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SUMMARY

The effect of heat conduction of material on the temperature
distribution in the viecinity of a wing leading edge in hypersonic flight
is investigated. The theory is based on a conducting plate subjected to
aerodynamic heating. It is found that the role played by the conductivity
of the material and the leading edge thickness in moderating the nose
temperature is very significent. Detailed discussions of the numerical
solutions for various shapes of leading edge are given. An experimental
technique has been developed by which a number of models representing a
wing leading edge can be tested and the results thus obtained are compared
with those predicted by the theory.

* Replaces A.R.C.31 M5
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1. Introduction

In principle, there is no difficulty in applying & numerical
process to the solution of the steady state temperature distribution within
a body subjected to heat transfer, which can be implemented with the help
of a digital computer. However, where the body is as complicated as the i
structure of an aircraft, and the heat transfer is aerodynamic in origin, T
the problem can well be beyond the remsonable capsbilities of present day
computers, unless some simplifying assumptions are intrcduced in setting
up the problem.

One such simplification was introduced by one of the authors
some time ago {ref.1,2), which sought to provide a basis for estimating
the temperature close to the leading-edge of a wing in hypersonic flight,
where the conduction of heat within the material of the wing can be
predominant in determining the temperature reached. Interest has again
been awakened in this problem {ref. 3), and with a view %o using the
approximation derived in this early work to study the leading edge
temperature of wings of finite span, it was decided to check the numerical
solutions given therein (which were achieved by slide rule methods), and
to attempt to corrcborate the approximation by experiment. This report
is the outcome, and work on the finite wing (%though not reported here) is
well advanced.

Basically we have in mind that the wing is geometrically thin,
and (so fer as its overall amerodynamic properties are affected) "sharp-
edged". As we shell see, we envisage more precisely a leading edge radius
of 1 cm. or so, but not of 1 m. or thereabouts which would be necessaery to
alleviate the intense heat transfer rates associated with "sharp" leading
edges. Metallic material concentrated in this leading edge region conducts
the heat input from the boundary layer downstream, and this results in a
leading edge temperature considersably less than the "thermometer" wvalue
otherwise reached.

ok

Mathematically, the approximation consists of assuming that the
thickness of the wing is infinitesimal, but that its conductivity is
infinite; not to include the latter renders the problem trivial, as the
temperature of the resulting plate is everywhere equal to the radiation
equilibrium value. For a "conducting plate" on the other hand, the
solution is non trivial, and 1t is believed it represents with reasonable
accuracy meny problems -of practical interest.

Paragraph two of this report gives details of the theory,
amplifying what is behind the approximation. The simplified equations
for the temperature distribution can still be troublesome to solve, and
we restrict ocurselves here to a particular set of boundary conditions
(paragraph 2.1) and make various other simplifying assumptions about the
environment (parasgraph 2.3). Certain similarity relations result which
suggest how laboratory experiments in a relative low temperature
environment may be scaled up to provide information of practical value,
and vice versa. In paragraph 2.5, there iz a detailed discussion of the
numerical solution for various shapes of leading edge assuming a heat
input proportional to 1/xZ (where x is the distance from the leading edge)
and this includes a descripition of an optimum distribution of conducting
material, Heat distributions obtained in the laboratory cannot of course
include a singularity, and the effects of this are considered in
paragraph 2.6.
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An experimental apparatus is described in paragraph 3 which employs
the radiation of an electric filament heater reflected by a specially designed
mirror onto a model in a vacuum chamber, to obtain a heat distribution
resembling that near a leading edge of a wing. This has been used in the
first case to verify the theoretical approximations - with reasonable success.
It is also intended for use in its own right to investigate conditions which
would still be troublesome to study theoretically.

2.  The Theory of Conducting Plates

The form of the approximation is based on the supposition that the
80lid body is composed of highly conductive material, but is thin. In
mathematical terms, it is derived by asserting that, if k; and t, are measures
of the general orders of magnitude of thermal conductaivity and thickness
(perpendicular, say, to the plan Z = 0 of a cartesian axis system), then we
allow (to/ky) to tend to zero, with (t k,) remaining finite. We note that,
if Q, is the genersl megnitude of heat flux normal to the surface of the body
then the changs in temperature across the thickness will be of order (Qoto/ko),
and the essential point of the approximation is that this is small compared

with T, - or in other words (Qoto/koTo) is & small quantity and is indeed treated

as vanishingly small to justify the argument in mathematical terms,

We may then treat the temperature T within such a body as a function
only of x, and the equation for steady heat conduction merely equates the rate
of change of heat filux within the body per unit span in the dlrection of the

x-axis, that is - L (kt EE-, with the net rate of normel flux, which equals
dx dx
(g - eoT“), where Q is the quantity of heat transferred to the top and bottom
body surfaces and &0 is that emitted from them by radiation, (here & is
the sum of the upper and lower surface emissivity, and o d1s Stefan's constant).
If we supposed that (kot,) tended to zero with (to/ko), then this would be
tantamount to ignoring longitudinal (as well as transverse) heat conduction
within the body; in which event, of course, we would obtain the well-known
result for a non-conducting plate, that the steady state surface temperature
distribution tends to the radiation equilibrium temperature. This may indeed
be an adequate approximation in many practical problems., However, in relation
to the heat transfer at high speeds of flight to sharp edged wings Eor pointed
bodies), the radiation equilibrium temperature at the leading edge (or nose)
is equal to the thermometer temperature, and this may be several times larger
than the general magnitude of the temperature downstream. In sucq a context,
the heat transfer to the body may suffer unit order changes over a length of
surface (&, say) close to the leading edge, so that there would be local
temperature gradients of order (To/ﬁﬁ, and consequently a longitudinal heat
flux of magnitude (kotoTo/G). Where longitudinal conduction becomes important,
therefore, we would anticipate that this heat flux becomgs comparable in
magnitude to Qg¢. Conversely, if we suppose that, as (t,Qu/koto) = 0,

1/(Xoto) = 6 (To/Qet?) Lo (1)

80 that k,t, remains non-zero in this limit (as we have previously
postulated), then longitudinal conduction may be of consequence over the

distance £.

These/
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These assumptions can ugsefully be restated by defining lengths

.y

A
- — 2
A=k /Qo and ¢ = (xto) eee (2)

The basic assumption is then that (t /A) - 0, and we shall consider problems
in which @Q_  suffers unit order changes over the length £, which remains
(conceptually) finite in the limit, Although the radiation emitted will no
longer equal the heat transfer to the surface in such a region, 1t will in
general retain the same order of magnitude, so that it is reasonable to define
4
el " = Q eee (3)

o
and consequen%ly in (2) we have

i

A= ko/eocTos ko/(eocqo")z cee (4)

In practical terms, we may hope that the approximation is valid if
(to/k) is 'small' compared with unity, and that the results will be of
consequence if £ is an 'appreciable' length. The adjectives used here are
necessarily vague, but it may be helpful, if not relevant as any kind of
Justification, to illustrate the magnitudes we are likely to be considering.
It would be unlikely for instance that values of Scf’STO in excess of 1000°K

would be of interest in a steel structure (for which k- 50W/m/deg., say).

It is easily inferred from (4) that A would therefors generally exceed 1 m,,
and from (3) we note that we are implying heat trensfer rates of up to
50kW/sq.m. Thus with material thicknesses of the order (say) of up to 1 cm.
thickness, the value of (ty/A) is less than 0.01, Further, the length ¢
would be calculated to be around 10 cm,, and the temperature over this length
of surface from the leading edge of a wing is a matter of some consequence,

L ]

a

If we introduce the non-dimensional notation
then the equation for heat conduction becomes

E.(Kg-e->=eﬁ“-q eve (6)
dg dg

where O = 6(E), and K, e, q may be generally functions of & and possibly 6.
It is not difficult to generalise to 3 dimensions by introducing a third
co-ordinate y = "W, say, and we then have 0 = 0 (&,7) where

L( D)2 (x8) . e g 7
% 13 an N an-

but the present discussion will be limited to examples of the two-dimensional
solution,

[V}

Aside from the implication that 0, K, e and q are of unit order
provided that the scaling terms are chosen in the manner we have suggested,
we have not fully defined the notation in (5). Since, from (2) we have

L= (kotoTo/Qo)% eee (8)

it will be seen that equations (8) and (3) together provide only two
relations between the five disposable quantities &4, To, Qo, koto and £

whi ch/
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which enter into the definitions of (5). This leaves three further
relations to be invoked to specify the notation uniquely. It seems best
to leave this ambiguity unresolved for the moment.

2.1 Boundary ¢onditions

-

The solution of the equation (6) depends, of course, upon the
boundary conditions imposed, and these in turn depend upon the physical problem.
Generally, because the length ¢ may well be substantially less than that
length of surface subjected to heating, and because it is only over lengths
of this order that longitudinal conduction is important, it is convenient
to regard the conducting plate as of bounded extent, and insulated at the rear
edge (x = L) from the rest of the surface, which mey be treated effectively
as non-~conducting. Again, in experimental work, it is usually easiest to
terminate the extent of the body tested by insulation. Such considerations
Xead us to expect that appropriate boundary conditions mey frequently take the
form:

Kde/dE =0 at E=0 and E =L/t vee (9)

This may be clearly acceptable if we suppose not merely that the
material thickness (t) vanishes cutside the interval 0 < x < £, but that
it tends to zero in some continuous manner as x + 0 and x + L, so0 that
K » O continuously as £ + O and £ -+ L/¢, since we could reject a finite
longitudinal heat flux through a vanishing cross sectional area as physically
unreal, As we shall now see, it is more difficult to Justify in some
contexts, if % (and so K) is not zero at the limits of the range of
independent variable (though zero, or effectively so, outside them).

First let us then suppose that K dB/EE = h, where h 1is non-zeroj;
this implies that the longitudinal heat flux is hQgé. Then (9) might be
Justified if we could show that the longitudinal heat flux to the ends of the
body (across the planes x = O and x = L) is small compared with the total
normal heat transfer over the length & -~ since this ratio is of order h.
Now if the plane x = O represents the nose of a wing with thickness 1t,, say,
then a study of aerodynamic heat transfer fyom a laminar boundary layer would
suggest, that this ratio was of order (t,/¢)Z, and so from (2) of order
(tpn/to)Z(to/\)¥. Thus the neglect of h at & = O 1is compatible with the
basic assumption that (t?/k) + 0 +though clearly in this context the
approximation is cruder (if ¢, + 0) than that involved by the neglect of the
temperature difference across the surface. A similar argument can be used
to Jjustify the neglect of h at the "downstream" limit & = L/¢. 1In
application to the problem of aerodynamic heat transfer, this latter boundary
plane might be the trailing edge (whers the local heat transfer is certainly
less than that at the leading edge), or some position where the thickness
changes discontinuously to & very small (effectively zero) value. In the
latter context, the downstream edge may be exposed to an interior cavity of
the structure, and again the heat flux to that edge may reasonably be taken as
less than that to an exposed leading edge., Thus the condition (9) is
relevant at least in an approximate sense to a wide range of problems.

As/ '
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As a consequence of equation (9), we note that, for & » O
E 1
o~ 00) - [ (/0 ([T Y s 00
o o
Thus, since the nose temperature must be bounded, we must find that

(E/K) fE QdE ~ O

as & +» 0, VWhere K, is O0(E) so that the nose is sharp, we would generally
expeot that g = ©(E~Z) if the heating is aerodynamic in origin, unless the
nose temperature were the thermometer temperature. Thus the latter condition
will apply if, and only if, K = 0(*/2) for E - 0. However, the cusped
leading edge thereby implied is not thought to be of practical interest, end
in fact we shall usually consider nose shapes which are rounded, or blunted.

On the other hand a cusped rear edge (at x = L) will be found to lead to &
temperature at this edge locally equael to the radiation equilibrium temperature,
and this is clearly an acceptable possibility. Indeed, we shall have it in
mind that the application of the work is to thin-skinned structures which

may be locally thickened over a length L (of the same magnitude as the

length e} to enhance the effects of longitudinal conduction, and this extras
material would be likely to be tapered off towards the rear.,

2.2 Equations for plates of finite length

If the body has such a "closed" length (L), it is clearly possible,
and in some instances preferable, to seek a solution of (6) in terms of the
independent variable (x/L), rather than (x/¢); more particularly if we write

x/L =8, kt= (EOO'QOS)%LQT, (i.e., 7 = (¢/L}?*K) .es (10)

with 0, e and q defined as before, but regarded as functions of s, then
equation (6) becomes

-d—<'r L T eee (A1)
ds ds

and this is solved subject to the boundary conditions that
rd8/ds =0 at s =0, 1 eee (12)

Note that (koto) does not need any longer to be defined in the notation of
(10), as L has supplanted £ as a reference length, Nonetheless one
muast not allow this to c¢loud the fact that the solution is still valid only
for (t,/A) + 0, and in the notation of (10) for finite values of (L/¢)?r

Trivial solutions result from (11) in two extreme cases, Thus if
we allow 7(s) ~ O, then 6 ~ (q/e)%, or in other words the temperature
tends everywhere to the radiation equilibrium valuwe., On the other hand, if
we suppose T (s) » oo, which can clearly only be justified where (L/¢) » 0

then
0/
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which is the solution for the condition of "infinite conductivity™ in which
the temperature is constant throughout; in particular, if we supposed that
Qo and €&, represented the appropriate mean values § and € of Q and
€, then in this condition 6 = 1.

Note that, irrespective of the magnitude of 7, it follows from
(12) in (11) that

) § 3
f ee“ds:f qds ... (13)
(] Q

that is, the total radiation emitted must balance the total heat flux to

the body since the edges are supposed insulated, and consequently if the
emissivity is constant (so thet e = 1), the maximum value of € 1is always
in excess of the "infinite conductivity" value.

2.3 Factors affecting the method of solution

Even accepting the simplified equations, such as (6} and (11), as a
basis for calculation of the temperature distribution, the implementation of a
solution may still be difficult. These difficulties arise from two causes.
First of all, the body may be non-homogeneous. Variations of material may
be accommodated by interpreting the local value of kt as an integral of k
across the thickness, but the presence of an internal cavity would properly
require the condition of radiation equilibrium of the interior surfaces to be
evaluated, and this involves the solution of an integro - differentisl equation.
However, this difficulty is resolved if as here we are considering bodies
which are geometrically thin, since in this limit, the condition of radiation
equilibrium 13 satisfied by ignoring the change of temperature across the
cavity. Thus, compatibly, the cavity is replaced by an insulator.

The second difficulty concerns the evaluation of the heat fiux to
the body surface. We have in mind the application where this is dominantly
the heat transmitted from a hboundary layer, and granting the likellhood that
the boundary layer flow may be laminar, it might be possible to invoke
theoretical values for this heat flux, if the surface temperature were known.
Since it is not known, a priori, we would be faced with the need to adopt
numerically some iterative approach, and this again is & considerable
complication, However, where the thermometer temperature is large compared
with the varistion of surface temperature, - and certainly this would be the
realistic condition in heat transfer to a body in flight at hypersonic speeds -
it would be & reasonable approximation to ignore the dependence of g on 0,
provided perhaps that the value of Qg included some dependence on (say) To.
Then the remaining complication would arise from the influence of the shape of
the exterior surface and the conditions of flight. If the exterior were
wedge shaped then, setting gside boundary-layer shock-wave interaction, Q might
be expected to vary as 1/x2. In practice, a sharp nose is undesirable,
since it leads to an unduly high nose temperature and aggravates the problem
of thermal buckling: nonetheless having recourse once again to the assumption

that/
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that we are dealing with & body which may be geometrically thin, deviations
from this form of variation of Q with x are likely to be small, even in
application to blunt nosed wing sections.

2.4 Similarity relations

Let us suppose that some convention is to be consistently adopted
by which the quantities €,, T,, Q, and k,t,, appearing in the notation of
(5) and (10), are stipulated. Le% us assume, for instance, that we place

L
QW = L), &5 = &(L), f ktdx = kotol ees (14)

o

so that q(1) = e{1) =1, T, 1is from {3) the radiation equilibrium

temperature at the rear edge, and
)

j r(s)ds = (4/1)? = (Tp/To)® = 7y, say e (15)

0

where TR = (koto/8cL?)*/? 1is a "reference temperature" independent of the
magnitude of heat input, Then for any problem in which, subject to the
normalisation we have adopted, the functions K = 7/r_, ¢ and e remain the
same - that is, the thickness distribution, heat inpu% and surface emissivity
remain similar - a solution of (6) or (11) will result in which 6 = T(x)/T,
will be a function of s = x/L eand of a parameter such as Tgs OF

(7o/Tr), or (L/¢). At a fixed value of s (say s =0, corresponding

to the nose) the temperature will be & function only of this parameter.

One of the most convenient forms of these many possible variants of
the expression for temperature in laboratory studies, where the level of heat
input is easily adjustable (but the geometry remains fixed), is obtained by
placing

T = Tpf(x/L, T /TR) ... (16)

where evidently f = (TO/TR) 0. . Theoretically, the form of the relation

f could be determined directly from & solution of the equations (11) and (12)
with 7, 6 and q replaced respectively by X = (r/75), f and (Q/s,0Tg').
Equation (16) expresses the fact that to simuwlate in the laboratory a condition
in which To) is large, it is possible to work with much smaller levels of

heat input (and so of Tg) provided that Tp is reduced in the same proportion,
say by increasing L, or reducing kgto.

Where the variation of Q@ as a function of x or s follows a
simple power law, it is possible to assert similarity relations of still
greater generality, and it is this which renders the assumption that Q varies
as x~z of particular interest, whatever the misgivings one may feel about
the accuracy of the assumption.

2.5/
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2.5 Solution for 0O varying as x

:
We shall here place Q = Hx 2, and we shall assume for simplicity

that € = e, and k = k

o are constants, We adopt the conventions of (14),

whereby we set Qo = HL'? and choose t_ as a mean thickness in the sense that
to = A/L where A 4is the cross-sectional area of the thickness distribution.
It doss not of course matter whether we choose (6) or (11) as the equation to
be solved: we shall prefer to treat the latter, and in terms of the notation

Just introduced, we have

0 = (/1) = (e®°LHP)H/°T, 1= kt/(e% M1 )M | 1 = k A/(eg?cPHOL? J1/°

.es (17)
1
and further e = and g =8 2 ., The solution for 0 = 6(s) , say, will
evidently depend not only upon the form of variation of the thickness
distribution X(s) = (r/zo) , but also upon the parameter 7, , which is given

in (17) in terms of its definition in (15), and which we shall prefer to

use

here rather than other parameters such as (L/¢) or (T,/Tg) - plainly this is
once again merely a matter of choice. Consequently, we can represent the

solution for a fixed variation K(s) = that is, for a family of geometric
similar thickness distributions - in a number of different ways, as

T = (Toro )0(s) 7"

where m 1is of course arbitrary. However, if we suppose that one of th
geometrical parameters (say, A ) is to be regarded as a constant while we
imagine another to vary (say, L ), then it is convenient to choose the va
of m so that (Toro'm) depends on the fixed parameters; the effect gof
varisble geometry is then immediately shown by the variation of 6(s)7o
Since we shall have frequent recourse to this artifice, it is convenient
summarise these relations, as follows:

T = (H?/ex*c?L)t!%6(s) (length fixed)
= (H®/ec®0®koh)t! 2 0(s) 7?32 (cross-sectional area
fixed)
= (H'/eo30®koto)t/2%0(s)r gt /2® (thickness fixed)
= [8%/e,20%ko(to/IE2) J/%0(a) ot /° (nose radius fixed)
= (B?L/eqokoto)t/%0(s) o /8 (fineness ratio fixed)
= (koto/EdTLa)ilsa(S)To—ila (geometry fixed)

ally

(<]
lus
the

Witll TQ.
to

... (18.1)

... (18.2)
.e. (18.3)
ve. (18.4)
... (18.5)
... (18.6)

The last of these relations is identical with (16) and is included here only for
the purposes of consistency: it is of use where the geometry (i.e., t, and L)

may be known, and H is treated as variable.

Equation (11) has been solved for three examples of simple, variations

of K(s) , corresponding to 1 (a uniform thickness distribution), 3s%/2
parabolic distribution) and 2s (a wedge), by using the Runge Kutta proces
the help of a digital computer.

It/
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If we consider a plate of constant thickness, then K =1 or 7 =14
and the values of nose temperature are shown in fig,1 plotted against 7,.
If the surface length is fixed, 6(o) tends to a finite limit as r, +o i.e., as
koto 1is increased, corresponding in the limit to the "infinite conductivity"
solution, In fact, as 745 »> o

6(0) ~ 2%+ (1/575) + @ (r5?)

On the other hand, as 715 = O, then for a fixed kgty, the length L of the
surface increases and T tends to a finite limit: that is, in (18.3),
70}1139(0) must remain finite in the limit, and we find in fact that

6(o) ~ 1.30587,271® as 740

This merely tells us that indefinite extension of the material downstream has
ultimately no effect upon the nose temperature. Indeed for a length of surface
defined by a value of 7o = 1, the nose temperature (with fixed k,t,) is
within 1% of the limit for an indefinitely long plate, and from (1 53’ this
clearly corresponds with the choice of the length L as identical with £.

It will be seen that 6(o)r.*/?! + o in either limit 7, -+ O or
To > o, and from (18.2) it follows that there will be some value of 7,
for which the nose temperature is a minimum if A is fixed: this may be
termed an optimum selection of 7,5, since it implies a "best use" of a fixed
quantity of material. It appears that 6(o)r,'’? has a minimum value of
1.309 at about 745 = 2.0 (the precise vaelue being very ill defined, as the
temperature is within 1% of the minimum for all values of 71, between 0.8 and
5). Thus from (17) and (18.2), for this optimum surface

L= 0,77(k04A§/gogﬂa)zla1, ty = 1.30(80203H9A?3/ko°)1’91 ] )
... (19

for which T(o) = 1.309(H® /e fa®k a)t/ 2

The temperature at the rear of the conducting slab varies from a value given

by 6(1) =1 if 7, =0 (corresponding to the radiafion equilibrium

temperature if kgto = 0), up to a value of 6(1) = 22 if 71, =o corresponding
to the "infinite conductivity" solution; this variation is shown in figure 2.
Note that for 7o = 1, although the nose temperature is within 1% of the value
for an infinitely long surface of the same thickness, the temperature at the

rear is over 10ﬁ?above the radiation eguilibrium value. Fig.3 is a sketch of
some typical temperature distributions, in which © is plotted versus E&.

Similar sets of graphs in figs.4 - 6 and figs.7 - 9 relate
respectively to the general family of parabolic and wedge distributions of
thickness (i.e., with K(s) = 35 9/2 and 2Zs respectively). In both cases,
To * = relates to the "infinite conductivity" solution, but as 7, + 0, we
note that

6(o) ~ 1.688r/® for the wedge
8(o) ~ 1.37'67'0"“4 for the parabola

the first relation showing (from equation (18.5)) that for a fixed wedge angle,
indefinite extension of the material downstream has no effect, and the latter

relation/
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relation showing the same thing for a fixed nose radius of curvature of the
parsbola from equation (18.4), since the nose radius of a parabola is
(9to*/32L). For the wedge, the minimum nose temperature for a fixed area of
material is given by setting

L = 0.38(k0‘Af/BooH?)3/21’ to/L - 6.9(80404H1”AP/k015)1121
ees (20)
for which T(0) = 1.4127(H8 /e 50® ko h)t!

where (tO/L) is the tangent of the wedge-semi-angle; for the parabola the
optimum use of material is obtained with

L = 0,59(ko* &1 /e 0% )3/31 | o = 9%,3/32L = 3.6(eqotPA% fkot )37

sne (21)
for which T(o) = 1.3428(H%/e Sc®koA)t/ 22 ]

Comparing equations (19) to (21) we see that the uniform plate makes the best
use of the material, and the wedge the poorest use, reflecting the special
importance of material near the leading edge in alleviating its temperature.

It is pertinent to enquire what variation of 7{(s) has to be
assumed in order to render T(o) & minimum if the cross section area A of
the thickness distribution is prescribed, This precipitates an exercise in the
calculus of variations which is algebraically rather involved, and will not be
detailed here. It transpires that the shape has no closed algebraic description,
but can be derived by numerical calculation, It has a blunt nose, with r
varying locally as s*/* 350 that the nose radius is infinite; and a cusped rear
edge, with 7 varying locally as (1 - 8)*/2?,  The maximum thickness occurs at
0.07L, and is equal to 2,48 ty, where t, as in (14), is the mean thickness.
There is an optimum selection of length, associated of course with an optimum
fineness ratio, and this leads to a unique optimal variation of r with s,
which is given in table I. The corresponding value of 715 dis equal to
0.6983; the temperature distribution is shown in fig.10, and the value of
6(o) is found to be 1.309, so that we may find from (175 and (18.2) that

L = 1.143(k, A fe ol )2/ 31 | £, = 0.885(eo?0?Ho A /i B )/ 2 } (22)
e (22

for which T(o) =-"‘|-286(Ha/*:o'ﬁc"skc:uﬁ‘)iI81

There is a modest (2%) decrease in nose temperature compared with the optimum
uniform slab but note that this implies that, to achieve the identical nose
temperature, the slab would need to have 45 more cross-sectional area.

Figure 11 extends this comparison to the other shapes discussed, by illustrating
the optimum thickness distribution on common scales of length and thickness;

the actual length and thickness scales, and their relative proportions in this
illustration, would depend of course not only on the value of A, but also on
conductivity, emissivity and the velus of H ; consequently the fineness
ratios illustrated in fig.11 are not necessarily optimal,

Also included in this illustration is one of a family of distributions
which provide a uniform temperature gradient. The evaluation of a thickness
distribution for a given variation of © 1s an easier problem, as then of
course (6) or (11) become directly integrable equations for K or r, and in
particnlar from (11),

v/
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where 0'(s) = d40/ds. The mean value of & cannot be allowed to be arbitrary
if Q, and &, are stipulated, since equation (13) has to be satisfied, and

this simply means that since the temperature determines the total heat

radiated, it has necessarily ito be related to the total heat input to the

surface. Furthermore, the fact that 7 must be bounded and cannot be

negative imposes restraints on what temperature distributions can be realistically
postulated. Thus if, for example, we postulate, using the notation of

equation (23) and (155, a temperature distribution given by

8(s) = 8(o) (1 - as)

then from (13), since e =1 and q =38 2

o) = {108/ [1 - (1 - @] JF e ()

and (23) leads to & thickness distribution given by
1

7(s) = [2/a0(0)] {82 - [1 - (1 ~as)*)/[1 - (1 -a)®] }

This has real solutions (corresponding to bounded r 5> O for all 0 < 5 < 1)
0 £ a<0.26057. The lower limit of vanishing temperature gradient

(a » 0) corresponds, as might,be expected, to the "infinite conductivity"
solution, for which (o) - 24, and

(s) ~ (5% - 8)/a

" 1
as o »+ 0, This is of course only valid in the limit if 1L/¢ = O(aﬁ).
The other extreme condition (& = 0.26057 ...) is more interesting. The
thickness distribution associated with it is characterised by a cusped trailing
edge, with r varying locally as (1 - s)?, and the local temperature is
precisely the radiation equilibrium value (i,e., (1) = 1): in fact this
value of a is found by solving the equation obtained by replacing 6(o) in
(24) with 1/(4- @). The shape has a rounded nose, and a meximum thickness
2.34 times the mean, located at a distance 0.114LL from the nose., The value
of 6(o0) is 1.353, and 715 = 0.379. Of all the members of this family of
thickness distributions providing uniform temperature gradient, which are
generated by varying « (and are not of course geometrically similar), it
provides the least nose temperature for a given cross sectional area. We
find in fact that

L= 1,45 (ko' /eqoi®) /22, b, = 0.69 (8070 KA /g )/ 7 ] (25)

for which T(o) = 1.289 (H®/ey®a°k A)t/ 3

Comparing (25) with (22) we see that this nose temperature is only 0,3#%
higher than that of the optimum shape, end it seems reasonasble to suppose
that the efficiency of both is in part due to the tapering off of the
thickness distribution towards the rear, where of course there is less
effect to be derived from the provision of conducting material.

To/
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To provide some feeling for what these numbers mean, let us suppose
that H = 10ki/m®/?, which represents a heat input of 20 KWm span over the
first meter of the chord of a wing, and which might be taken as indicative
of aerodynamic heating intensities in flight at hypersonic Mach numbers,

FPurther let us take €0 = 10~%° ¥W/m*/(deg.K)* (corresponding to rediation
from both upper and lower surfaces with emissivity 0.88), and

ko = 0.05 kW/m/deg.K, a figure typical of steel. Table II evaluates the
lengths, thickness and extreme temperatures of the various optimally selected
surfaces, assuming in each case that a cross-sectional area of 10 em? is
available to be distributed (i.e. say 8 kg. of steel per meter span). Note,
however, that even if this cross section is reduced to 1 cm®, then provided the
material is correctly redistributed - that is the length of surface is reduced
by a factor 0.1%/3% = 0,42, the thickness by 0.123/22 = 0.2} and so the

fineness ratio increased by 10%/3%% = 1,73, - it follows from (18), or any of

the relations in (19), 20), (21) or (25) that the nose temperature is increased
by a factor of only 1072 = 1,116, The same result applies if the conductivity
is reduced to a tenth of its value for steel provided the new material is
suitably redistributed., TWhere such optimal redistribution is not affected, but
(say) length, or conductivity, is changed in isolaticn, then larger variations
in nose temperature will be manifest, and these cannot in general be predicted
except by recourse to the figures for the variation of (say) ©{(o) with To.
But the same power laws as quoted here will apply for small, isolated changes

in any feature {such as A or k,) away from the optimum value (since 8(o)7rot/
has a stationary value in the optimum condition). In the same way that the
nose temperature is relatively insensitive to the amount of material, so also,
for en optimal surface this temperature is not very sensitive to the heat
transfer intensity, varying only as H3/7 (that is, T(o) increasing by only
227 if the heating is doubled).

1
2.6 Solution for Q varying as {x + %) °

In experimental applications1the singularlity associated with a heat
transfer distribution varying with x™2 cannot of course be realised. In
order to determine how important this is in determining the heat transfer
distribution we place

Q= B/(x + x0)% = (B/18)/(s + 85)%

and examine the effect of varylng s5 = xO/L. Results for a particular example
are shown in fig,12: here tg, ko and ¢€o are supposed constent, and the value

of To, given in terms of H by equation (17), is equal to 5.36, - a value
chosen as relevant to the experimental investigation discussed in the next

paragraph.

3. Experimental Investigation

The purpose of the investigation is twofold. In the first place we
seek experimental verification of the leading edge temperature distrabution
predicted by the conducting plate theory given in section 2. Within the
context of the theory, the model which represents the leading edge is subjected
to a heat flux distribution varying roughly in proportion to 1/xZ along the
length on one surface, and is insulated thermally on all other surfaces, The
experimental apparatus so sei-up may also provide soms analogous studies of
two-dimensional problems whose numerical solution may be specially dafficult.

3.1/
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3.1 Simulation of asrodynamic heating

A number of methods could be adopted to simulate aerodynamic heating
in the laboratory, but the simplest approach by far is to use infra-red
radiation derived from electric power, provided that the intensity of the
radiation distribution can be made to represent the convective heat transfer
of the boundary layer. Our concern, therefore, is to simulate on a given
plgne a radiation field with an intensity varying as closely as possible with
x~2, so0 that when a model is placed with one surface lying in this plane, its
leading edge (at x = 0) will be subjected to the highest heating. This is
accomplished by employing a reflector formed so that a large portion of the
energy emitted from a single heating element is reflected to impinge (together
with the direct radiation) on the irradiated plane with the desired distribution.

The necessary differential equations for the design of the reflector
are given in references! snd 5. Its actual size and shape are directly
influenced by many parameters, such as the distance between the heating
element and the irradiated plane, the size of the model, the size of the heating
element as well as the location of the reflector relative to the element.

Hence it is possible to have different shapes of reflectors resulting in the
reflected rays crossing or not crossing each other. Radiation may also be
reflected from different portions of the reflector to impinge on the same region
on the irradiated plane, but those to 1impinge on the region of the leading

edge must not be intercepted by the heating element itself after reflection.

An acceptable soclution can only be obtained with the help of digital computer
calculations, Even then a number of practical difficulties remain. For
example, to direct a large amount of radiation energy on to a very smell region
at the leading edge requires an extremely accurate profile of the reflector
which must also possess a perfect reflecting surface. Any small deviations
from perfect conditions will alter the direction of the incident rays and will
cause them to diffuse, It follows that both the magnitude and the gradient of
the radiation intensity will be substantially reduced, especially over the
leading edge region, if eny small imperfections are present. To alleviate
these shortcomlings, an arrangement is made, again with the help of a digital
computer, for the profile of the reflection to be composed of a number of curves
each of which is similarly designed to produce the desired distribution of
radiation, with the highest intensity always directed towards the nose.
Altogether there are seven curved surfaces blending smoothly to form a
quasi-continuous profile.

In construction, the reflector was fabricated by a sheet of highly
polished copper over a solid block made to conform first of all to the
prescribed profile. Once the sheet was firmly pulled over the block, the
over-hanging parts of the sheet were attached to two end plates, made of
aluminium alloy to the same profile. Thus the sheet could be held
permanently to the required shape.

To avoid distortion of the reflector by heat during its operation,
cooling of the black surface is provided by circulating cold water through
bonded copper tubes. The end plates were coated with a black paint to give
a high absorptivity and are also cooled during experiments.

The heat source is o wire coiled round a ceramic tube, which is
reinforced by the insertion of a tungsten rod to prevent sagging at high
temperatures, giving an overall diameter of the heating element of 0.57 cm.
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Oxidized nickel wire was first used because of its high emissivity at elevated
temperatures. Operating in vacuo, however, this meterial tends to become
unstable when operating temperature exceeds 1000°C. The maximum power output
of the element over a length of 0.305 m (the length of the reflector) was

1.2 kW. In order to increase the power output, the nickel wire was
subsequently replaced by a tantalum wire which, though having a much higher
melting temperature, possesses only a moderate emissivity. To improve its
emissive power, the tantalum wire was oxidized in air at a temperature of
550°C for 30 minutes. At higher temperatures, the material is liable to
decompose owing to the rapid process of oxidation. TUsing the oxidized
tantalum wire, the maximum heating power was increased to 1.8 kW.

The reflector was tested in a vacuum chamber and its performance was
recorded by a radiometer specially designed for the purpose (ref.6). The
results are shown in fig.15. As can be seen, the measured results fit the
ideal distribution fairly well up to a distance of s = 0.0275 from the
leading edge, within which region the intensity of radiation does not increase
23 rapidly as required by the xz law. To place the lerding edge of a test
model at s = 0 would tend to moderate the temperature gradient in the nose
region and this is clearly undesirable. Hence it was decided to place the
nose of a test model at s = 0.0275 for in this way not only is the x—Z
distribution of radiation satisfied but also the experimental results thus
obtained can be compared directly with the theoretical calculations of section
2.6. Thus in the notation of that paragraph, the experimental heat input
corresponds to one with so = 0.0275., Typically, fig.12 shows that this would
cause a difference of sbout 5 per cent in nose temperasture compared with the
ideal distribution (with s, = 0).

3.2 Test models

To verify the theoretical results, a model 1n the form of a slab is
the simplest to construct and its performance is as informative as that of
models of any other shape. Its size is largely determined by the dimensions
of the vacuum chamber in which it and the heating element and reflector are
installed. Its chord length is chosen as 15.25 cm. (6 in.) and its span as
twice this in order to reduce the end effects on the central plane of the
model where temperasture measurements are made and two-dimensional conditions
are expected to prevail. Over the top surface it is desirable to achieve a
high surface emissivity. Other faces of the model will be insulated.

S0 long as the passage of heat by conduction from the nose towards
downstream is nowhere restricted, the nose thickness has a dominant effect
upon the temperature distribution. To observe this, trapezoidal sections of
different nose thicknesses have elso been tested (£ig.17).

If we are interested in maintaining a certain temperature distribution
in a model under a given heat input, the thickness of the model should bear an
inverse proportion to the conductivity k, as the thickmess t and k occur
together in the simplified heat conduction equation. On the other hand to
display the effects of conductivity over a reasonable proportion of its
chord in association with the amount of heating available during experiment,
the product of k and t is fairly closely defined. With the limited
heating capacity available, it transpires that materials of relatively low
thermal conductivity are preferred as only they provide a thickness
sufficiently large to enable an easy observation of the temperature variation
along the model. Figure 16 shows the variation of nose and rear bemperatures
with t for models of L =15.24 cm (6 in.) having three different

fineness/
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fineness ratios (i.e., L/t), taking H = 1684 W/m®/% and ¢ = 0.8.

(These preliminary results were obtalned on the basis of x—% heat flux
distrabution with sg = 0. The nose temperatures should have been %5 lower
had so been teken as 0.0275). If high conducting materials sugh as
copper and aluminium were used, a near umiform temperature would result.

To produce a greater variation of temperature distribution, our choice should
fall on materials having a much lower k. Among common metals, stainless
steel F.C.B, Staybrite (AILSI-3.7) with k = 15.88 (1 + 3.898 x 10~% T°C)
W/m°K (7) appesars to be a reasonable maternal to use. Ceramics have also
been considered. Generally, the low conductivity of this type of material
should satisfy the requirement very well but for the non-homogeneity in
properties and shrinkage liability during the firing process. However,

one type of ceramic known as Frequentite, bearing similar characteristics to
Steatite, and having a thermal conductivity k = 3.17 {1 + 5 »x 10~ 7°C)
W/m°K 1s chosen.

Altogether ten models are used 1n the experiments. The details
are given in table III,

For the stainless steel models, the top surface was shot-blasted
and oxidised at a temperature of 900°C for 20 minutes. According to
reference (8), the emissivity is taken as €= 0.735 (1 + 2.944 x 104 7°C).
Other faces were highly polished to reduce the amount of heat loss to a
minimum.

For the ceramic model, the top surface was coated with lampblack
mixed with fibrefrax cement of which the emissivity is assumed to be 0.78.
Other faces were machined flat and then polished with diasmond powders.

3.3 Apparatus

Aerodynamic heating to be simulated by infra-red radiation, and
heat dissipation from the model to be entirely due to radiation demand that
the presence of convective heat transfer be eliminated during experiment.
This requires both the reflector and the model to be housed in a vacuum
chamber, The model is supported by four pointed ceramic rods which in turn
rest on the side of four ceramic pins (fig.14), thus reducing any conduction
heat loss to a minimum., Apart from the top surface of the model which 1s
subjected to heating, the vertical as well as the bottom faces are shielded
against radiation heat loss. The walls of the vacuum chamber are painted
black, using Britannia D enamel paint, which is believed to have an
abgorptivity of 0.9. During operation, the whole chamber is cooled by
circulating cold water through copper pipes welded round the chamber in
ordsr to minimize background radiation. Temperature measurements, taken
along the middle section of the model at 6 prescribed locations, are by
means of nichrome - constanten (0.012 cm., diameter wires) thermocouples
which were calibrated by the National Physical Laboratory. Two rows of
thermocouples were placed at different depths in the model, one row near the
top surface and the other near the bottom surface to detect any variation of
temperature across the model thickness., The general lay-out of the
apparatus is shown in fig.9q3.

3.4 Bxperimental procedure and test results

To start the experament, the vacuum chamber is evacuated by a
6" diffusion pump backed by a single-stage rotary pump. When the chamber

pressure/
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pressure reaches a value below 5 mN/m®, electric current to heat up the
element of the reflector is switched on, Both the current and the voltage
drop are measured so that the total input power can be increased by
definite increments. During each power increment temperature measurements
by means of thermocouples using a potentiometer are taken as soon as the
steady state condition is reached., The temperature distribution undger
maximum power input is used for comparison with the theoretical values.

The test results are given in table IV,

To assess the amount of radration impinging on the model, the
radiometer mentioned earlier is used. But the amount of heat absorbed by
the model can be taken to be equal to the amount of heat dissipated from the
top surface of the model, on the assumption that any heat loss from elsewhere
is negligibly small. Thus it can be calculated directly from the temperature
distribution along the model. In table IV, the total power input to the
heater 1s the direct reading from a wattmeter, while the power received by
the modsl is accordingly the integration of the radiant hea* dissipated from
the model.

3.5 Comparison of theory with sxperiment

Pig.17 shows the calculated temperature distributions for the
nine stainless steel models with H = 7500 W/m®*/?, They constitute a
fam1ly of curves flanked by the radiation equilibrium temperature curve in
one extreme and the infinite conductivity temperature in the other, By
taking material conduction into account, the temperature at the nose and
in the region near to 1t drops below the radiation equilibrium temperature,
at the expense, apparently, of that at the rear, One important feature
from the results gaven in fig.17 is worth mentioning. The reduction of
nose temperature and of the temperature gradient along the whole length of
the conducting plate can be significantly achieved by an increase in the nose
thickness, which, we must accept, represents the guantity of conducting
material employed at the most crucial position. Subjected to the same
heating intensity, models of the same nose thickness, though having
different shapes, give rise to more or less the same temperature distribution
as shown by curves B, ¢ and D. 1In fig.18, the calculated variations of
nose and rear end temperatures are plotted against the heat flux parameter
H using model 1 and model & in present experimental congitions.

Test results from the ten models are plotted in figures 19-28.
The agreement between experiment and theory for models 4, 2, 3, 4, 5 and 7
are remarkably good. Considering that a number of errors, such as in
temperature measurements, in the absolute quantities of k and e and
their varistion with temperature and in the insulation of the model against
heat loss, could have existed in the experiment, the maximum discrepency is
only about 2%. This indicates that the temperature variation is not too
sensitively influenced by any one parameter, The agreement between
pxperiment and theory for the wedge models are not so good, In all three
cases, the predicted temperatures are much higher than the calculated values
at the nose, The maximum discrepancy is jJust over 5%. However, due to
the machining and polishing processes, the thickness of a wedge nose
cannot be clearly defined, and any small deviation in measurement from zero
is known to have a disproportionate reduction upon the calculated values of
nose temperature, Test results on the ceramic model follow the theoretical
curve very closely, except that at the location adjacent to the nose,

The/
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The temperature measured at this point is about the same as that at a point
1.27 cm. downstream, We consider this may have been due to the
malfunctioning of the thermocouple at this location. TUnder two different
inputs of heating, the temperature distribution in general behaves as
predicted.

il

>

The results obtained from two rows of thermocouples embedded at
different depths in the models indicate that there are negligible temperature
varigtions across the thickness,

4. Conclusions

The concept of a "conducting plate™ simplifies the examination of
the role of longitudinal conduction of heat within the material of a wing
subjected to aerodynamic heat in hypersonic flight. Verious similarity
laws result which provide a broad insight into the properties determining the
nose temperature. Moderate temperatures result from guite small provisions
of conducting materisl, and leading edge thacknesses of about 4 cm or so.
Experimental results closely verif'y the theory.
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Table I

The optimum thickness distribution

SJE T(S) s% T(S) S% T(S)
0 0 0.35 1.6558 0.70 0.5740
0.05 1.0142 0.40 1.5574 0.75 0.4138
0.10 1.32525 0.45 1.4277 0.80 0.2729
0.15 1.5681 0.50 1.2742 0.85 0.15M
0.20 1.6825 0.55 1.1047 0.90 0.0710
0.25 1.7273 0.60 0.9265 0.95 0.0184
0.30 1.7152 0.65 0.7472 1.00 0

Table II

Typical characteristics of optimised thickneas distributions

Length Mean Maximum | Positlon | Nose 1:3;:‘- A
sﬁ:dg (ZS thickness | thickness | {cm from | temp. ton (n) | Remarks
P {cm) (cm) nose) | {°K) (°k ’

Optimal

distribution | 12.1 0.83 2.05 0.85 956 7321 1.2

Uniform Nose

temperature 15.4 0.65 1.52 1.76 959 789 1.4 | Radius

gradient = 7.5mm

Uniform

Thickness 8.2 1.22 1.22 - 974 876 | 1.1

Parabolic 6.3 1.59 2.38 6.3 999 920| 1.0 | Nose
Radius
= 2.5mm

Wodgoe 41 2.44 4.88 4.4 1051 989 | 0.85| Semi-apex
angle
= 30°

Table III/
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Table III

Test Models

Model No, Material Description
4 Stainless Steel Slab a=b =1.27 cm
(4181-347)
2 » 31ab a=b =0.635 em
3 " Slab as=b =037 cn
N n Trapezoidal a = 0.635 om
b =1.27 o
5 ” Trapezoidal & = 0.317 om
b = 1.27 cm
6 " Wedge a = 0.0508 cm
b = 1-2? cm
7 " Trapezoldsl a = 0.317 cm
b = 0.635 em
8 n Wedge a = 0.0254 cm
b = 0.635 cm
9 " Wedge a = 0.0254 cm
b = 0.31? ¢
10 Ceramic ' Slsab a=b=1.27 cm
(Frequentite)
Note: For all models, d = 30.48 om, L = 15.24 cm, See Figure 23.

Table IV/
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Table IV

Experiment Resulis

BW
PAC

taken near the top surface while the lower row

temperatures near the bottom surface.

Total Power
Model | Power received H Temperature distribution °K
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hz’;;er m‘(’%‘;l (W/m” ")\ g..0008| aon3| .2m | .397| .6u7| .96
e e | e | B2 |2 228 | 223
2 | me | e | e | G2 | 64T | 265 |Boie | 2hore| e
s | e | wez | oaan | k) G20 07| 558\ 3653 | 5iAT
Lo | rese | 260 | rzo | 23N 91T | ses e | se.a | sseut
5| ress | 260 | aner | GOl | g5 s | Berh | s | sse.s | 76
6 | 1ess | mos | w9z | G0 | E603 | G0t | dnt | e | s
7| wess | mme | oras | EVC | G| 6L | 2Rt | 3635 | s
o | wees |2 | vz | G2 | S EST | S | dead [ e
) | | noa | v | 5| k|2 e 20 2
10 800 | 88.6 wo | Jor o iead e A PR I
o |z |z | e | ST 20N 108 1001 20

Note: For each model the upper row temperatures were

e

(¥

[£h



1-45

I-40

[-35 |
CROSS-SECTIONAL AREA FIXED |

a() T2 =@ koA/ HE)2 )

I-30

1-251 —
|
oG T
1- 20| ~ 2'/4 + %% B
1
[+ ls i 1 1 To=|CkoA) /@;-)0.2“6.32/8

0 | 2 3 4 : ! 7

Fig.1 . NOSE TEMPERATURE FOR UNIFORM THICKNESS
DISTRIBUTION (t,=A/L)



1-20 T T !
o ()| =€ a?L/HD) B TQ)=TQW I, |
1115

I-10

[-05

o 7= (koh) [ (G0°HOLY) 8
0 | 2 3 4 5 6 7

Fig-2. RATIO OF TEMPERATURE TO RADIATION EQUILIBRIUM
TEMPERATURE AT REAR OF UNIFORM THICKNESS
DISTRIBUTION.



I i | 1

|
Bry= (30 Koty HOT

-0 ‘s\
RADIATION
EQUILIBRIUM —
0-9} TEMPERATURE =~ ~~=~ee.
(GQO' H 3/ k:)t‘:))zﬁs p. 4
0.8 1 1 1 ]
0 05 10 -5 2 25

Fig. 3. SOME TEMPERATURE DISTRIBUTIONS
ALONG BODIES OF UNIFORM
THICKNESS .



|60 T T

1-55F

1-50
4 42

1-45

I-40

I-35

1-30

1251 ¢ ©=(<; PLH)ATE

l
0(0) 7o (€ & Kat3 JLH®) "™ 1(0)

~2"44 14/45 7,

«(k,A)/ (€02HOLH)"
|.2 |T0<0)(€00 1 D 1 ]

0 2 4 6 8 10

Fig. 4. NOSE TEMPERATURE FOR A PARABOLIC
DISTRIBUTION OF THICKNESS (NOSE
RADIUS = 9t3/32L )

12



|' 20 ‘ T T L
00 |~ (€2?LIHD®T(L)=T(L) /T,

I-15

1-10

- 105

. ry ko)) (G0PHELY)"S
| ] | 1 |
| 0 - 2 4 6 8 10 12

Fig-S. RATIO OF TEMPERATURE TO RADIATION
EQUILIBRIUM TEMPERATURE AT REAR OF
PARABOLIC BODY,




0-9

l I
6= (‘o' Koty /LK) T

0

) | |
08 |0 -4

0-6

0-4 1-2

1-6

Fig. 6. SOME TEMPERATURE DISTRIBUTIONS ALONG

BODIES OF PARABOLIC THICKNESS
DISTRIBUTION (NOSE RADIUS =93/32L)



2|

2:0

-9

|-8

V-7

-6

-5

14
LENGT
| H
T 0 @-(¢50° '-/Hz) T© 2 5
|-2 : : To'(kpA)/(c'gazHG!_Zl /g )

0 2 4 6 8 10 12
Fig. 7. NOSE TEMPERATURE FOR WEDGE

SHAPED THICKNESS DISTRIBUTIONS.



120 ] T J J ' '
0 |=(e5o?L/ H’Dl’a T(L=T /T,

115

i-10

1-05

| - (koA)l@ a2HOLE)
' 0 2 4 6 8 10 12 14

Fig.8 RATIO OF TEMPERATURE TO RADIATION EQUILIBRIUM
TEMPERATURE AT REAR OF WEDGE-SHAPED BODY .




20
-r:{"o |

I-8 y
075=(6o0 Koty /LH)® T

-6

-4

-2

---

-0 ol 02 035 04 05 06 07 08

Fig.9. SOME TEMPERATURE DISTRIBUTIONS ON WEDGE-SHAPED BODIES.




-5
(s
1-25
-0
-------- RADIATION EQUILIBRIUM
TEMPERATURE.
0-75}; |
0-5} i
025 i
0 02 04 06 08 10
s=x/L

Fig.IO. TEMPERATURE DISTRIBUTION OVER SHAPE
HAVING MINIMUM CROSS-SECTIONAL AREA
FOR STIPULATED NOSE TEMPERATURE.



OPTIMAL DISTRIBUTION

Oz A=l

UNIFORM TEMPERATURE GRADIENT

O zzrzrrrmm— A =1-05
UNIFORM THICKNESS
v A=|-45

% PARABOLA  A=2-35

WEDGE A=6-9

Fig.1l. OPTIMISED SHAPES PROVIDING SAME
NOSE TEMPERATURE . (THICKNESS &

LENGTH SCALES COMMON BUT
UNDEFINED . )



T.—NOSE TEMPERATURE
T/ T, T.—REAR TEMPERATURE
-0 To=To AT sg=0 '
T./ T,
0-95F ™~ """ " e b E
09 |
0.85&._
08 F
o 7: | I lso - xo , L { ] {
107 1078 10° 10 K 102 10" 10°

Fig.12. EFFECT OF so ON NOSE AND REAR TEMPERATURE.



WATER CO?LINE PIPES.

L o] 0 [#] (o] o]

e =

/REFI.ECTOR ——VACUUM CHAMBER
q / o
q ; — = VACUUM GAUGE

( -

d WATER COOLING TUBES
[»

¥

E AMMETER -
Q D
A.C. MAIN
A4

] RADIATION SHIELD i VARIAC srég{:fno

| 3 CO| GALVANOMETER
o /MODEL LITFI

]
= Tervocour| (O) L BATTERY
7 WIRES
THERMOCOQUPLE | SELECTOR SWITCH
— 0 BOX POTENTIOMETER
TO VACUUM PUMP ICE BATH

GENERAL LAYOUT OF APPARATUS Fig. 13.






('h

-l

1

-

.

Fig. 14 General arrangement of model and reflector.




ry

-
~

(v



RELATIVE RADIATION INTENSITY.

70

>y
=]

by
o

Y
o

| 1 | ) | | | { ]

X ACTUAL RESULTS |
— IDEAL DISTRIBUTION (1/s%) _

0

| | | | | l ] |
ol 02 03 04 OS5 06 O7 08 09 [0
s=x/L

Fig.15. PERFORMANCE OF REFLECTOR.



1000

900

800

700

600

500

1000

10 lf(Wllm°K) 100

~p H=1684 W/m™
‘s“/ = .
g €-0-8
R, 7/ L =15-24 cm.

NOSE TEMPERATURE

7
Lt L R
= N 2
2 o G EF ¢ g%
(T é A n o
== o o a, N 7, ] ) S
<y e =0 ~ @ vy, O
o a =2 uf = lm < O
[ | 1 1 [ ] 1 i ]

lllllll } L L L L L L

400'

Fig.16. EFFECT OF THERMAL CONDUCTIVITY ON NOSE AND
REAR END TEMPERATURES.

1000



1 | 1 | 1 1 | ) I

. H=7500 W/m™2

1200& TK A—MODEL 1. -
B~-MODELS 2 AND 4.

1150 C -MODELS 35AND7. -
D ~MODELS 6,8AND 9.

\

\

% /RADIATION EQUILIBRIUM  (NoSE THI _
00}, / TEMPERATURE. ( )

1050; -

1000} _
A\
9S0[- \ _

X NFINITE. CONDUCTIVITY

L i NS T iﬁ'ﬁiﬁifﬁﬁfa'“““"“

8501 <& 0

800 e =

730 -

700 1 ] | 1 | 1 ] ] |
O 0l 02 03 04 05 06 07 08 09 1I0

s=x/L

Fig.I7. COMPUTED TEMPERATURE DISTRIBUTION IN
MODELS SUBJECT TO A GIVEN HEAT INPUT.



NOSE

REAR END
EMPERATURE. TEMP.

]
!
]
14000} " /
HOW/m™) ;' ;' ;
f ; /
12000 ---- SLAB I-27cm. THICK / / ," '
(MODEL |, i ;
—.— WEDGE I-27¢cm. /. ; /
ND THICKNESS | ] ! -
10000} MODEL 6. ! /
! ;’ /
! ]
! !
! !
8000 / [/ /
! p ,
l’ 1’ /
! ! ;
6000 [ /
f] )
! ! ;
il
4000 B ’I’ ” /'
F 4
r
2000} ,," / Vs
1 ";”‘:/I./ 1 1 TOK ] d
200 400 600 800 1000 1200 1400
Fig.18. EFFECT OF HEAT INPUT ON NOSE AND REAR
END TEMPERATURE OF SLAB AND WEDGE

MODELS.



-)

620

Fig. 19 MODEL |

X SLAB 1-27 cm THICK 1

00k H= 179 watts /m™?

X EXPERIMENT

] ~—- THEORY .
580 -
L T°K _
560 ) M
. -
540} sex/L -

| 1 1 1 1 ] 1 L

0o -l 2 ‘3 -4 5 6 T -8 9 I-0

620',( | { T T T Y i
i ' SLAB 0-635 cm THICK

H = 1165 watts/m 32
600/ x  EXPERIMENT 7
" — THEORY i
580 —
- T°K -
5601 -
i X
540} -
i s=x/L i

| 1 1 | L | 1

5206773 56 7 8 -9 10



640

620

MODEL 3.
SLAB 0-317cm. THICK -
H=1281 watts/m:
X EXPERIMENT n
— THEORY

600}~ =
T°K
i X _
580 -
560 * -
= =
540 1 1 | s“leL i | | 1 "
0 1 2 3 4 5 6 T 8 9
A | ] ] ] 1 I ¥ 1 |
Fig. 22. MODEL 4.

620 &x

600

5801

5601

TRAPEZOIDAL 0-635¢cm=-1-27 ¢

H =1220 watts /m¥2
x EXPERIMENT ]

— THEORY

e




-)

640

620

600

580

560

I ! LI ] 1

1 1
MODEL 5
TRAPEZOIDAL O 3I7 cm-|-27 cm
H=1167 watts/m>?2
x EXPERIMENT
—THEORY

] 1

1 1 1 1 1 | 1 | |
0 1 2 -3 4 -5 -6 g8 9 0
700 . ——
Fig. 24 MODEL 6
WEDGE SECTION, I-27 cm END THICKNESS -
H=1192 watts Im 3
660 x EXPERIMENT 7
I — THEORY i
620t -
» '|"° K -
580| . -
i x ]
540/ X
J s = x/L ]
[ | 1 | [ { ] [ [
V0 ——7 3 2 5 -6 8 -9 [0



660 .

6401

ol N\

' MODEL 7

TRAPEZOIDAL 0-317 cm-0635¢cm

H=1266 watts/m*2
x EXPERIMENT
— THEORY

1

—

-

—

T°K
600 -
580 .
560 | x\ _
540 - ] i | S 'lx IL 1 1 1 1 X—-'
o 1 2 3 5 6 T 8 9

700

660

620

280

540

1 1 i 1

MODEL 8.

WEDGE SECTION 0-635cm.|

END THICKNESS.

H = 1228 watts/m>2
x EXPERIMENT
—  THEORY

-




e

700

660

620

- 380

540

500

' 1 1

MODEL 9. _
WEDGE SECTION 0-3I7¢m.
END THICKNESS. )
H=1190 watts/m”2

x EXPERIMENT -
— THEORY




Fig. 28 . MODEL 10 |
500} SLAB 1-27 cm. THICK
H =440 W/m>?
Xy X EXPERIMENT
480\ — THEORY -
X
460+ T°K \x |
440} X ’
X
t L 1 Bx,L
20017 02 03 04 05 06 07 08 09 10

540 X 1 ! 1 ! ' 1 1 ¥
X Fig. 28. MODEL 10
SLAB 1-27 cm.THICK
520} H=631 W/m? )
x EXPERIMENT
—— THEORY
500 T°K
480}
460}
. =le

01 02 03 04 05 06 07 08 09 10



A

| .CENTRE
SECTION

)

W)

X THERMOCOUPLE. POSITION,

Fig.29. TEST MopeL.






and the results thus obtained are compared with those
predicted by the theory,

and the results thus obtained are compared with those and the results thus obtained are compared with those
predicted by the theory. predicted by the theory.

SQEVY [OVYISHY ATVHOVIEQ

0L/TT ¥X TLEIOS/T/IT08TTY

T s T s s mlm s e e e s s el e e e v o e T mTrmbe a el e o flem el em e o e b m e Femlab e v e e w e e o M o m ek o e e el m 3 i e s e am e e e N



(tm) )

~
al y 93 L [%9]

A.R.C. C,P., No,1126
June, 1969
Nonweiler, T., Wong, H, Y. and Aggarwal, S, R,

THE ROLE OF HEAT CONDUCTION IN IEADING EDGE HEATING
THEORY AND EXPERIMENT

The effect of heat conduction of material on the
temperature distribution in the vicinity of a wing
leading edge in hypersonic flight is investigsted, The
theory is based on 2 conduting plate subjected to
aerodynamic heating, It is found that the role played by
the conductivity of the material and the leading edge
thickness in moderating the nose temperature is very
significant, Detailed discussicns of the numerical
solutions for various shapes of leading edge are given.
An experimental technique has been developed by which a
number of models representing a wing leading edge can be

tested/

A.R.C, C.P. No,1126
June, 1969
Nonweiler, T., Wong, H. Y. and Aggarwal, S. R.

THE RCLE (F HEAT CONDUCTION IN LEADING EDGE HEATING
THEQORY AND EXPERIMENT

The effect of heat conduction of material on the
temperature distraibution in the vicinity of a wing
leading edge 1in hypersonic flight is investigated. The
theory 1s based on a conducting plate subjected to
aerodynamic heating. It i1s found that the role played by
the conductavity of the materiel and the leading edge
thickness i1n moderating the nose temperature is very
sigmificant, Detailed daiscussions of the numerical
solutions for various shapes of leading edge are given.
An experimental technique has been developed by which a
'[number of models representing a wing leading edge can be

tested/

A.R.C. C.P. No.1126
June, 1969
Nonweiler, T., Wong, H, Y. and Aggarwal, S.R.

THE ROLE OF HEAT CONDUCTION IN LEADING EDGE HEATING
THEORY AND EXPERIMENT

The effect of heat conduction of material on the
temperature distribution in the vicinity of a wing
| leadaing edge 1n hypersonic flight is investigated, The
theory 1s based on a conducting plate subjected to
aerodynamic heating, I{ 1s found that the role played by
the conductivity of the materiel and the leading edge
thickness in mederating the nose temperature is very
significant, Detailed discussions of the numerical
solutions for various shapes of leading edge are given,
An experimental technique has been developed by which a
nimbher of models renrasentine a wine leading edge can be

- e . = e e mee m EE i T = M e e e = R mm e e o e v e = e o v o am e = ar . e i = ch E M e bm e e L EE e . EE e A EmEr Em mm = o m o A mm m— e m el e e o = MR e LA e e = w— e e e - - —

STEVD IOVYISHY TIHVHOVIEQ






© Crown copyright 1970

Printed and published by
HER MAJESTY’S STATIONERY OFFICE

To be purchased from
49 High Holborn, London WC1V 6HB
13a Castle Street, Edinburgh EH2 3AR
109 St Mary Street, Cardiff CF1 1JW
Brazennose Street, Manchester M60 8AS
50 Fairfax Street, Bristol BSI 3DE
258 Broad Street, Birmingham 1
7 Linenhall Street. Beifast BT2 8AY
or through bookseliers

Printed in England

C.P. No. 1126

C.P. No. 1126

SBN 11 470314 0



