34,55 c and

0.90L5 c,

W Solution | Waing 2 | Wang A | Wing B { Waing C | Wing D
[ N " p—— T e e s 2 o o et o . 0 e At B e AR o -
Vo./0,75¢ 7(2) | 04958 | 0,959 | 0,986 | 1.009 | 1.016 ]
at n=20 15(2) 0.949 0.962 04969 0,964 0,974

These comparasons ingpire conlidence in the anlrinsic accuracy of
multhopp's theory, especially as 1t seems unnecessary to satisfy the
boundary conditions aleng more than two loci to establish values of the
local 118t and acrodynamic cenirc.

TABLE XVII
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LABLE AV

I1

Hulthopp!s Theory

Calculated Spamvise Loading and Local Aerodynamic Cencre

CLLe
Values of ==w- Values of Xa.c.
OL C
T Setetaen - sotwon ]
1 (1) 7(2)  15(2) 71y w2)  15(2)
--5”- 14274 14289 1,296 0.291 04333 04331
0.3827 141814 10177 4 +130 ” 0.250 0239 0.258
0.7071 0,892 0.887 0.883% 0.250 04220 04238
0.9239 0496 0.489 0483 0.250 0,187 0.193
r"é' - 14197 1228 14223 0.293 C.353 0,334
0.3827 14160 1.169 1,169 . 0.250 04243 0e24h
070714 0,943 0.928 04931 - 04250 0.187 01
049239 04537 0+511 054 0.250 04124 04127 ]
o | 1178 1.206 14203 0,508 04368  0.366
043827 1158 1.159 14160 3 0+250 0241 0,261,
0.7071 0.954 0943 049k 0,250 0.207 0.228
0.,9239 0.561 0.537 0.538 0.250 0.13 0.152
P--S ------ ;.;58- 14219 1 224 ' Oa32L 0.366 0.378
0.3827 14165 14163 14166 o o.2§0 0.229 0.260
0.70714 Q.93 0.923 0.917 0,250 0.220 0.237
0.9239 0561 C.548 0540 Lo.zbo 0.179 0.43
_...---........nu'- -------------------------- -1 ---------------------------------
] 0 1.327 14399 1,361 04346 0,360 0381
043827 14273 1,293 14255 D 0.250 0.228 0.239
0.7074 0.856 0.811 0,82 04250 0.250 04222
049239 0266 0,205 0,293 ] 0.250 04277 0.253 ]
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