C.P. No. 1110

1o

I--—‘t-*—‘—'}‘x,"' -

C.P. No.

MINISTRY OF TECHNOLOGY

AERONAUTICAL  RESEARCH COUNCIL
CURRENT  PAPERS

The Estimation of the Loading on
Swept Wings With Extending Chord
Flaps at Subsonic Speeds
by
J. McKie
Aerodynamics Dept., R.A.E., Farnborough

LIBRARY
AOTAL AIRCRAFT ESTABLISHMENT

BEDFORL.

LONDON: HER MAJESTY'S STATIONERY OFEICE

1970
PRICE /2s 0d [60p] NET






U.D.C. 533469341 : 533.6.048.%1 : 533.694.511 & 533.,6.011.32
533464013.13 ¢ 533.6,013,127

C.P. Ho.,1110*
February 1969

THE ESTIMATION OF THE LOADING ON SWEPT WINGS WITH
EXTENDING CHORD FLAPS AT SUBSONIC SPEEDS
by
J. McKze

Aerodynamics Dept., R.A.E., Farnborough

SUMMARY

A method 2s given for estimating laft and vortex drag increments due to
part-span, extending chord flaps on thin, sweptback, tapered wings of large
aspect ratio in inviscid, incompressible flow, It 25 a linear theory and may
be considered as a simple extension of the R.A,E. Standard Method for calcula-
ting loadings on such wings and retains similar means of accounting for sweep~
back, %ip and centre effects. Spanwise loadings zre obtained by Multhopp's
quadrature metheds, extended to include discontinuities in wing chord, and

exanples are given for some typrcal wing and flap layouts.

¥ Replaces R.A.E. Technical Report 69034 - A.R.C. 31285
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Appendix B - The effect of part-span flaps on the downwash factor
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1 INTRODUCTION

This Report describes a method of estimating li1ft and vortex drag
incraments due to part-span fiaps. It 1s applacable to thin, swept, tapered,
1solated wings with kinks irn the leadang and trailing edges occurring only on
the line of symmetry. Plain hinged trailing edge flaps that can extend the
wing chord are considered. It 1s assumed that flap deflections are
suf ficrently small for the flow to remain attached over the flap and for
linear aerofoil theory still to be applicable. Further, the flow 1s assumed
to be both inviscad and incompressible {compressibility effects for sub-

critical Mach numbers can be included by means of the Prandtl-Glauert analogy).

The deflection of a flap changes the chordwise pressure dastribution and
for than aerofoxls introduces a second infinite suction peak at the flap hinge.
A method which considers the double integral downwash equation as a whole
would requare a large number of chordwise pivotal points as well as spanwise
ones, anc¢ thus a large amount of computation. Instead, Kiichemann's planar
vortex sheet theony1’2, which forms part of the foundations of the R,A.E.
Standard Method, has been extendad to include the discontinuities due to part-
span flaps. It 1s assured that the angle of 1ncidence of the aerofeil and
the flap deflectron angles are all sufficiently small as to Justaly neglecting
the vertical vortex sheets which in practice are shed from the aeroforl and
flap taips. Hence, the horizontal vortex sheeits shed from the trailing edge

are all assumed to 1ie in the same plane parallel to the free~-stream darectaion.

Flap deflection 1s considered to apply camber to the basic flat plate
and to 1ncrease 1ts angle of incidence by forming a new chordline. A chord-
wise loading 1s produced from the same loading equation as used for the basic
serofoil at angle of incidence, 1.e, the same relation between downwash and
the chordwise load dastraibutzon 1s used. Thus the effects of sweepback,
aspect ratio and spanwise position on the loading equation are assumed to be
independent of the chordwise shape of the aerofoil section, as 2s assumed for

cambered w1ngsj.

One of the essential features of Klichemann's method is & way of
accounting for the effects of small aspect ratioc on the induced angle of

A

incidence through use of the downwash factor. 3Brebner and Lemaire’ have
considered the effects of part-span flaps on this factor and have given

qualitetive arguments to account for 1ts modified dependency on sweepback



angle and aspect ratio, In order to judge the sensitavity of the spanwise
load distribution to changes in the numerical wvslue of the downwash factor,
comparisons are made in this Report using a varying spanwise distrabution
obtained using these ideas, and a constant value as used in Kichemann's
methodz.

The discontinuous distributions of angle of incidence and wing chord
are dealt with by the methods of Multhopps, Welssinger6 and WeberT, suitably

extended to handle any number of dascontinuities.

The effects of part-span flaps on the laft and vortex drag character=-

istics are shown as examples for some typical wing lagyouts.

2 THE EQUIVALENT INCIDENCE

Consider the aerofoil to be a flat plate wath a simple hinged trailing

edge flap of chord ratic c Flap deflection induces an increment in

sectional 1if't, and an 'eqiivalent angle of 1ncxdence' Aa can be defined as
that angle of incidence the flat plate aerofoil section would have to be given
in order to achieve the same increment in 1ift. For small flap deflections
it 15 supposed that this equivalent angle of incadence is irdependent of the
basic aercfoll incidence. Hence to calculate Ao it 18 sufficient to consider

the basic aerofoil at zero incidence to the free-stream direction,

The chordline 1s defined as the straight line jornming the leading edge
to the flap trailing edge and forms the x-coordinate axis (see Figel). To a
first approximation the wing chord is unchanged, but the chordline is inclined

at an angle & to the free-stream direction, where for small flap deflections

5 = CF g (1)

The camber f of the aerofoil, defined zs the ratio of the ordinate of the
hange to the chord, is approximately

f = CF(1 - CF) B (2)

Using exither equation (2) or the exact relation, the camber for a 15° flap
deflection, for example, 1s about 6°5% at the most, which 1s probably near the
limit for linear aerofoil theory; the approximations (1) and (2) are better
than 1% for this flap angle.



As 1n classacal aerofoil theory, KlUchemann divided the vorticity

distrabution on the aerofoil and in 1ts wazke into two partszz
(1) spanwise sysiem, producing chordwise loading
(11) streamwise system, producing spehwise loading.

For swept wings of infainite aspect ratio with constant vorticity along lines
parallel tc the leading edge (and no trailing vorticity), the relation between
the downwash and the chordwise loading, both at the centreline and on the

sheared part of the wing, can be approximated by2

_.;(i) - m=v [ ] " Tog oo () (3)

In the first case o 13 g function of sweep angle ¢ only; 1in the second
case ¢ is zero, The same type of relation i1s assumed to hold at any

spanwlse station and also for wings where the spanwise vorticity is not constant
along the span. It has also been used for large aspect ratio cambered wings
and w1ll be assumed valid for wings with part-span flaps and aspect ratios not

less than about i,

It 15 necessary here to solve equation (3) as an integral equat.ion for
yk(x) for prescribed downwash dxstribution v (x). For this purpose the

1,8

results of Carleman are convenient, and the solution which satisfies the

Kutta-Joukowski condition reads:

2 o _ n 1 n
Yx(x) = —“——-"—2“0-214'21(1:)- 27t 2[13{}{:‘0] vz1(5)[1§g]° xd%g

o + = T + %
o
eoe (&)
where the index n, 1s given by
I _Oi:_ﬂ_Q
o 7 2x 2 2
o + =
or, more convermiently,
o = =mcot (xn no) (5)

On infinzte sheared wings, or at mid sema-span of fimaite aspect ratio

wings, o 15 zero and thus n, has the value one hzlf, On the centreline it



has been found that provided the sweep angle ¢ is less than about 50°, then
o =7 tan ¢ 15 a good approximation, In this case, therefore, n = 5 - /T
For wings of finite aspect ratio, the wing tip is considered as the centre
section of a wing of opposite sweep, 1.e. n_ = % + ¢/n there. Kiichemann
introduced an interpolation function’ Ay), related to the shift of aerodynamic
centre due to the centre effect, so that n, can be expressed as a function of

Py V-

% = 31 3&2] (6)

Except for very highly swept wings, a suitable expression for A(y) 1s

M) = J1+(ﬂ%n>2-J1+[ﬂ%(1-lnl):|2+vt%("-2|n|)(7)

where b is the wing span, c¢ the local wing chord and m the nondimensional

spanwlse coordinate. As the aspect ratio becomes infinitely large:-

1]
1
-
—~—
-
1]
]
-

at the wing tip (n

at myd semi-span (n

n
-
<
o
S
=
1]
o

at the wing centre (n = 0), A= o+

In order to obtain the chordwise load distribution on the flapped aero-
foi1l section, the downwash distribution vz1(x) must be defined. The total

veloc2ty, normal to the wing surface must satisfy the stream surface condition

which 1n linear theory reads:

Voo _ oz
V. 7 ax
x
where Vz = total velocity in z-direction at aerofoil surface
Vi = total velocity in x-direction at aerofoil surface

X,z are nondimensional on local wing chord.

The total perturbation to the downwash is the sum of that due to the spanwise

vdrti01ty v, and that due to the streamwise vorticity v, i
1 2

Vz1(x) + v22(x) = Vz(x)

s TR



Thus the stream surface condition becomes

vz1(x) + vzz(x) ~V, snd

az
Vb cos & T ox (8)

The downwash produced by the streamwise vorticity i1is assumed to be constant

over the chord and an induced angle cof incidence is defined thus

5 = ¥~ (9)

For small flap deflection angles, the chordwise distrabution of spanwise
vorticity Ti(x) must setisfy the relation (3) and induce a downwash distribu-

tion v (x) which satisfies the boundary condition (8), 1.e.
1

vy, (%)
“'"—"-‘}—— = _g—lzc + & - 61 (10)
Q

In this equation, the dafference between the geometric angle of incidence &
and the induced angle of 1incidence 51 is called the effective angle of
incidence., At any spanwise station the slope of the camber line is known,

so that for the flapped aerofoil

2Z _ _e¢ -
= e B for O <sx<1-g¢p
(11)
gz
ax_('l-cF)ﬁ for 1 -cp <x <1

These values may now be used to specify the dowrwash vzq(x)/vo through
equation {10), and hence the required distrabution of spanwise vorticity
Yx(x) can be obtained from equation (4). Thus for small angles @, there

results the following equation for Yk(x):-



= (5-8,)2 san(n n) [1 ;x] oy san{r n_) cos(z n) B l:;:] 4

+ 2 san(x n ) [:i;—x:] (10 g+ 2 snl(n ) [-1-;—"] " g e (x)
s (12)

In this equation [;:1 means that the upper value holds ahead of the flap hinge,
and the lower value over the flap., Also

T & "o s (13)
o

B'(x) = f

The index n_, called the chordwise loading parameter, is defined by equation (6).

If 1n equation (12) the flap chord ratio A is put equel to unity, then
6§ equals B8 and

Y§(X) = (6-5) 2%n(xn) E_)_;_le n_

o]

which represents the chordwise loading on a flat plate aerofoil at an angle of

incidence & (see equation (59) of Ref.2).

To calculate the chordwise load distribution, the following relation is

used

(%)
N R ety (1)

where cos ¢/sin(ﬂ no) is a factor introduced by Brebner3 to account for the
fact that in general, the bound vortices on a swept wing are not parallel to
the mean sweep direction, If equation (12) is used for Tx(x), then the

cnordwise load distribution becomes



AGp(x) = =L cos g [(6-—61) + p(1 -CF)} [? ; f] ° 4+ ) cos ¢ cos(x no)ﬁ[:;] -

-% cos ¢ sin(x no) [}—i—EZl ° 8 B'(x) (15)

The sectional 1lift coefficient 1s obtained by integrating this equation with
respect to x from the leading to trailing edges:-

4 n 7 cos in(x n )
¢ (n) = ’ [(6 -6 ) +B(1-c) - ;3—3———0 Bn(J (16)

31n(ﬂ n )

where*
1-cF

Bno = [ [1’_“ :In"ax (17)

If the flap chord ratic 1s unity, then equataon (16) reduces to

L n cos ¢

i (n) = (G-S)W

which is the familiar form for the sectional 1lift coefficient of a flat plate
aerof'oil of large aspect rat102. Since this is a linear theory, the

sectionzl 1ift slope a 1s given by

CL L n0 cos ¢

S Ty BT e (18)

Thus to achieve the increment in 1lift produced by a plain flap of chord ratio

¢, deflected through a small angle B, the flat plate aerofoil would have to

F’

* Note that B,, 1s a well known integral, being a particular form of the
Incomplete Beta Function

X
-1 -1
B, (p,a) =f g (1-8Y" a
o
which 1s tabulated for certain values of x, p, g
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have an effective angle of incidence a, (see equation (16)) where

sin(x no)

a, = (6 -28;) +«p(1 - cp) -B—;;—n:'“Bno

Operating at the same overall 1ift coefficient, the flapped aerofoil is
assumed to have the same spanwise distribution of induced angle of incidence
61 as the flat plate aerofoil. Hence the geometric equivalent angle of
incidence Aa can be written as the sum of . and Si. Thus in view of
equation (1), the equivalent angle of incidence of the flapped aerofoil is

directly proportional to the angle of flap deflection B :-

Aa sin(n n )
# ol "

and the sectional 1lift slope 1s the same as that for the flat plate aerofoil,
given by equation (18).

The variation of equivalent angle of incidence with n for a range of
flap chord ratios is shown on Fig.Z2. The magnitude of the chordwise loading
parameter 1s determined through wing geometry and spanwise position by
equations (6) and (7). n  is a function of two parameters, ¢ and A : if .
one 1s fixed then Aa/B may be plotted against the other. Thus on Fig.2 an
alternative abscissa scale is given where n, has been replaced by sweepback
angle ¢, and the ordinate shows the equivalent angle of incidence for unit
flap deflection angle at the centre~section of a wing of infinite aspect

ratio.

The sectional pitching moment referred to the local quarter chord

position 1s given by

1

¢, - -[ (4 - %) ac (%) ax

o]

The chordwise load distribution ACP(x) 1s given by equation (15), thus for the

aerofoil at zero angle of incidence




™

1-n 14n,
o -
n sin{x no) co (1 CF)

1
Cm = CL [—2 - E_ - 2[n n - sj_n(qr_ no) Bn ] ] (20)

The local chordwise position of the centre of pressure 1s obtained from the

equation:
. G

x - 4 _ 1

Cp L CL
and hence

sin{n n ) ¢ T-ng (1 -c¢ )1+n0
X :"1['1"1’1]4- 2 £ £ (21)
CP 2 o 2lx n - s1n(n n&j_Bn i)

o}

This function 1s plottied on Fig.3 against n, for a range of flap chord ratios,.
Values at the centre-section of an infinite aspect ratio sweptback wang can be
found using the slternative ¢ scale. FPor the partaicular case of an unswvept
wing, No has the value % everywhere, A4lso Bn = %[ - sin Z] where

g = cos—1 (1 - 2cF). Thus in this specaal case? equation (21) reduces to

b

_ A n-Z 4+ sin2z (2 = cos Z)
CcP T L ® - Z + s8in Z

which 1s the formula gaven by Glauert9 appropriate to such wings.

The values of the chordwise loading parameter and 1lift slope given by
equations (6) and (18) are strictly valid for wings of large aspect ratio only.
Indeed, for wings of smaller aspect ratio it is not correct to assume that
the downwash produced by the streamwise vorticity vz2(x) is constant over the
chord. Unfortunately, without this approximation 1t 1s not possibla to
easily specify a chordwise distribution of vorticity v, (x) which 1s necessary
for the solution of the spanwise vorticity equation (4). Hence in this Report
the small aspect ratio corrections introduced by Kﬁchemann2 are not attempted.
It is thoughg that such corrections are significant only for straight wings of
aspect ratio less than sbout 6,and for wings swept back 45° of aspect ratzo

smaller than about 3.

For small flap angles, the eguivalent angle of incidence Aa 1s a linear
function of the flap deflection angle B (equation (19)).  Fig.l shows the
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variation of the e quivalent angle of incidence across the span of a wing of
45° sweepback and constant chord of aspect ratio 4. The full span trailing
edge flap has constant flap chord ratio 0-35. The large loss in 11ft at the
centre and gain at the tip 1s a sweepback effect. This faigure also shows
some values found on an elesctrolytic tank analogue computer by Malavard and
Duquenne10, and the results of a calculation made by Brebner and Lemaire#
based on these values. Over the range 0.2 < 1 < 0+7 the agreement 1s good,
but there 1s considerable scatter in the tank test values at the wing tip,
presumably due to experimental difficulties here, Thas scatter throws some
doubt on the gccuracy of the wing tip value which was used by Brebner and
Lemaire in their calculation. At the wing centre-section the tank test
result 1s much larger than the theoretical: this again may be due to scatter,
or 1t may imply that the equivalent angle of 1ncidence due to flap deflection
does not fall off at the centre of sweptback wings as rapidly as 1s given by

the A-variation of equation (7).

That the effects of sweepback and spanwise position on-the equivalent
angle of incidence are so large is a result of the fact that the chordwise
loadaing ng(x) 15 completely changed by these effects. To allustrate this,
chordwise loadings at the centre-section of wings of large aspect ratio have
been caleulated by equation (15) for sweepback angles ¢°= 0, 20, 4O and are
shown on Fig.5. This figure mey also be used to indacate the change in chord-
wise load distributions with spanwise position for faixed angle of sweepback.
For the example of a large aspect ratio wing swept back L0°, the ¢ = O curve
represents the distribution of ACP at mad semi-span, factored by 1/cos LO°.

The ¢ = 20° curve corresponds to the loading distribution at an intermediate

station near to the wing centre section, factored by cos 20°/cos 40°.

3 SPANWISE LOADING

The induced angle of incidence ay at the spanwise posation n is

determined by the whole of the trailing vortex sheet:

+1
_ W _d____ c d,
o = & [ Elee L] (22)
-1
(Here a, has been wratten in plo.s of Bi to make this section rather
more generally suitable: it sigmifies that the aerofoil itself may have an

angle of incidence in addition to the equivalent angle due to flap deflection.
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Similarly & and (& - 61) are now replaced hy a and a,s respectaively.)
Tne downwash factor w 1s defined as the ratio of the mean value of the
1nduced downwash over the chord at a given spanwise station, to one half the
downwash at infinity at the same station. Although for most purposes in this
Report the downwash factor will be assumed to be constant and egual to unity,
1t 1s written into eguation (22) to facilaitate the possible future application

of a non-constant distribution of w (see Appendix B).

The spanwise loading y(n) 1s related to the spanwise distrabution of

11f% coefficarent CL(n) by

Zb
C =
() EVRAL
Tae boundary condition
a = a, - a
e i
implies that
2t
o; () = aln) - TS0 (23)

For physical reasons the spanwise loading 4{m) must be a continuous function
of spanwise position., However, as the wing chord and angle of incidence can
both be discontrnuous at the flap taps, equation (23) shows that the 1nduced

angle of incidence may also be a discontinuous function of spanwise position.

Equations (22) and (23) can be combined to give an integral equation
for Y(ﬂ\ :-

A 14

+1

2 ) = -5% adg Y(E):] ;qff-g (24)

ac
-1

If al(n) 15 a continuous function of 7 then this equation can convenlently
be solved by Multhopp's approxamate guadrature method5. It 1s assumed that
the spanwise load distributzon can be expressed as a Fourier series and

equation (24) satisfied exactly at a finite number of given spanwise points.

The values of y(7n) at these points are found from a system of linear,

sk f
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simultaneous, algebraic equations. Obviously the Fourier series technique
1s invalidated 1f the spanwise distribution of wing chord or angle of
incidence in equation (24) is dascontinuous. Multhopp gave a modafied
scheme5 for the case of known discontinuities in geometric incidence, and
Welssinger6 has shown how the spanwise loading on an unswept wing of large
aspect ratio may be calculated if at one point on the wing there is also a
discontinuity in chord. For the general case of a swept wing of any aspect
ratic where the 1lift slope 15 a function of spanwise position, Weber7 has
given a method for calculating the spanwise loading if there 18 a discontinuity
in geometric incidence, chord and 1ift slope at one point. In Appendax A
Weber's method has been extended to deal approximately with the situation of
discontinuities 1n geometric incidence and chord occurring at any number of

spanwise points,

The spanwise load distribution 1s divided into two parts Y1 and y*.  The
former produces a discontinuous distribution of induced angle of incidence
o depending on the amount and position of the discontinuities and the latter
a continuous dastrabution. It 1s supposed that y* can be represented by a
Fourier series and solved exactly at m spanwise Multhopp points {the v
points) and at the k discontinuity points {the s points). It is further
assumed that the calculation of y at the v points 1s not seriously affected
by the additional points Mg The loading Y1 and its distribution of induced
angle of incadence aiOI, can both be expressed in terms of the values of ¥
at the s points. The (m + k) values of ¥* are calculated from two coupled
sets of linear, simultaneous, algebraic equations by an iterative method.
With y* at the s poimts known, the loadaing vy mey then be calculated and hence
the complete spanwise load distribution y(n). Details of the method are

given 1n Appendix A.

Tha spanwise distribution of 1lif't coefficient CL(n) 1s related to the
spanwise loading by

e ln) = 2 y(n)

and 1s thus discontinuous at the flap tips if the flaps extend the chord.

The total laft 1s given by
+1

C, = Af v(n) dn (25)
21

-
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It is customary to refer EL and A to the wing area with flaps unextended.

1
The spanwise distribution of drag due to laf't »2 can be approximated by

cp(n) = cp (1) + Am) Cy(n)/alm)

where A(n) 15 the spanwise interpclation function of equation (7). The term
A CLZ/a arises from the changes in chordwise loading along the span on swept
wings of fanite aspect ratio., It represents a drag force at the wing centre
and a corresponding thrust force at the tips; its sum over the whole wing

span 1s zero. The term CD (q) is the local vortex drag coefficient given by
v

¢y (M = a; () Cn)
v 0
The overall drag due to lift, or vortex drag is the integral of the local

vortex drag:-
+1

Cp = 4 f v(n) a (n) dn (26)

‘4 ©

where the aspect ratio 1s the same as that used in equation (25) for the total

1aft coefficient,
L EXAMPLES

At present there appear to be no experimental data suitable for making
comparisons with the results of this Report,i.e. no test results are available
for plain hinged flaps on than isolated wings. However, in Figs.6 and 7
comparisons are made with some semi-empirical results of Brebner and Lemalrea,
and the electrolytic tank test dat310 upon which they were based. For the
case of the unswept wing, the theoretical results derived by using a constant
downwash factor, of value unity, agree very well with the tank test results,
1n fact better than those of Ref.k.

For the swept wing, however, this 1s not so, the present method
apparently underestimates the spanwise loading®(using the electrolytic tank
tests as a standard). The first point to note 1s that the tank value for the
equivalent angle of incidence at the centre line {see Fig.l) 15 much higher
than the theoretical, thus giving a higher overall loading. This discrepancy

between tank results and those of theories similar to the present one has

*Subsequent to completion of this Report, Garner and Lehrian!4 have published an approximate theoritical method tor
treating oscillating control surfaces They have considered examplcs similar to this, and have obtained better agreement
with the electrolyuc tank results

ot
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been noted bef’orel’r and has not yet been explained, However, Klichemamn's
swept wing theory extended to thin cambered wings without flaps3 g1ves good
agreement with wind-tunnel results, hence 1t seems possible that in Fig.7 the

tank test results have the grosser error.

The second point to note is that this theory assumes the downwash factor
to be the same as on a wing wathout flap (1.e. unity, as an aspect ratio of
4 for 45° of sweepback 1s considered to be ‘'large') and thus constant across
the whole span. This assumption may well be invalid on a wing with part-span
flaps. Brebner and Lemaire used a constant vaelue for the downwash factor,
deduced from the tank test results, but introduced a spanwise loading factor
which multiplisd the loading Y1 due to the flap discontinuities. This
factor 1s a function of spanwise position, 1is dependent on wing and flap
geometry and 1s unity for straight wings. It camnot be determined theoretically,
but its use appears to be an alternative to allowing w to vary across the span.
To investigate the effect of a non-constant downwash factor, Fig.7 also shows
the result of a computation using values of « found after the mammer outlaned
in Appendix B. The value of w on the wing centreline was 085, w decreased
to a minimum of about 0+8 at the flap tip and rose to 1:0 at the wing tip.
Outboard of the flap the loading is not changed very much, whereas on the flap
itself there 1s a considerable incregse in spanwise loading. Tests using
constant values of the downwash factor but not equal to unity have resulted in
inferior improvements to the spanwise lozding (by increasing the loading
inboard of the flap discontinuity but decreasing 1t outboard). These experi-
ments indicate that the effect on the spanwise loading of using a non-constant
downwash factor distribution, such as could be produced by consideration of the

downwash due to the flap tip trailing vortices, can be important,

Effects of changes in flap or wing geometry are easily investigated by
this method without recourse to any graphical anterpolation. Figl.8, for
example, indicates the effect of varying the span of an inboard flsp on an
'Aarbus' type of wing, a1l other parameters being kept constant. The downwash
factor 1s umty, and the flaps do not extend the wing chord, The ordinate
used is the increment of the local lif't coefficient made nondimensional on
overall lift, and the figure i1ndicates how the pesk sectional loading 1s
influenced by flap span.

Part-span factors for the increments an 1ift due to flap, relevant to
the loadings of Fig.B8 are shown cn Fag.9. This facter 1s defaned as the ratao

of the laft increment due to the part-span inboard flap to that due to a similar
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full-span flap. A comparison 1s made with factors determined from the

11
Royal Aeronautical Society's Data Sheets , and 1t appears that these can over-
estimate X by as much as 5%.

The vortex drag factor, defined as the ratio of the vortex drag on the
wing with flap to that of the same wing without a flap but twisted to give
elliptac loading, varaes from B-L434 for the flap of 20% span down to 1:016 for

the full-span flap. The vortex drag coefficient can be written

2 2

C = + K, 4G + 2K5 C, ACL] (27)

1 -
D o LKy C

L

where EL is the overall 1lift coefficient (produced by angle cof incidence znd

flap deflection) and AC_ the increment due to flep deflection. The factor

L
K, represents the departure from elliptic loading of the basic wing and 1s

-1
unchanged by flap deflection if the wing chord remains unaltered. For the
wing described on Fig.8, K, has the value 1:015, The method of the Royal
Aeronautical Society's Data Sheets 1s to assume that vortex drag can be
expressed as
= 1 =2 2 2
ch = =3 Cw + Ky AG] (28)

where EL and AC. are defined as for equation (27). From equation (27),

L
vortex drag at zero lift ED is given by
v
0
K
= 2 2
CD T wA ACL
Y5
and by equation (28)
= 2 2
o, T T 4%
o

The part-span factors KQ and ®A Kéz are compared on Fi1g.10 against relative
flap span. Unlake K;i for a full-span flap K2 is not necessarily zero.

Equation (28) assumes that K, is unity and that mimmum vortex drag occurs at

1
zero 1lift, TFrom equation (27) this happens when

K
c I |
C, = -g*4a

MD 1 L
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The factor K, 1s also shown on Fige10s It 1s numerdically small compared with

3
K1 and K2, but as indicated above 1s not necessarily insigmificant.

Fig.11 shows the effect on the spanwise load dastraibution of havang a
portion of the flap undeflected at a position typical for an engine installation.
The wang 1s the same as for Fig.8, using a flap span of 80%. Both Tlaps are
deflected equally and agailn there is no discontinuity in the wing chord. The
effect on the spanwise loading 1s considerable, especially outboard of the cut-
out, For comparison purposes, the faigure shows the distribution for the
containuous flap of the same span, and alsc that for the unflapped wing twisted

to give elliptic loadaing.

The angle of incidence of the wing is zero and the dascontinuirty in flap
deflection produces a rise in the vortex drag factor from 41+168 to 1+311, 1.e.
about 12%. However, in a more typical case, for example at take-off with
the wing at an angle of incidence of about 11° and a flap deflection of 15°,
the loss in 11ft due to the cut-out requires an increase in angle of 1ncidence
of about 4° and the voriex drag factor 1s raised by only 1%, from 1026 to
1039 (see F1g.12). If the flaps extend the wang chord, then the loading due
to incidence 1s also affected by the cut-out. Fig.13 shows the effect of a
20% 1ncrease an wing chord, keeping the flap chord ratio constant. The
comparason 1s made for CLC (or 2by) rather than for the sectional 1ift
coeffaicient, since the latter i1s discontinuous at the flap tips. The wing
area has been increased, so that in order to maintain the same overall lift
with the same flap settang of 15°, the wing angle of incidence has been reduced

to 10°; the vortex drag factor 1s increased by approximately 3% to 1-067.
5 CONCLUSIONS

This Report describes a simple extension of the R.A.E. Standard Method
for calculating spanwise loadings, to include the effects of part-span trazling
edge flaps on wings of large aspect ratio. The sectional 1ift produced by
flap deflection 1s represented by the lift generated by an equivalent angle of
incidence of the basic flat plate aerofoil section, The local laft slope zs
assumed not to be affected by deflection of a flap, and the chordwise load
distrabution 1s modifaied by sweepback and spanwise position in a similar manner
as that due to the angle of incidence of the basic aerofoil. Small aspect
ratio and thackness effects are not included. As yet there i1s no suitable
experimental evidence to indicate how better 1s thas theory at predicting 1if't

and vortex drag increments than existing techmiques.



13

Most calculations in this Report have been performed assuming the downwash
factor w *to be unchangsd from its constant value of unity appropriate to
vangs of large aspect ratio wathout flaps. However, a tentative scheme to
incliude part-span effects 1s put forward, using i1deas of Ref.h to generate a
non-constant spanwise distribution for w, and an example 15 given which
inldicates the considerable effect on the spanwise load distributaon. To take
this matter further would mean revising the theory of section 2 to incorporate
a chordwise distribution of downwash due to streamwise vorticity that i1s not
nearly constant over the wing chord. Further, the means of generating w
outlainad in Appendix B would have to be considerably refined and put on =
firmer basis. Nevertheless, the apparent sensitavity of the spanwise loading
to the value of the downwash factor would seem to indicate that the matter

merits further attention.

The theory enables the effects of flap or wing geometry changes to be
easily investigated using a consistent set of assumptions. The vortex drag
increments due to part-span flap deflection include the effects of sweepback
and implied camber, which is an advance on the calculation method of thse
Royal Aeronautical Society's Data Sheets, Systematic investigations into the
effects of aspect ratio, sweepback, taper ratio, flap chord ratio, ete., as
required for design work can easily be carried out using thas theory. As 1%
is an extension of the R.A.E, Standard Method, a number of numerical methods
which have been developed for classical aerofoil theory can be applied so that
a consistent and complete set of calculations can be carried out. The effects
of cranks in the leading and trailing edges may be included by the method of
Brebner12, and the effects of a fuselage by applying the method of Weber, Kirby
and Kettle15.

The theory as developed as linear and numerous approximations have been
made (e.g. that in spite of deflecting the flap, linear aerofoil theory stall
applies; that the vortex sheets from the flap and undeflected parts of the
trailing edge a1l lie in the plane z = 0). The test of a mathematical model
is how well it agrees with experamental facis. A{ present such a comparison
cannot be made, so 1t 13 not possible to predict with any degree of reliability
the practical limits of aspect ratio, sweepback, flap deflection angle, etc.

for whach the theory can be applaed.
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Appendix A
THE SPANWISE LOAD DISTRIBUTION WITH DISCONTINUITIES

IN ANGLE OF INCIDENCE AND WING CHORD

7

Weber has given a method’ for the calculation of the spanwise loading

at the Multhopp points 1, and one arbitrary point g at which there 1s a dis-
contimuity in o or ¢ (called a 'discontimuity' point). It was shown that
the calculation of ¥y at the n, points 1s not affected by the additional
discontinuity point. However, if there is more than one discontinuity, then
1t is dafficult to produce an analogous method.  An approximate scheme is
given here whereby 1t is assumed that the loading at the n, points iz not
affected by the k discontinuity points, and further, that at each of these
points, the induced angle of incidence ai , may be expressed 1n terms of the
loading at the Multhopp points and the loading at that discontinuity point only.
Thus the error is likely to be least, af the Ng points are well away from

each other or from the 1, points.

The spanwise load dastribution is divided into two parts
v(n) = y(n) + v*(n) (a-1)

where Y1 produces a discontinuous distribution of induced angle of incidence
ai,_, and y* a continuous distribution a: . Consider the point Mg where

o]
there occurs a jump in the angle of incidence of amount o 1e€s

o, = a(ns + 0) - a(ns -0) (A-2)
and also a Jump in wing chord. Defaine

2b 1
T, =

’
s a |cln, - 0) " oln_ + Oil (4-3)

5

As the load distraibution v must be continuous at Ny



Appendix A o

y(n, + 0) y(n, - 0) = y

S5

-;—b c(ns + O)[a,(T]S +0) -w 0-10 ("']S + 0)]

25 (1 = Olaln, - 0) -wa, (n, -0)]

On equating these two expressions for Yy there resuits for the Jump in
induced angle of incidence
'CSYS+0'

S

a (nS +0) - a; (ns - 0) (A-L)

w
o ¢}

The 11ft slope a and downwash factor w can both be functions of spanwise
position. They are assumed here to be continous and evaluated at the appro-

priate point.

If the function F(49, ﬂs) is defined as follows (see—Multhopp5)

2 sin (2 + &) . &=x
T = = - 2 -
(3, Bs) ﬂlE%os 9 = cos %) log (sin =) ¢ Z sin ¢ ‘s (4-5)
s
then the load distribution Y[ gLven by
k
Ts Ts 9
(9 = Z‘ ————F(9, 9_) (4-6)
s
s=1

produces z discontimuous distributaon of induced angle of incidence a, with

(s}
a Jump at each discontinuity of the required amount. I
r
0 0 <@ < gy
1
T, Yo, + O
1 189 1
: 3 —_——— F, < & < @ -
CL101( ) < W3, 54 8o (8-7)
T Y + O
2 2
tr + __.,_._52 '5‘3 < & < 1.95
Ws 2 3
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From equation (A-1), the load distribution y* can be wraitten:-

ac 2b
() = 5 [u R T Sr i ﬂ{o ] (A-8)

%k

where a is the continuous distribution of induced angle of incidence

0
generated by the loadang y*. a; can be expressed 1in terms of y* at the
)

Multhopp points and the discontinuity points:-

m,
* = - b * A-
e io bvv Y#v vn Tn ( 9)
Vv
n= 1
m
* = - Y -
a o, by T Z bon Y, (A=10)
n=1

The second of these two equations in conjunction with equation (A-?) 1s in
accordanée with the assumption that at a discontinuity point, a1 may be
written in terms of the loading at the My, poants and at that point. The
coefficients bvv and bvn are the familiar Multhopp CO@fflClentSB; bSS and bsn

7

are given by Weber® as

~
A . 2
s 2 sin 3
. ) asn sin ﬁn
sn 2
(m + 1)(cos 65 - COS8 ﬁn) | (A=11)
5 (m + 1) 8
1N~ —————— n even
2
a:
sn
0032 (m M 1) 73s n odd
? J

In equation (A-8), substitute for af from equations (A-9) and (A-10).
For the Multhopp points there result m equations:-



Appendix A 23

{:bvv ¥ azc}jm g ™y, T [:‘ Z on ¥ = [%LOIJ [1 wac] (A-12)

where subscript v denotes evaluation at the spanwise position ny, * For the

dascontinuzty points U there is a choice of evaluating equation (4-8) at
erther side of the discontinuity: the (-qs - 0) alternative 1s chosen here.

Thus there are obtained k equations

PR LR D R O I P

These two sets of linear, simultaneous egquations are coupled through

and q which are functions of , and it is convenient to use matrix
Y* 1o ? YI s
v
methods for their solution. Values of at the Multhopp and discontinuity
Y1

points are given by equation (A-6) thus:-

Y = Y -
Tv F,oL 0,47, 4 (A-14)
T = Y -
Is 33 £1 8 * :"s £2 (4-15)
where
YIv is 2 columnit vector of the m values YIV
] ft ¥
TIS 1 L 1 1 n k n YIS
’Y‘ 11] L4 " " " " "
] k Ys
1] " " 11 1 " n O'
£, k SO
£, is a diagonel mastrix of the k values TS/&S

7 is a m x k matrax with vth TOW:

F(2,, ‘951)’ F(9, aSQ), ceees PO, ask)

?S 1s a kxk matrix with sth TOW:

(o, & ), F(8 , 8 )y eeae, F(8 , &)
3 S‘l S5 52 3 Sk
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In vector notation, equation (A-1) at the discontinuirty point can be

written

- %
Ys - TIs'*Ys

and similarly for the Multhopp points. Y, can now be expressed in terms of

yg by substitution into (A-15):-

-1
T [4 7, 51] [ Lt 7 z2]

where ¢ is the umt matrix of order k, and the inverse operation is
assumed to be non-singular, Hence ¥y and Yrg can also be written in terms

of Y*S and known geometric terms only:-

T

-1 -1
v 7,24 ls -7 51] [Y*S + 2] "'2] (A-16)

Y

-1 -1
- Y% -
Is 7, £ [4 7, £1J [ - 2] ,e; (A-17)

-

1
’YIv is simply 3, &5 and correspondingly for the ns points,

If there are no discontinuities in chord, then £, is singular, and in this case

Equations (A-12), (4-13) and (A-1), (a-7), (A-16), (A-17) constrtute a
sufficient set of simultaneous, linear equations for the (m + k) unknowns ™,
and.Yﬁs. They can be solved by an iterative process. Inmitially assume that
there are no discontinuities in chord (i.e. £y zZero) so that‘YIv and.mlo are
determined solely by geometric quantities. Equation (4~12) can thus be solved
for ¥% . Substitute these values into (A-13) and solve for T (applying
equations (A-17), (A-7) and (4-1)) using the correct values of the dascontinuities
in chord. The values of‘Y*S thus found may be substituted into (4-16) and
(A~7) so that a new estimate of Y* may be obtained from (A-12), and so on.



Appendaix B
THE EFFECT OF PART-SPAN FLAPS ON THE DOWNWASH FACTOR

K.'fzchemann2 assumed that « dad not vary across the span of swept wings
and tnat 1t was an adequate approximation to take w equal to twice the wvalue
of n at the mid semi-span positzon, Thus for wings without flaps, w 15 a
funetion of A and ¢ only. For large aspect ratio wings, w » 1 as A » o ;
for small aspect ratios, w - 2 oz A » 0. However, for wings with part-span
flaps, the discontinuvous distribution of angle of incaidence may produce a
spanwise load distribution whcse slope is not small at spanwise stations
outside the tip regions. In such cases 1t may no longer be an adeguate
approximation to take the downwash factor constant scross the whole wing

SPane.

In a previous attempt to determine the effects of part-span flaps on
swept wings, Brebner and Lemalrea considered the influence of the downwash
produced by the strong trailing vortices at the flap tap dascontinuities.
They produced gqualitative arguments for the effects of aspect ratio and sweep-
back and used them to assist an the analysis of electrolytic tank test data1o.
The spanwise distribution of the downwash factor due to an isolated trailing
vertex 1s a function of the aspect ratio of the wing, its angle of sweepback
and the chordwise position of the point of origin of the vortex (the hinge for
a flap discontinuity vortex). For unswept wings without flaps, 1%t was
argued that there would be little overall change in the daistribution of w
and 1t would st1ll be an adequate approximation to take 1t constant across
the span. Fig.6 compares the spanwise load drstribution calculated by the
method of this Report using w = 1*0 with electrolytic tank test results for an
unswept wing with inboard fllap. The agreement 1s very gocd, in fact better
than that of Brebner and Lemaire which used a constant value for « slightly
greater than umity (small aspect ratio effecis are just apparent on unswept

wings of aspect ratio L4).

Yor swept wings with part-span flaps, Brebner and Lemaire considered
that there may well be sigmficant departures from w = constant, but were
unable to give a quantitative agssessment of m(n). In order to see what
effect such a non-constant dastrabution of the downwash factor would have on
the spanwase loading, a factor has been deraved whach tends to unity as the

angle of deflection, or chord ratio or span of the flap tends to zero. At



26 Appendaix B

all spanwise stations, the mean value over the chord of the downwash produced

by trailing vortices at the discontinuities sprainging from the local centres of ¢
pressure with the flaps deflected, was divided by the mean downwash produced by
trailing vortices of the same strength but springing from the centres of
pressure with the flaps undeflected. This factor thus varies wath the
proportion of the totzl lift that is due to the flap and 15 automatically unmaty
when the flap 1s undeflected. For the purnoses of this exercice, this factor
has been called the downwash factor, btut it is not intended that this should

nacessarily be the wey that w shoul? be estimated.
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SYMBOLS

scclronal 1aft slope, CL/ae

wlng span

local wing chord

flap chorad

number of discontinuities in induced angle of incidence
number of spanwise Multhopp poxnts

chordwise loading parameter

z—component of 1nduced velocaty

rectangular coordinates: x 1in free stream director, zerc at
leadang edge; y in spanwise darection,positive to starboarl;
Z positive vertically downwards. x,z nondimensional on o
chordwise point of origar of a trazling vortex

wing aspesct ratio

pieeE £ 1 7o _dE
I 1-!:;‘] Xx=-£

sectional vortex drag coefficient

overall vortex drag coefficient

CD at zero 1lift
v

sectional 1ift coefficient
overall lift coefficient

C. when C

L Dv

15 a minimum

sectional pitching moment coefficient about gquarter chord position

part-span drag factors

part-span lif't factor

free-stream velocaty

local angle of 1ncidence (equals the sum of Ag and the angle of

incidence of the aerofoil with undeflected flaps)
eff'ectave angle of incidence (equals

of incidence Gi)

a less the induced angle

[
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SYMBOLS (Contd.)

induced angle of aincidence

N
a a_ on wings of large aspect ratio
0
B angle of flap deflection (streamwise)
CLc/2b, nondimensional load distribution
Y1 load distribution that produces a discontinuous distribution of a
0
' Y-
Yx(x) drstribution of spanwise vortices along the chord
) angle between chordline and aerofoil ahead of the {lap hange
61 value of a, when the aerofoll with flaps undeflected 1s at zero
angle of incidence
Q -
8 spanwise coordinate } = cos @
M " " = ?y/b
A spanwise interpolation function
n cot(m nb)
P angle of sweepuack or mid-chord line
w downwash factor
A Cp(x) difference between pressure coefficients on upper and lower

surfaces of the aerofoil

Aa, equivalent angle of incidence due to flap deflection
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THE ESTIMATION OF THE LOADING ON SWEPT WINGS WITH B3.6.013.127

EXTENDING CHORD FLAPS AT GUBSONIC SPEEDS

A method 15 glven for estimating 1Ift and vortex drag increments dus to
part-spen, extend!ng chard flaps on thin, sweptback, tapered wings of
large aspect ratio {n invigcid, incompressibles flow. It is a linear
theory and may be considered as a simple extension of the R,A.E, Standard
Hethod for calculating loadings on such wings and retains simllar means of
accounting for swespback, tip and centre effects. Spanwise loadings are
obtalned by HMulthopp's quadrature methods, extended to include discontinui-
ties in wing chord, and exanples are glven for some Uypleal wing and flap
layouts,
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