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SUMMARY 

The effect of heat conduction of material on the temperature 
distribution in the vicinity of a wing leading edge in hypersonic flight 
is investigated. The theory is based on a conducting plate subjected to 
aerodynamic heating. It is found that the role played by the conductivity 
of the materiel and the leading edge thickness in moderating the nose 
temperature is very significant. Detailed discussions of the numerical 
solutions for various shapes of leading edge era given. An experimental 
technique has been developed by which a number of models representing a 
wing leading edge oan be tested and the results thus obtained are compared 
with those predicted by the theory. 
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1. Introduction 

In principle, there is no difficulty in applying a numerical 
process to the solution of the steady state temperature distribytlon within 
a body subjected to heat transfer, which can be implemented d&the help 
of a digital computer. However, where the body is as complicated as the 
structure of an aircraft, and the heat transfer is aerodynamic in origin, 
the problem can well be beyond the reasonable capabilities of present day 
computers, unless some simplifying assumptions are intrcduced in setting 
up the problem. 

One such sim lificatlon was introduced by one of the authors 
some time ago (ref.,,27 . , whxh sought to provide a basis for estlmatlng 
the temperature close to the leading-edge of a wing in hypersonic fligb.t, 
where the conduction of heat withln the material of the vrxng can be 
predotinant in determining the temperature reached. Interest has again 
been awakened in this problem (ref. 3), and with 8 view to using the 
approximatxon derived in this early work to study the leading edge 
temperature of wings of finite span, it was decided to check the numerical 
solutions given therein (which were achieved by slide rule methods), and 
to attempt to corroborate the approximation by experiment. This report 
is the outcome, and work on the finite wing (though not reported here) is 
well advanced. 

Basically we have in mind that the wing is geometrically thin, 
and (so far as its overall aerodynamx properties are affected) "sharp- 
edged". As we shall see, we envisage more precisely a leading edge radius 
of 1 cm. or so, but not of 1 m. or thereabouts which would be necessary to 
alleviate the intense heat transfer rates associated with "sharp" leading 
edges. Metallic material concentrated in this leading edge region conducts 
the heat input from the boundary layer downstream, and this results in a 
leading edge temperature considerably less than the "thermometer" value 
otherwise reached. 

Mathematically, the approximation consists of assuming that the 
thickness of the wing is infinitesimal, but that its conductivity is 
infinite; not to include the latter renders the problem trivial, as the 
temperature of the resulting plate is everywhere equal to the radiation 
equilibrium value. For a "conducting plate" on the other hand, the 
solution is non trivial, and It. is believed it represents with reasonable 
accuracy many problemi-of practical interest. 

Paragraph two of this report gives details of the theory, 
amplifying what is behid the approximation. The simplifies equations 
for the temperature distribution can still be troublesome to solve, and 
we restrict ourselves here to a particular set of boundary conditions 
(paragraph 2.1) and make various other simplifying assumptions about the 
environment (paragraph 2.3). Certain similaritg reletIons result which 
suggest how laboratory experiments in a relative low temperature 
environment may be scaled up to provide information of practical value, 
and vice versa. In paragraph 2.5, there is a detailed discussion of the 
numerical solution for va+ous shapes of leading edge assuming a heat 
input proportional to l/S (where x is the distance from the leading edge) 
an& this includes a description of an optimum llistribution of cot-doting 
material. Heat distributions obtained in the laboratory cannot of course 
include a singularity, and the effects of this are considered in 
paragraph 2.6. 
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An experimental apparatus is described in paragraph 3 which employs 
the radiation of an electric filament heater reflected by a specially designed 
mirror onto a model in a vacuum chamber, to obtain a heat distribution 

s resembling that near a leading edge of a wing. This has been used in the 
first case to verify the theoretical approximations - with reasonable success. 
It is ah0 intended for use in its Own right to investigate conditions which 
would still be troublesome to study theoretically. 

2. The Theory of Conducting Plates 

The form of the approximation is based on the supposition that the 
solid body is composed of highly conductive material, but is t&in. In 
mathematical terms, it is derived by asserting that, if k. and to are measures 
Of the general orders of magnitude of thermal conductivity and thickness 
(perpendicular, say, to the plan 2 = 0 of a Cartesian axis system), then we 
allow (to/k,) to tend to zero, with (toko) remaining finite. We note that, 
if Q. is the general magnitude of heat flux normal to the surface of the body 
then the change in temperature across the thickness will be of order (Qoto/ko), 
and the essential point of the approximation is that this is small compared 
with To - or in other words (Q,&,/k,T,) is a small quantity and is indeed treated 
as vanishingly small to justify the argument in mathematical terms. 

We may then treat the temperature T within such a body as a function 
only of x, and the equation for steady heat conduction merely equates the rate 

i of change of heat flux within the body per unit span in the direction of the E 
x-&s, that is - a (kt s), with the net rate of normel flux, which equals 

dx dx 
(Q - se), where Q is the quantity of heat transferred to the top and bottom 
body surfaces and EC@ is that emitted from them by radiation, (here s is 
the sum of the upper and lower surface emissivity, and d is Stefan's constant). 
If we supposed that (kot,) tended to zero with (to/ko), then this would be 
tantamount to ignoring longitudinal (as well as transverse) heat conduction 
within the body; in which event, of course, we would obtain the well-known 
result for a non-conducting plate, that the steady state surface temperature 
distribution tends to the radiation equilibrium temperature. This may indeed 
be an adequate approximation in many practical problems. However, in relation 
to the heat transfer at high speeds of flight to sharp edged wings or pointed 
bodies), the radiation equilibrium temperature at the leading edge or nose) l 
is equal to the thermometer temperature, and this may be several times larger 
than the general magnitude of the temperature downstream. In such a context, 
the heat transfer to the body may suffer unit order changes over a'length Of 
suq-face (4, say) close to the leadin 

7 
edge, so that there would be local 

tamperature gradients of order (TdL , and consequently a longitudinal heat 
flux of magnitude (kotoTo/C). Where longitudinal conduction becomes important, 
therefore, we would anticipate that this heat flux becomes corn arable in 
magnitude to Qo4. Conversely, if we suppose that, as (t,Q k,t,) + 0, J 

i/(k,t,) = b WQ&) . .'. (1) 

so that k,t, remains non-zero in this limit (a5 We have previously 
postulate&), then longitudinal conduction may be of consequence over the 

"r distance C. 

These/ 
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These assumptions can usefully be restated by defining lengths 

.)c = koTdQo and C = (hto)' . . . (2) 
i 

The basio assumption is then that (to/h) + 0, and we shall consider problems 
in which Q suffers unit order changes over the length G, which remains 
(conceptualfy) finite in the limit. Although the radiation emitted will no 
longer equal the heat transfer to the surface in such a region, it will in 
general retain the same order of magnitude, so that it is reasonable to define 

sOaTo4 = Q 
0 

and consequently in (2) we have 

. . . (3) 

X= ko/so"To" = k&ooQ;)$ . . . (4) 

(t(p) 1.3 
In practical terms, we may hope that the approximation is valid if 
'small' compared with unity, and that the results will be of 

consequence if C is an 'appreciable' length. The adjectives used here are 
necessarily vague, but it may be helpful, if not relevant as any kin& of 
justification, to illustrate the magnitudes we are likely to be considering. 
It would be unlikely for instance that values of E~"'T~ in excess of loOO°K 
would be of interest in a steel structure (for which k - 5OW/m/deg., say). 
It is easil 
and from (3 7 

inferred from (4) that h would thereforeO generally exceed 1 m., 
we note that we are implying heat transfer rates of up to 

5OkW/sq.m. Thus with material thicknesses of the order (say) of up to 1 cm. 
thickness, the value of (t&b) is less than 0.01. Further, the length C 
would be calculated to be around 10 cm., and the temperature over this length 
of surface from the leading edge of a wing is a matter of some consequence. 

If we introduce the non-dimensional notation 

x/c = E, T/Toi= 0, kt/k,t, = K, E/so = e, Q/Q, = q *-- (5) 

then the equation for heat conduction becomes 

where 0 e e(&), and K, e, q may be generally functions of C and possibly 8. 
It is not difficult to generalise to 3 dimensions by introducing a third 
co-ordinate y = q4, say, and we then have 0 = 0 (E;,rl) where 

*.. (7) 
but the present discussion will be limited to examples of the two-dimensional 
solution. 

Aside from the implication that 0, K, e and q are of unit order 
provided that the sealing terms are chosen in the manner we have suggested, 
we have not fully defined the notation in (5). Since, from (2) we have 

C = (k,t,TdQ,)' . . . (8) 

it will be seen that equations (8) and (3) together provide only two 
relations between the five disposable quantities Eo, To, 80, koto am.3 6 

which/ 
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which enter into the definitions of (5). This leaves three further 
relations to be invoked to specify the notation uniquely. It seems best 

? to leave this ambiguity unresolved for the moment. 

2.1 Boundary Conditions 
. 

The solution of the equation (6) depends, of course, upon the 
boundary conditions imposed, and these in turn depend upon the physical problem. 
Generally, because the length 8 may well be substantially less than that 
length of surface subjected to heating, and because it is only over lengths 
of this order that longitudinal conduction is important, it is convenient 
to re ard the conducting plate as of bounded extent, and insulated at the rear 
edge fx = L) from the rest of the surface, which may be treated effectively 
as non-conducting. Again, in experimental work, it is usually easiest to 
terminate the extent of the body tested by insulation. Such considerations 
lead us to expect that appropriate boundary conditions may frequently take the 
ferm: 

K ae/a& = 0 at &=O and E; = u.3 ..* (9) 
This may be clearly acceptable if we suppose not merely that the 

material thickness (t) vanishes outside the interval 0 < x < 6, but that 
it tends to sero in some continuous manner as x -) 0 and x + L, so that 
K + 0 continuously as & * 0 ana &+V4/E, since we could reject a finite 

i 3 longitudinal heat flux through a vanishing cross sectional area as physically 
unreal. As we shall now see, it is more difficult to justi in some 
contexts, if t (and so K) is not sero at the limits of the range of 
independent variable (though eero, or effectively so, outside them). 

First let us then suppose that K de/E = h, where h is non-zero3 
this implies that the longitudinal heat flux is hQ&. Then (9) might be 
justified if we could show that the lon itudinal heat flux to the ends of the 
body (across the planes x = 0 and x = L 7 is small compared with the total 
normal heat transfer over the length C - since this ratio is of order h. 
Now if the plane x = 0 represents the nose of a wing with thickness tn, say, 
then a study of aerodynamic heat transfer from a laminar boundary layer would 
suggest,that t+is ratio was of order (tr/c)s, and so from (2) of order 

%"~:~~ti; that 
Thus the neglect of h at & = 0 is compatible with the 

(t ) f 0 though clearly in this context the 
approximation is cruder P if tn i; 0) than that involved by the neglect of the 
temperature difference across the surface. A similar argument can be used 
to justify the neglect of h at the “downstream” limit 6 = L/C. In 
application to the problem of aerodynamic heat transfer, this latter boundary 
plane might be the trailing edge (where the local heat transfer-is certainly 
less than that at the leading edge), or some position where the thickness 
changes discontinuously to a very small (effectively zero) value. In the 
latter context, the downstream edge may be exposed to an interior Cavity of 
the structure, and again the heat flux to that edge may reasonably be taken as 
less than that to an exposed leading edge. Thus the condition (9) is 
relevant at least in an approximate sense to a wide range of problems. 

As/ 1 
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As a consequence of equation (9), we note that, for & + 0 

e - e(0) -i” (l/K) (~~qa+&+cw) 
0 

Thus, since the nose temperature must be bounded, we must find that 

as & -B 0. Where K, is O(E) so that the nose is sharp, we would generally 
expect that q = O(F;-S) if the heating is aerodynamic in origin, unless the 
nose temperature were the thermometer temperature. Thus the latter condition 
will apply if, and only if, K = O(cs'a) for & + 0. However, the cusped 
leading edge thereby implied is not thought to be of practical interest, and 
in fact we shall usually consider nose shapes which are rounded, or blunted. 
On the other hand a cusped rear edge (at x = L) will be found to lead to a 
temperature at this edge locally equal to the radiation equilibrium temperature, 
and this is clearly an acceptable possibility. Indeed, we shall have it in 
mind that the application of the work is to thin-skinned structures which 
may be locally thickened over a length 
length 4) 

L (of the same magnitude as the 
to enhance the effects of longitudinal conduction, and this extra 

material would be likely to be tapered off towards the rear. 
i 

2.2 Equations for plates of finite length 

If the body has such a "closed" length (L), it is clearly possible, 
and in some instances preferable, to seek a solution of (6) in terms of the 
independent variable (x/L), rather than (x/c); more particularly if we write 

x/L=s, kt = (E~~~~)~L~~, (i.e., T = (C/L)'K) . . . (10) 

with 0, e and q defined as before, but regarded as functions of s, then 
equation (6) becomes 

a Tde 
( > 

=ecp-q . . . (11) 
as as 

and this is solved subject to the boundary conditions that 

rde/ds = 0 at s=O,l . . . (12) 

Note that (k,t,) does not need any longer to be defined in the notation of 
(IO), 8s L has supplanted C as a reference length. Nonetheless one 
must not allow this to cloud the fact that the solution is still valid only 
for (t,-Jh) + 0, and in the notation of (10) for finite values of (IJ.C)'T 

Trivial solutions result from (11) in two extreme oases. Thus if 
we allow T(S) + 0, then 8 - (a/e)$ or in other words the temperature 
tends everywhere to the radiation equilibrium value. 
we suppose T(s) + m, 

On the other hand, if 
which can clearly only be justified where (I+/8) + 0 

then 

e/ 



which is ths SOlutiOn for the condition of "infinite conductivity" in which 
* the temperature is constant throughout; 

Qo and so 
in particular2 if we supposed that 

represented the appropriate mean values Q and E of Q and 
s, then in this condition 0 = 1. 

Note that, irrespective of the magnitude of r, it follows from 
(12) in (Ii) that 

f e84ds =/' qds 
0 0 

. . . (13) 

that is, the total radiation emitted must balance the total heat flux to 
the body since the edges are supposed insulated, and consequently if the 
emissivity is constant (so that e = I), the maximum value of 8 is always 
in excess of the "infinite conductivity" value. 

2.3 Factors affecting the method of solution 

Even accepting the simplified equations, such as (6) and (II), as a 

5 basis for calculation of the temperature distribution, the implementation of a 
solution may still be difficult. These difficulties arise from two causes. 
First of all, the body may be non-homogeneous. Variations of material may 
be accommodated by interpreting the local value of kt as an integral of k 
aorcss the thickness, but the presence of an internal cavity would properly 
require the condition of radiation equilibrium of the interior surfaces to be 
evaluated, and this involves the solution of an integro - differential equation. 
However, this difficulty is resolved if as here we are considering bodies 
which are geometrically thin, since in this limit, the condition of radiation 
equilibrium 1s satisfied by ignoring the change of temperature across the 
cavity. Thus, compatibly, the cavity is replaced by an insulator. 

The second difficulty concerns the evaluation of the heat flux to 

C . 

the body surface. We have in mind the application where this is dominantly 
the heat transmitted from a boundary layer, and granting the likelihood that 
the boundary layer flow may be laminar, it might be possible to invoke 
theoretical values for this heat flux, if the surface temperature were known. 
Since it is not known, a priori, we would be faced with the need to adopt 
numerically some iteratzve approach, and this again is a considerable 
complication. However, where the thermometer temperature is large compared 
with the variation of surface temperature, - and certainly this would be the 
realistic condition in heat transfer to a body in flight at hypersonic speeds - 
it would be a reasonable approximation to ignore the dependence of q on 8, 
provided perhaps that the value of Qc included some dependence on (say) To. 
Then the remaining complication would arise from the influence of the shape of 
the exterior surface ad the conditions of flight. If the exterior were 
wedge shaped then, settin yside boundary-layer shock-wave interaction, Q d&t 
be expected to vary as 1 XT. 7 In practice, a sharp nose is undesirable, 
since it leads to an unduly high ncse temperature and aggravates the problem 
of thermal buckling: nonetheless having recourse once again to the assumption 

that/ 
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that we are dealing with a body which may be geometrically thin, deviations 
from this form of variation of Q with x are likely to be small, even in 
application to blunt nosed wing sections. 

2.4 Similarity relations 

Let us suppose that some convention is to be consistently adopted 
by which the quantities so, To, Q 
(5) and (IO), are stipulated. Let 

and koto, appearing in the notation of 
us assume, for instance, that we place 

L 
Qo = Q(L), Eg = E(L), ktdx = kotoL . . . (14) 

0 

so that q(1) = e(1) = 1, To is from (3) the radiation equilibrium 
temperature at the rear edge, and 

r' 
T(S)~S = (4/L)a = (Q/To)a = TV, say 

0 

..- (15) 

where TR = (koto/E&Ls)"" is a "reference temperature" independent of the 
magnitide of heat input. Then for any problem in which, subject to the 
normalisation we have adopted, the functions K = T/T , q and e remain the 
same - that is, the thickness distribution, heat inpu e and surface emissivity 
remain similar - a solution of (6) or (11) will result in which 0 = T(x)/T, 
will be a function of s = x/L and of a parameter such as 
(TJTR), or (We). At a fixed value of s (say s = 0, &r~~ponding 
to the nose) the temperature will be a function only of this parameter. 

One of the most convenient forms of these many possible variants of 
the expression for temperature in laboratory studies, where the level of heat 
input is easily adjustable (but the geometry remains fixed.), is obtained by 
placing 

T = TRf(x/L, To/w . . . (16) 

where evidently f 5 (TdTR) 8. t Theoretically, the form of the relation 
f could be determined directly from a solution of the equations (11) and (12) 
with r, 0 and q replaced respectively by K = (T/T~), f and (Q/eOa4). 
Equation (16) expresses the fact that to simulate in the laboratory a condition 
in which To) is large, it is possible to work with much smaller levels of 
heat input (and so of To) provided that TR is reduced in the same proportion, 
sag by increasing L, or reducing k,t,. 

Where the variation of Q as a function of x or s follows a 
simple power law, it is possible to assert similarity relations of still 
greater generality, and it is this which renders the assumption that Q varies 
as x3 of particular interest, whatever the rmsgivings one may feel about 
the accuracy of the assumption. 

2.5/ 
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2.5 Solution for Q varying as x-" 
E -4 We shell here place Q = Hx 

that 6 = Eo and k = k 
and we shall assume for sJ.mplicitg 

? are constant.;. We adopt the conventions of (I&), 

. whereby we set Q. = HL- and choose t 
to = A/L where 

as a mean thickness in the sense that 
A is the cross-sectlo& area of the thickness distribution. 

It does not of course matter whether we choose (6) or (11) as the equation to 
be solved: we shall prefer to treat the latter, and in terms of the notation 
just introduced, we have 

0 = (T/T,) = (E~Q+,/~)~@T, T= kot/(Ea&sLis)l's, 7. = kg/(soaeL")*'s 

. . . (17) 

and further e = I and q = sc . : The solution for 0 - e(s) , say, will 
evidently depend not onl upon the form of variation of the thickness 
distribution K(s) = (T TV) P , but also upon the parameter 7. , which is given 
in (17) in terms of its definition in (15), and which we shall prefer to use 
here rather than other parameters such as (L/d) or (TdTI() - plainly this is 
once again merely a matter of choice. 
solution for a fixed variation K(s) 

Consequently, we can represent the 
- that is, for a family of geometrically 

similar thickness distributions - in a number of different ways, as 

s, T = (T,T,-~)~(~)T,~ 

where m is of course a.rbitr 
7' 

However, if we suppose that one of the 
. geometrical parameters (say, A is to be regarded as a constant while we 

imagine another to vary (say, L ), then it is convenient to choose the value 
of m so that (ToTomm) depends on the fixed parameters; the effect of the 
variable geometry is then immediately shown by the variation of ETCH with ~0. 
Since we shall have frequent recourse to this artifice, it is convenient to 
summsrise these relations, as follows: 

T = (Ha/~o=~L)1'80(s) (length fixed) . . . (18.1) 

(cross-sectional area 
fixed) . . . (18.2) 

= (H'/sos~kot~)i'la~(s).o*'~s (thickness fixed) . . . (18.3) 

= [H"/so%Jko(t~V'~)]i'~e(s)To~'~ (nose radius fixed) . . . (18.4) 

= (HaL/soukoto)l~s,(s).ol'= (fineness ratio fixed) . . . (18.5) 

= (koto/srPLa)"sg(s)~oj'3 (geometry fixed) . . . (18.6) 

The last of these relations is identical with (16) and is included here only for 
the purposes of consistency: it is of use where the geometry (Le., t, & L ) 
may be known, and H is treated as variable. 

Equation (II) has been solved for three examples of simple,variations 
of K(s) corresponding to 1 (a uniform thickness distribution), 3sF/2 (a 
parabolii distribution) and 2s (a wedge), by using the tinge Kutta process, with 
the help of a digital computer. 
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If we consider a plate of constant thickness, then IC = 1 or T = ho 
and the values of nose temperature are shown in fig.1 plotted against TV. 
If the surface length is fixed, e(o) tends to a finite limit as ~~ -+m i.e., as 
koto is increased, corresponding in the limit to the "infinite conductivity" 
solution. In fact, as ~~ + m 

e(o) - P@+ (1/5r,) + @(To+) 

On the other hand, as 7. + 0, then for a fixed k,t,, the length L of the 
surface increases and T tends to a finite limit: 
TO "'s0(0) 

that is, in (18.3), 
must remain finite in the limit, and we find in fact that 

e(o) - l.j058~~*11~ as To + 0 

This merely tells us that indefinite extension of the material downstream has 
ultimately no effect upon the nose temperature. Indeed for a length of surface 
defined by a value of ~~ = 1, the nose temperature (with fixed k to) is 
within 1% of the limit for an indefinitely long plate, and from (157 this 
clearly corresponds with the choice of the length L as identical with C. 

It will be seen that Cl(o)rol'al -rm in either limit ~~ + 0 or 
To -) -3 and from (18.2) it follows that there will be some value of 7. 
for which the nose temperature is a minimum if A is fixed: this may be 
termed an optimum selection of TV, since it im lies 
quantity of material. It appears that e(o)T,' P 

a "best use" of a fixed 
" has a minimum value of 

I.309 at about ~~ = 2.0 (the precise value being very ill defined, as the 
temperature is within I$ of the minirmun 
5). 

for all values of ~~ between 0.8 and 
Thus from (17) and (18.2), for this optimum surface 

L = 0.~(ko4A4/&oc&)a'a1, to = l.jO(soa~aHbAia/kos)r'ai 
. . . (19) 

for which T(o) = 1.~~(H8/so6~koA)1'a1 3 

The tern erature at the rear of the conducting slab varies from a value given 
by O(1 P- - 1 if ~~ = 0 (corresponding to the radialion equilibrium 
temperature if koto = 0), up to a value of O(1) = 23 if ~~ =DJ corresponding 
to the "infinite conductivity" solution; this variation is shown in figure 2. 
Note that for ~~ = 1, although the nose temperature is within I$ of the value 
for an infinite1 long surface of the same thickness, the temperature at the 

o"y rear is over 1 ,O above the radiation equilibrium value. Fig.3 is a sketch-of 
some typical temperature distributions, in which e is plotted versus F;. 

Similar sets of graphs in figs.4 - 6 and figs.7 - 9 relate 
respeotively to the general famil of parabolic and wedge distributions of 
thickness (i.e., with K(s) = 3s' s 2 and 2s respectively). T/ In both oases, 
7. +m relates to the "infinite conductivity" solution, but as ro+O, we 
note that 

e(o) - 1.688To~'= for the wedge 

e(o) - 1.376~~~'" for the parabola 

the first relation showing (from equation (18.5)) that for a fixed wedge angle, 
indefinite extension of the material awnstream has no effect, and the latter 

relatiod 
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relation showing the same thing for a fixed nose radius of curvature of the 
parabola from equation (18.4), 
(9toa/32L). 

since the nose radius of a parabola is 
For the wedge, the minimum nose temperature for a fixed area of L material is given by setting 

L = 0.38(ko'A4/Eo~s)a'ai, tO/L = 6.~(&04dlHi3As/ko*B)*'a1 
. 

for which I 
. . . (20) 

T(o) = l.4127(HB/~os~ koA)"= 

where (to/L) is the tangent of the wedge-semi-angle; for the parabola the 
optimum use of material is obtained with 

L = 0.59(ko4A4/EO~S)a'ar, rn = 9toa/32L = j.6(s,#iaA3/ko4)a'7 

3 
(21) 

for which T(o) = l.~8(He/sososkoA)1'a1 
. . . 

Comparing equations (19) to (21) we see that the uniform plate makes the best 
use of the material, and the wedge the poorest use, reflecting the special 
importance of material near the leading edge in alleviating its temperature. 

It is pertinent to enquire what variation of T(S) has to be 
assumed in order to render T(o) a minimum if the cross section eree A of 
the thickness distribution is prescribed. This precipitates an exercise in the 
calculus of variations which is algebraically rather involved, and will not be 
detailed here. It transpires that the shape has no closed algebraic description, 

s but can be derived by numerical calculation. It has a blunt nose, with T 
varying locally as s114 so that the nose radius is infinite; end a ousped rear 
edge, with T verying locally as (1 - s)'la. The maximum thickness ocours at 

. O.O7L, and is equal to 2.48 to, where to es in (14), is the meah thickness. 
There is e.n optimum selection of length, associated of Course with an optimum 
fineness ratio, and this leads to a unique optimal variation of T with s, 
which is given in table I. The corresponding value of 7. is equal to 
0.6983; the temperature distribution is shown in fig.10 and the value of 
6(o) is found to be 1.309, so that we may find from (17j and (18.2) that 

L = 1.14j(ko4A4/Eo~s)a'a1, to = 0.885(soa~~A13/ko*)i'aai 

3 
. . . (22) 

for which T(o) = l.2f36(Hs/~osdjk0A)1'ai 

There is a modest (2fl decrease in nose temperature compared with the optimum 
uniform slab but note that this implies that, to achieve the identical nose 
temperature, the slab would need to have 45$ more cross-sectional area. 
Figure 11 extends this comparison to the other shapes discussed, by illustrating 
the optimum thickness distribution on common scales of length and thickness; 
the actual length and thickness scales, and their relative proportions in this 
illustration, would depend of Course not only on the value of A, but also on 
conductivity, emissivity end the value of H ; consequently the fineness 
ratios illustrated in fig.11 *re not necessarily optimal. 

Also included in this illustration is one of a family of distributions 
which provide a uniform temperature gradient. The evdustion of a thickness 
distribution for a given variation of 0 is an easier problem, as then of 5 course (6) or (11) become directly integrable equations for R Or T, end in 
particular from (II), 

d 
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T.(S) = [l/e’(s)1 
[i 

s (e@ - q) as 1 0 . . . (23) 

where C'(s) E &3/&e. The mean value of 8 cannot be allowed'to be arbitrary 
if Q. ana co are stipulated, since equation (13) has to be satisfied, and 
this simply means that since the temperature determines the total heat 
radiated., it has necessarily to be related to the total heat input to the 
surface. Furthermore, the fact that T must be bounded and cannot be 
negative imposes restraints on what temperature distributions can be realistically 
postulated. Thus if for example, we postulate, using the notation of 
equation (23) and (15j , a temperature distribution given by 

eCs) = e(0) (I - as) 

then from (13), since e = 1 and q = s -s 

e(o)‘= ]io~l/ [I - (I - d5] I” 

and (25) leads to a thickness distribution given by 

T(S) = [2/ae(0)] 12 - [I - (I - as)~]/[~ - (I - ~$1 I 

. . . (24) 

This has real solutions (corresponding to bounded r z 0 for all0 6 s d 1) 
0 t a 60.26057. The lower limit of vanishing temperature gradient 
(a -t 0) corresponds, as mightLbe expected, to the "infinite conductivitg" 
solution, for which C(o) i 24, and 

T(S) - (2 - s)/a 

a + 0. This is of course only valid in the limit if L/C = O(a'). 
'%e other extreme condition (a = 0.26057 . ..) is more interesting. The 
thickness distribution associated with it is characterised by a cusped trailing 
edge, with T varying locally as (1 - s)3, and the local temperature is 
precisely the radiation equilibrium value (i.e., C(1) = 1): in fact this 
value of a is found by solving the equation obtained by replacing e(o) in 
(24) with l/(1 - L-4. The shape has a rounded nose, and a maximum thickness 
2.s times the mean, located at a distance 0.114-L from the nose. The value 
of e(0) is 1.353, and 7. = 0.379. Of all the members of this family of 
thickness distributions providing uniform temperature gradient, which are 
generated by varying a (and are not of course geometrically similar), it 
provides the least nose temperature for * given cross sectional are*. We 
find in fact that 

L = 1.45 (ko4ti/so&)a'a1, to = 0.69 (&oac?Ha~3/ko8)*'21 

3 
. . . (25) 

for which T(o) = 1.289 (He/sosdkoA)i'ai 

Comparing (25) with (22) we see that this nose temperature is only 0.32 
higher than that of the optimum shape, and it seems reasonable to suppose 
that the efficiency of both is in part due to the taperxng off of the 
thickness distribution towards the rear, where of course there is less 
effect to be derived from the provision of conducting material. 
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To provide some feeling for what these numbers mean, let us suppose 
that H = iOkJ/&=, which represents a heat input of 20 kN/m span over the 

^ first meter of the chord of a wing, and which might be taken as indicative 
Of aerodynamic heating intensities in flight at hypersonic Mach numbers. 
Further let us take sou = 10ml’ kW/ma/(deg.K)4 (corms onding to radiation 
from both upper and lower surfaces with emissivity 0.88 P and 

. kc = 0.05 kW/m/deg.K, a figure typical of steel. Table'11 evaluates the 
lengths, thickness and extreme temperatures of the various optmally selected 
surfaces, assuming in each case 'chat, a cross-sectional area of IO ma is 
available to be distributed (i.e. say 8 kg. of steel per meter span). Note, 
however, that even if this cross section is reduced to 1 ma, then provided the 
material is correctly redistributed - that is the length of surface is reduced 
by a factor 0.18’ai = 0.42, the thickness by 0.113’ai = 0.24 and so the 
fineness ratio increased b 10s'ai = 1.73, - it follows from (IS), or any of 
the relations in (19), $203, (21) or (25) that the nose temperature is increased 
by a factor of only 10% a' 5 1.116. The same result applies if the conductivity 
is reduced to a tenth of its value for steel,provided the new material is 
suitably redistributed. Vhere such optimal redistribution is not affected, but 
(say) length, or conductivity, is changed in isolation, then larger variations 
in nose temperature will be manifest, and these cannot in general be predicted 
except by recourse to the figures for the variation of (say) e(o) with TV. 
But the same power laws as quoted here will apply form, isolated changes 
in any feature (such as A or k,) away from the optimum value (since ~(o)T~"~~ 
has a stationary value in the optimum condition). In the same may that the 

z nose temperature is relatively insensitive to the amount of material, so also, 
for an optimal surface this temperature is not very sensitive to the heat 
transfer intensity, varying only as Ha'7 (that is, T(o) increasing by only 
22$ if the heating is doubled). 

2.6 Solution for Q vaqing as (x + xo)-l 

In experimental applicstions,the singularity associated with a heat 
transfer distribution varying with x5 cannot of course be realised. In 
order to determine horn important this is in determining the heat transfer 
distribution me place 

Q = H/(x + xg) + = (l&(s + so+ 

and examine the effect of varying so = xo/L. Results for a particular example 
are shown in fig.12: here to, k, and so are supposed constant, and the value 
of vo, given in terms of H by equation (17), is equal to 5.36, - a value 
chosen as relevant to the ?xperinental investigation discussed in the next 
paragraph. 

3. Experimental Investigation 

The purpose of the investigation is twofold. In the first place we 
seek experimental verification of the leading edge temperature distribution 
predicted by the conducting plate theory given in section 2. Within the 
context of the theory, the model which represents the leading edge is subjected 
to a heat flux distribution varying roughly in proportion to l/S along the 

5 length on one surface, and is insulated thermally on all other surfaces. The 
experimental apparatus so set-up may also provide some analogous studies of 
two-dimensional problems whose numerical solution may be specially daffioult. 

3.v 
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3.1 Simulation of asro~ynamic heating 

A number of methods could be adopted to simulate aerodynamic heating 
in the laboratory, but the simplest approach by far is to use infra-red 
radiation derived from electric power, provided that the intensity of the 
radiation distribution can be made to represent the convective heat transfer 
of the boundary layer. Our concern, therefore, is to simulate on a given 
plye a radiation field with en intensity varying as closely as possible with 
x7, so that when a model is placed with one surface lying in this plane, its 
leading edge (at x = 0) will be subjected to the highest heating. This is 
accomplished by employing a reflector formed so that a large portion of the 
energy emitted from a single heating element is reflected to impinge (together 
with the direct radiation) on the irradiated plane with the desired distribution. 

The necessary differential equations for the design of the reflector 
are given in references4 and 5. Its actual size and shape are directly 
influenced by many parameters, such as the distance between the heating 
element and the irradiated plane, the sloe of the model, the size of the heating 
element as well as the location of the reflector relative to the element. 
Hence it is possible to have different shapes of reflectors resulting in the 
reflected rays crossing or not crossing each other. Radiation mai also be 
reflected from different portions of the reflector to impinge on the same region 
on the irradiated plane, but those to impinge on the region of the leading 
edge must not be intercepted by the heating element itself after reflection. 
An acceptable solution can only be obtained with the help of di@tal computer 
calculations. Even then a number of practical difficulties remam. For 
example, to direct a large amount of radiation energy on to a very small region 
at the leading edge requires an extremely accurate profile of the reflector 
which must also possess a perfect reflecting surface. Any small deviations 
from perfect conditions will alter the direction of the incident rays and will 
cause them to diffuse. It follows that both the magrxitude and the gradient of 
the radiation intensity will be substantially reduced, especially ever the 
leading edge region, if sny small lmperfectlons are present. To alleviate 
these shortcomngs, an arrangement is made, again with the help of a digital 
computer, for the proflle of the reflection to be composed of a number of curves 
each of which is similarly designed to produce the desired distribution of 
radiation, with the highest intensity always directed towards the nose. 
Altogether there are seven curved surfaces blending smcothly to form a 
quasi-continuous profile. 

In construction, the reflector was fabricated by a sheet of highly 
polished copper ever a solid block made to conform first of all to the 
prescribed profile. Once the sheet was firmly pulled ever the block, the 
over-hanging parts of the sheet were attached to two end plates, made of 
aluminium alloy to the same profile. Thus the sheet could be held 
permanently to the required shape. 

To avoid distortion of the reflector by heat du?.-ing its operation, 
cooling of the black surface is provided by circulating cold water through 
bonded copper tubes. The end plates were coated with a black paint to give 
a high absorptivity and are also cooled during experiments. 

The heat scurce is a wire coiled round a ceramic tube, which is 
reinforced by the insertion of a tungsten rod to prevent sagging at high 
temperatums, giving an overall diameter of the heating element cf 0.57 cm. 
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Oxidised nickel wire was first used because of its high emissivity at elevated 
temperatures. Operating in vacua, however, this material tends to become 
unstable when operating temperature exceeds 1000°C. The maximum power output i 
of the element over a length of 0.305 m (the length of the reflector) was 
1.2 kW. In order to increase the power output, the nickel wire was 
subsequently replaced by a tantalum wire which, though having a much higher . melting temperature, possesses only a moderate emissitity. To improve its 
emissive power, the tantalum wire was oxidized in air at a temperature of 
550% for jCl minutes. At higher temperatures, the material is liable to 
decompose owing to the rapid process of oxidation. Using the oxidised 
tantalum wire, the maldmum heating power was increased to 1.8 kW. 

The reflector was tested in a vacuum chamber and its performance was 
recorded by a radiometer specially designed for the purpose (ref.6). The 
results are shown in fig.15. As can be seen, the measured results fit the 
ideal distribution fairly well up to a distance of s = 0.0275 from the 
leading edge, within which region the intensity of radiation does not increase 
as rapidly as required by the & law. To place the leading edge of a test 
model at s = 0 would tend to moderate the temperature gradient in the nose 
region and this is clearly undesirable. Hence it was aed..aea to place,the 
nose of a test model at s = 0.0275 for in this way not only is the x-ii 
distribution of radiation satisfied but also the experimental results thus 
obtained can be compared directly with the theoretical calculations of section 
2.6. Thus in the notation of that paragraph, the experimental heat input 

s corresponds to one with so = 0.0275. Typically, fig.12 shows that this would 
cause a difference of about 5 per cent in nose temperature compared with the 
ideal distribution (with so = 0). 

i 
3.2 Test models 

To verify the theoretical results, a model in the form of a slab is 
the simplest to construct and its performance is as informative as that of 
models of any other shape. Its size is largely determined by the dimensions 
of the vacuum chamber in which it and the heating element and reflector are 
installed. Its chord length is chosen as 15.25 cm. (6 in.) and its span as 
twice this in order to reduce the end effects on the central plane of the 
model where temperature measurements are made and two-dimensional conditions 
am expected to prevail. Over the top surface it is desirable to achieve a 
high surface emissivity. Other faces of the model will be insulated. 

So long as the passage of heat by conduction from the nose towards 
downstream is nowhere restricted, the nose thickness has a dominsrit effect 
upon the temperature distribution. To observe this, trapezoidal sections of 
different nose thicknesses have also been tested (fig.17). 

If we are interested in maintaining a certain temperature distribution 
in a model under a given heat input, the thickness of the model should bear an 
inverse proportion to the conductivity k, as the thiolmess t and k occur 
together in the simplified heat conduction equation. On the other hand to 
display the effects of conductivity over a reasonable proportion of its 

s chord in association with the amount of heating available during experiment, 
the product 0f k and t is fairly closely defined. With the limited 
heating capacity available, it transpires that materials of relatively low 
thermal conauotivity are preferred as only they provide a thick.ness 
sufficiently large to enable an easy observation of the temperature variation 
along the model. Wigure 16 shows the variation of nose and rear +33mperatUreS 

with t for models of L = 15.24 cm (6 in.) having three different 

fineness/ 
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fineness ratios (i.e., L/t), takmg H = 1684 iY/m=f" and E = 0.8. 
(These preLmm-y results were obtaned on the basis of x-$ heat flux 
distribution with so = 0. The nose temperatures should have been s!, lower 
had so been taken as 0.0275). If high conducting materials such as 
copper and dluminium were used, a near undorm temperature would result. 
TO produce a greater variation of temperature distribution, our choice should 
fall on materials having a much lower k. Among common metals, stainless 2 
steel F.C.B. Staybrite (AISI-JIL7) with k = 15.88 (1 + 3.898 x IO+ TOG) 
Ti/m'K (7) appears to be a reasonable matenal to use. Ceramcs have also 
been considered. Generally, the low conduct1tit.y of this type of material 
should satisfy the requirement very well but for the non-homogeneity in 
properties and shrinkage liabzllty during the firing process. However, 
one type of ceramic known as Frequentite, bearing similar characteristics to 
Steatlte, and having a thermal conductivity k = 3.17 (1 + 5 x 1OA T"C) 
El/m°K 1s chosen. 

Altogether ten models are used In the experiments. The details 
are given =n,table III. 

For the stainless steel models, the top surface was shot-blasted 
and oxidised at a temperature of YOO'C for 20 minutes. According to 
reference (8), the emissivity is taken as E = 0.735 (1 + 2.944 x 1OA T”C). 
Other faces were highly polished to reduce the amount of heat loss to a 
minimum. 

For the ceramic model, the top surface was coated with lampblack 
mixed with fibrefrax cement of which the emissivity is assumed to be 0.78. 
Other faces were machined flat and then polished mth diamond powders. 

3.3 Apparatus 

Aerodynamic heating to be simulated by infra-red radiation, and 
heat dissipation from the model to be entirely due to radiation demand that 
the presence of convective heat transfer be eliminated during experiment. 
This requires both the reflector and the model to be housed in a vacuum 
chamber. The model is supported by four pointed ceramic rods which in turn 
rest on the side of four ceramic pins (fig.l4), thus reducing any conduction 
heat loss to a minimum. Apart from the top surface of the model which 1s 
subjected to heatmng, the vertical as well as the bottom faces are shielded 
against radiation heat loss. The walls of the vacuum chamber are painted 
black, using BritanniaDenamel paint, which is believed to have an 
absorptivity of 0.9. During operation, the whole chamber is cooled by 
circulating cold water through copper pipes welded round the chamber in 
order to rmniniee background rabation. Temperature measurements, taken 
along the middle section of the model at 6 prescribed locations, are by 
means of nichrome - constantan (0.012 cm. diameter wires) thermocouples 
which were calibrated by the National Physical Laboratory. Two rows of 
thermocouples were placed at different depths in the model, one row near the 
top surface and the other near the bottom surface to detect any variation of 
temperature across the model thickness. The general lay-out of the 
apparatus is shown in fig.13. 

3.4 Experimental procedure and test results 

To start the experunent, the vacuum chamber is evacuated by a 
6" diffusion pump backed. by a single-stage rotary pump. Nhen the chamber 

pressure/ 
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pressure reaches a value below 5 d/ma, electric current to heat up the 
element of the reflector is switched on. Both the current and the voltage 
drop are measured so that the total input power can be increased by 
definite increments. During each power increment temperature measurements 
by means of thermocouples using a potentiometer are taken as soon as the 
steady state condition is reached. The temperature distribution under 
maximum power input is used for comparison with the theoretical values. 
The test results are given in table IV. 

To assess the amount of radiation impinging on the model, the 
radiometer mentioned earlier is used. But the amount of heat absorbed by 
the model can be taken to be equal to the amount of heat dissipated from the 
top surface of the model, on the assumption that any heat loss from elsewhere 
is negligibly small. Thus it can he calculated directly from the temperature 
distribution along the model. In table IV, the total power input to the 
heater IS the direct reading from a wattmeter, while the power received by 
the model is accordingly the integration of the radiant heat dissipated from 
the model. 

3.5 Comparison of theorv with experiment 

Fig.17 shows the calculated temperature distributions for the 
nine stainless steel models with H = 7500 l?/~s'~. They constitute a 
family of curves flanked by the radiation equilibrium temperature curve in 

s one extreme and the infinite conductivity temperature in the other. By 
taking material conduction into account, the temperature at the nose and 
in the region near to it drops below the radiation equilibrium temperature, 

z at the expense, apparently, of that at the rear. One important feature 
from the results given in fig.47 is worth mentioning. The reduction of 
nose temperature and of the temperature gradient along the whole length of 
the conducting plate can be significantly achieved by an increase in the nose 
thickness, which, we must accept, represents the quantity of conducting 
material employed at the most crucial position. SubJected to the same 
heating intensity, models of the same nose thickness, though having 
different shapes, give rise to more or less the same temperature distribution 
as shown by curves B, C and D. In f1g.18, the calculated variations of 
nose and rear end temperatures are plotted against the heat flux parameter 
H using model 1 and model 6 in present experimental conditions. 

Test results from the ten models are plotted in figures 19-28. 
The agreement between experiment and theory for models 1, 2, 3, 4, 5 and 7 
are remarkably good. Considering that a number of errors, such as in 
temperature measurements, in the absolute quantities of k end E and 
their variation with temperature and in the insulation of the model against 
heat loss, could have etisted in the experiment, the maximum discrepency is 
only about 2%. This indicates that the temperature variation is not to0 
sensitively influenced by any one parameter. The agreement between 
experiment end theory for the wedge models are not so good. In all three 
cases, the predicted temperatures are much higher than the calculated values 
at the nose. The maximum diSC~%pamy i5 Just Over %. However, due to 
the machining and polishing processes, the thickness of a wedge nose 

2 cannot he clearly defined, and any small deviation in measurement from zero 
is known to have a disproportionate reduction upon the OalCUhted VdUeS Of 
nose temperature. Test results on the ceramic model follow the theoretical 
curve very closely, except that at the location adjacent to the nose. 
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The temperature measured at this point is about the same as that at a point 
1.27 cm. downstream. We consider this may have been due to the 
malfunctiorung of the thermocouple at this location. Under two different 
Inputs of heating, the temperature distribution in general behaves as 
predicted. 

The results obtained from twu rows of thermocouples embedded at t 
different depths in the models indicate that there are negligible temperature 
variations across the thickness. 

4. Conclusions 

The concept of a "conducting plate" simplifies the exemlnation of 
the role of longitudinal conduction of heat within the material of a wing 
subjected to aemdynamic heat in hypersonic flight. Various similarity 
laws result which provide .a broad insight into the properties determining the 
nose temperature. Moderate temperatures result from quite small provisions 
of conducting material, and leading edge thxknesses of about 1 cm or so. 
Experimental results closely verify the theory. 
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Fig. 5 l RATIO OF TEMPERATURE TO RADIATION 
EQUILIBRIUM TEMPERATURE AT REAR OF 
PARABOLIC BODY. 



0 0 0.35 1.65% 0.70 0.57w 

0.05 1.0142 0.40 1.5574 0.75 0.4138 

0.10 1.3625 0.45 1.4277 0.80 0.2729 

0.15 1.5681 0.50 1.2742 0.85 0.1571 

0.20 1.6825 0.55 1.1047 0.90 0.0710 

0.25 1.7273 0.60 0.9265 0.95 0.0181 

0.30 1.7152 0.65 0.7472 1 .oo 0 
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Table I 

The optimum thickness distribution 

3 
s 49) 2 4s) 

Table II 

Typical characteristics of optimised thickness distribuldons 

Optimal 
distribution 

UllifCllll 
temperature 
gradient 

lJnif0xm 
Thickness 

Parabolic 

urea@ 

12.1 o.fJ3 2.05 

15.4 0.65 1.52 

8.2 

6.3 

1.22 

1.59 

2.44 

Mean Mhum 
;Nckness thickness 

(4 (4 

Position 
[cm from 

nose) 

0.85 956 732 

1.76 

6.3 

959 

974 

999 

1051 

876 

920 

989 

VOW3 
temp. 
;90 

- 
(“.I 

0.81 

Nose 
Radius 
= 7.5mm 

Noee 
Radius 
= 2.5m 

Semi-apex 
alI& 
= 300 

III/ Table 
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Table III 

Test Models 

Model No. 

I 

Material 

Stainless Steel 
(AlSl-347) 

Description 

Slab a =b =1.27cm 

2 II Slab a = b = 0.635 cm 

3 " Slab a=b ~0.317cm 

4 n Trapemidal a = 0.635 on 
b = 1.27 OIIL 

5 b Trapezoidal a = 0.317 cm 
b = 1.27 cm 

6 n wedge a = 0.0508 cm 
b = 1.27 cm 

7 ” Trapezoidal a L 0.317 cm 
b = 0.635 cm 

a n Wedge a = 0.025Jt cm 
b = 0.635 cm 

9 " wedge a = 0.0254 cm 
b = 0.317 on 

10 ceramic 
(Frequentits) 

Slab a =b ~1.27 cm 

Note: For all models, d = 30.48 cm, L = 15.24 cm. See Figure 29. 

Table IV/ 
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Table IV 

E.xperiment Results 

Total PCVier 
Model Power received H Temperature distribution % 

No. from by 
heater model 

(WI (WI 
(w/m3/2) _ SM.0208 .I043 .m .3Y7 -647 .% 

1 1806 237.5 1179 
609.0 605.0 595.8 583.4 569.2 559.1 
607.4 604.1 595.2 582.6 568.2 557.9 

2 174a 213.5 1165 296:: 
611.8 598.9 580.6 554.2 545.7 
613.1 598.3 580.6 560.2 548.2 

1889 258.2 1281 
654.4 629.8 613.9 589.9 560.5 543.5 

3 658.2 648.5 621.6 593.8 565.0 548.7 

4 1852 246.0 1220 625.5 
618.8 

603.5 623.9 617.6 602.1 58;.8 568.2 558.4 

5 1835 236.0 1167 
628.7 
629.5 619.5 :;i:; 

545.4 
578.5 558.3 547.6 

6 1886 240.6 1192 646.7 638.5 599.6 574.5 553.2 544.8 
660.4 636.2 602.6 574.7 553.4 544.3 

7 1866 255.2 1266 
651.0 643.2 617.1 589.4 563.2 550.7 
653.0 643.5 616.4 588.6 563.3 542.8 

8 1886 247.7 1228 683.2 650.0 
610.0 574.2 548.9 541.2 

678.1 647.3 608.7 573.9 554.7 541.6 

9 1868 240.2 1190 
667.6 645.4 605.3 571.8 547.1 535.1 
669.4 642.6 604.1 572.1 551.2 540.2 

441.4 430 
IO 800 88.6 440 487.1 

485.7 474.9 457.5 
482.2 482.8 474.1 - 440.9 - 

631 537.7 
535.6 520.9 501.2 479.9 465.8 

IO t200 127.1 528.5 531.1 519.2 - 479.2 - 

Note : For each model the upper row temperatures were 

taken near the top surface while the lower row 

temperatures near the bottom surface. 

BW 
PAC 
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Fig. 2. RAflO OF TEMPERATURE TO RADIATION EQUILIBRIUM 
TEMPERATURE AT REAR OF UNIFORM THICKNESS 
DISTRIBUIION . 



LuUILIPruUrl -b 
0.9 - TEMPERATURE ---g----w 

I 
(‘$uH ‘/~~)4” 3t 

o-8o 0 . 5 I-0 I I*5 I 2 I 2.5 

Fig. 3. SOME TEMPERATURE DISTRIBUTIONS 
ALONG BODIES OF UNIFORM 
THICKNESS l 
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Fig. 4. NOSE TEMPERATURE FOR A PARABOLIC 
DISTRIBUTION OF THICKNESS (NOSE 
RADIUS = 9t;/32L) 



Fig. 5 l RATIO OF TEMPERATURE TO RADIATION 
EQUILIBRIUM TEMPERATURE AT REAR OF 
PARABOLIC BODY. 



Fig. 6. SOME TEMPERATURE DISTRIBUTIONS ALONG 
BODIES OF PARABOLIC THICKNESS 
DISTRIBUTION (NOSE RADIUS = 9 6 /32 L) 
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Fig. 7. NOSE TEMPERATURE FOR WEDGE 
SHAPED THICKNESS DISTRIBUTIONS. 

. 



Fig. 8 RATIO OF TEMPERATURE TO RADIATION EQUILIBRIUM 
TEMPERATURE AT REAR OF WEDGE-SHAPED BOIX . 
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Fig. II. OPTIMISED SHAPES PROVIDING SAME 
NOSE TEMPERATURE. (THICKNESS a 
LENGTH SCALES COMMON BUT 
UNDEFINED l ) 
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Fig.12. EFFECT OF so ON NOSE AND REAR TEMPERATURE. 
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GENERAL LAYOUT OF APPARATUS Fig. 13. 





s Fig. 14 General arrangement of model and reflector. 
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Fig.15 PERFORMANCE OF REFLECTOR. 
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Fig.16. EFFECT OF THEFMAL CONDUCTIVITY ON NOSE AND 
REAR END TEMPERATURES. 
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,! Fig.11 COMPUTED TEMPERATURE DISTRIBUTION IN 
MODELS SUBJECT TO A GIVEN HEAT INPUT. 
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Fig. 29. TEST MODEL. 





and the results thus obtained are compared with those 
predicted by the theory. 
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