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A methai 1s given for estlmatng lift and vortex drag increments due to 

pan-span, extenting chord flaps on thin, sweptback, tapered va.ngs of large 

aspect ratio in ~nnscd, incompressible flow. It 1s a linear theory and may 

be consn+aw3 as a simple extension of the R.A.E. Standard Method for calcula- 

?;m.g load.mgs on such wings and. retains sxnilar means of accountxng for sweep- 

back, tip and centre effects. Spanvrlse loadings are obtalnecl by Multhopp's 

quadrature methods, extended to include dlscontxxnties in wng chord, and 

exanples are given for Some typlcal unrig and flap layouts. 

* Replaces R.A.E. Technical Report 69034 - A.R.C. 31285 
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1 ISTRODUCTION 

Thu Report describes a method of estlmatlng lift and vortex drag 
lncrement3 sue t0 ~EU+S~D flaps. It 1s spplxable to thin, swept, tapered, 

isolated vangs rvlth kinks in the leadng and trading edges occurring only on 
the line of symmetry. Plain hanged tralllng edge flaps that can extend the 
nmg chord are consldered. It 1s assumed that flap deflections are 
sufflc?ently small for the flow to remaxn attached over the flap and for 
linear aerofod theory still to be applicable. Further, the flow 1s assumed 
to be both unnscd and uxompresslble (compresslbllzty effects for sub- 

crltlcal Mach numbers can be u~2uded by means of the Prandtl-Glauert analogy). 

The &zflectlon of a flap changes the chordwlse pressure dxstrlbutlon and 
for thin aerofolls uxtroduces a second 1nfinit.e suction peak at the flap hinge. 
A method which considers the double integral downwash equation as a whole 
mould requwe a large number of chordvnse pivots-l ponds as -well as spanvnse 
ones, and thus a large snout of computation. Instead, Kiichemann's planar 
vortex sheet theory ‘92 , which forms part of the foundations of the R.A.E. 
Standard Method, has been extended to include the dxscontuxntles due to part- 
span flaps. It 1s assured that the angle of Incidence of the aerofoll and 
the flap deflectson angles are all sufficxntly small as to Justdy neglectng 
the vertxal vortex sheets which in practice are shed from the aerofoll and 

flap tips. Hence, the horizontal vortex sheets shed from the tralllng edge 
are all assumed to he m the same plane parallel to the free-stream dxectlon. 

Flap deflectlon 1s consdered to apply camber to the basx flat plate 
and to nxrease Its angle of lncldence by formIng a new chordline. A chord- 
vase loabng 1s produced from the same loading equation as used for the basic 
zerofod at angle of uxxdence, 1.e. the same relation between downwash and 
the chordvvlse lad a-Lstnbutlon 1s used. Thus the effects of sweepback, 
aspect ratlo and spanwxe posItIon on the loading equation are assumed to be 
independent of the chordwise shape of the aerofoil sectlon, as IS assumed for 

3 cambered nugs . 

One of the essential features of Kiichemann's method is a way of 

accounting for the effects of small aspect ratlo on the nd~ced angle of 
mcldence through use of the downwash factor. Brebner and Lemsx-ele have 

considered the effects of part-span flaps on this factor and have g=ven 
qualltatlve arguments to account for Its meddled dependency on sweepback 
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angle and aspect ratio. In order to Judge the sensltxvity of the spanwue 

load dlstrlbution to changes in the numerical value of the downwash factor, 
ccmparlscns are made in thu Report usxng a varying spanwise dutrlbutvx 
obtazned using these ideas, and a constant value as used in Kiichemsnn's 
method*. 

The dxcontinuous distributions of angle of incidence and wing chord 
are dealt wth by the methods of Multhcpp5, Wexssinger' and Weber7, suitably 
extended to handle any number of &scontuxmt~.es. 

The effects of part-span flaps on the ldt and vortex drag character- 
istlcs are shown as examples for scme typical wing layouts. 

2 THE: EQUIVALENT INCIDENCE 

Consuier the aerofoil to be a flat plate mth a simple hinged trading 
edge flap of chord ratlo 0 F' Flap deflectIon induces an increment in 
sectional lift, and an 'equivalent angle of uoldence' Aa can be defined as 
that angle of incidence the flat plate aerofod sectlon would have to be given 
in order to achieve the same increment in lift. For small flap deflections 

it 1s supposed that this equvalent angle of inc,dence is independent of the 
basic aerofod incdence. Hence to calculate Ao, it 1s sufficient to consder 
the basic aerofo-il at zero incdence to the free-stream direction. 

The chordllne 1s defined as the straght line Jcunng the leading edge 
to the flap trading edge and forms the x-cocrknate axis (see Flg.1). To a 
first approxlmatlon the wng chord is unchanged, but the chordline is inclued 
at an angle 6 to the free-stream direction, where for small flap deflectlow 

s = cFp (1) 

The camber f of the aerofoil, defined as the ratlo of the ordinate of the 
hange to the chord, is approximately 

f = C,(l-c,)p (2) 

Using either equation (2) or the exact relation, the camber for a 15’ flap 
deflection, for example, 1s about 6.5% at the most, tilch 1s probably near the 
limit for linear aerofoil theory; the approxlmatlons (1) and (2) are better 
than 1% for this flap angle. 
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As in classical aerofod theory, KiTchemann divlcled the vorticlty 
&strlbutlon on the aerofod and in Its wake into two parts': 

(1) spanwise system, producing chordmse loating 

(d) streamvnse system, producug spanvr~se loding. 

For swept wings of u3Ynite aspect ratlo with constant vorticlty along lines 
parallel to the leading edge (and no trailing vortxlty), the relation between 

the downwash and the chordwue loadng, both at the centreline and on the 
sheared part of the ~lng, can be approximated by2 

In the fust case CJ 1s a function of sweep angle 'p only; in the second 
053Se d is zero. The same type of relation IS assumed to hold at PITY 
spanwue station and also for wugs where the spanwise vortlclty is not constant 

along the span. It has also been used for large aspect ratlo cambered wings 
and ~~11 be assumed valCi for wings with part-span flaps and aspect ratus not 
less than about 4. 

It TLS necessary here to solve equation (3) as an integral equation for 
y,(x) for prescribed downwash tistrzbutlon v (x). 

7 
For this purpose the 

results of Carleman 198 are convenient, and the solution which satxsfles the 
Kutta-Joukowski condxtlon reads: 

. . . (4) 

where the index no 1s given by 

or, more convemently, 

CT = 7t cot (71 no) (5) 

, On inflnlte sheared wings, or at mid semi-span of flmta aspect ratio 
wmgs, CT 1s zero and thus nc has the value one half. On the centreline it 
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has been found that provided the sweep angle 'p is less than about 50", then 
c = 7[ tan 'p 13 a good approtimation. In this case, therefore, no = 3 - q/x. 
For vntlgs of finite aspect ratlo, the wing tip 1s considered as the centre 
section of a wing of opposite sweep, 1.e. no = $ + q/x there. Kikhemann 
introduced an lnterpolatlon function* h(y), related to the shift of aerodynamx 
centre due to the centre effect, 30 that n 0 can be expressed as a function of 

no = ;p - h(Y)&] (6) 

Except for very highly swept w1ng3, a sutable expression for k(y) 13 

h(Y) = Jqy-J~-+ x: (I - 2ld) (7) 

where b is the lnng span, c the local wxng chord and q the nondunenslonal 
spanwIse coorduate. As the aspect ratio becomes infinitely large:- 

at the wing tip (q = ? I), h = -1 

at ma sem=-span (q = + o-5), h = 0 

at the wing centre (q = 0), h = +I 

In order to obtain the chordwise load distribution on the flapped aero- 
fall section, the downwash &stributlon v s,(x) must be defined. The total 
velocity; normal to the wing surface must satisfy the stream surface condition 
which in luxar theory reads: 

where V z = total velocity 3x2 z-dlrectlon at aerofoil surface 

v x = total velocity in x-duection at aerofoil surface 

x,z are nondimensional on local wng chord. 

The total perturbation to the downwash is the sum of that due to the spanw1se 
vorticlty v 

z1 
and that due to the streamwlse vorticlty v :- 

=2 

. n 

i 
. 

VZ,(d + vz* (4 = v,(x) 



Thus the strew, SurfaCe COndltion becows 

vz,(x) + Yz (x) - v. s1n 6 
2 a2 

v. cos s = z-c (8) 

The downwash produced by the streamw1se vortlclty 1s assumed to be constant 

over the chord and an uxluced angle of ~nc:dence is defined thus 

v 
6 

22 
1 =T (9) 

For small flap deflectlon angles, the chordwse distribution of spsnvnse 

vortlcity y,(x) must satisfy the relation (3) and mduce a downwash dlstnbu- 

tion vz,(x) which satisfies the boundary condltlon (8), I.e. 

In thu equation, the difference between the geometric angle of incdence 6 

and the uduced angle of uxldence &I is callea the effective angle of 

mcClence. At any spanmse station the slope of the camber line 1s known, 

SC) that for the flapped aerofod 

?z 
ax = 

-c 
FP for oax<1-c F 

I 

(11) 

5% 
ax = (l-CF)p for i-cF<x<l 

These values may now be used to speedy the downwash v 
"1 

(x)/V0 through 

equation (IO), and hence the required tistnbution of sparxnse vortxity 

y,(x) can be obtalned from equation (4). Thus for small angles p, there 

results the folloivlng equation for yx(x):- 

,b! 
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e n 

v. 
= (6- Sl)Z sm(7r no) + [ 1 O- 2 SlIl(7c no) cos(7t Ilo) p :, + [I 

l-x "0 + 2 s111(7( no) - L- 1 l-x "0 x (I-C,) p+f s1n2(7tn) - c 1 .o x P B’(x) 
. . . (12) 

In this equation ' III 0 
mean3 that the upper value holds ahead of the flap hinge, 

and the lower value over the flap. Also 

B'(x) = (13) 

The index no, called the chordwise loamng parameter, is defined by equation (6). 

If III equation (12) the flap chord ratlo c~ is put equal to unity, then 
6 equals 6 and 

y,( n 

vO 

= (6 - hi) 2 s3.n (n no) + O [ 1 
which represents the chordwzse loa&ng on a flat plate aerofoll at an angle of 
mcdenoe S (see equation (59) of Ref.2). 

To calculate the chordwise load distribution, the following relation is 
used 

ACp(x) = - 2 
y,( 00s Q 

vO 
sm(n no) (14) 

where cos q/sin(x no) is a factor introduced by Brebner' to account for the 

fact that in general, the bound vortices on a swept vang are not parallel to 
the mean sweep du-ectlon. If equation (12) is used for y,(x), then the 

ci:or&Tise load distrlbutlon becomes 
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ACpb) = - 4 cos ‘p [(6-bl) + ~(1 WC,)] e no c I + 4 cos ‘p cc& no)p 

n 
_- ; cos q sm(7c Ilo) y 

[ I 
’ P B’(x) 

The sectional lift coefflclent 1s obtained by lntegratlng this equation vnth 
respect to x from the leadug to trading edges:- 

CL(q) = 
sm(7i Ilo) 

(6-61)+P(l-~F)-!3 in Bn 
1 

(46) 
0 0 

where' 

(17) 

If the flap chord ratlo 1s unity, then equation (16) reduces to 

CL(q) = (6 - Si) ,Q$y 
0 

which is the fandiar form for the sectional lift coefficxnt of a flat plate 
aerofoil of large aspect rat10 2 . Since this is a linear theory, the 
sectlonal lift slope a 1s given by 

cL 4x no cos 'p 
a = '(6-61) = sm(7t no) (18) 

Thus to achieve the ucrement in lift produced by a plain flap of chord ratio 
cF, deflected through a small angle p, the flat plate aerofoil would have to 

* Note that B 1s a well known integral, being a partuxlar form of the 
Incomplete Be% Function 

B,(P,4) = rx Ep-' (1 - clq-' RI 

which 1s tabulated for certain values of x, p, q. 



10 

have an effectxve angle of incdence ae (see equation (16)) where 

sin(n no) 
ae = (6 - si) + P(1 - cF) - P 7c n Bn 

0 0 

Operating at the same overall lift coefficient, the flapped aerofoil is 
assumed to have the same spanwise distribution of induced angle of incdence 
&I as the flat plate aerofoil. Hence the geometrlo equivalent angle of 
mcldence Aa can be wrItten as the sum of ae and 
equation (l),the equivalent angle of incidence of the 
dzrectly proportlonsl to the angle of flap deflection 

aa= ,- 
I 

sin(x no) 

P 7T “0 Bn 0 1 

6.. Thus in view of 1 
flapped aerofoil 1s 

P :- 

(19) 

and the sectional lift slope 1s the same as that for the flat plate aerofoil, 
given by equation (18). 

The variation of equivalent angle of incidence with no for a range of 
flap chord ratios is shown onFlg.2. The magnitude of the chordwise loading 
pardneter 1s deterrmned through wing geometry and spanwise position by 
equations (6) and (7). no is a function of two parameters, 9 and h : if 
one IS fixed then k//p may be plotted agslnst the other. Thus on Fig.2 an 
alternative abscissa scale is given where n o has been replaced by sweepback 
angle 'p, and the ordinate shows the equivalent angle of incidence for unit 
flap deflection angle at the centre-section of a wing of inflnxte aspect 
ratlo. 

The sect~onsl pitching moment referred to the local quarter chord 
posltlon 1s given by 

J 
1 

C = - 
m G - x) ACp(x) dx 

0 

The chordwlse load dxtributlon ACp(x) 1.5 given by equation (15), thus for the 
aerofoil at zero angle of incdence 
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l-n 

C = m cL o- 
I 

n 
1 sm(7c no) CF 0 (1 - OF)'+% 

2 ; - 2[7C nc - sin 7[ n 0) *II 1 3 (20) 
0 

The local chordwse posltlon of the centre of pressure 1s obt.uned from the 
equation: 

and hence 

sm(x n ) 
%pL 2 61 

C* I-% (1 - 

noI cF)‘+% = - + 2[x ,” - Rlrl 71 n 
0 0) *II1 

(21) 

0 

This function 1s plotted on Fig.3 against nc for a range of flap chord ratIns. 
Vdues at the centre-section of an infuute aspect ratio sweptback wing cam be 
found using the alternative 'p scale. For the particular case of an uns,vept 

Wlwz, % has the value 3 everywhere. Also B = 3[< - sin Z] where 
z = ccs-' (1 - 29. Thus in this special cas? equation (21) reduces to 

1 
%P = ; 

[ 

77 - Z + sin L (2 - 00s 7 
7c - r: + sin r; “I 

which 1s the formula given by Glauert' appropriate to such wings. 

The values of the chordwise loading parameter and lift slope given by 
equations (6) and (18) are strutly valid for pnngs of large aspect ratlo only. 
Indeed, for wings of smaller aspect ratio it is not correct to assume that 
the downwash produced by the streamlvlse vortic~ty v .,(4 . 1s constant over the 
chord. Unfortunately, without ths approtiatlon It 1s not possible to 
easily specify a chordwlse dutributmn of vortlcity v (x) whxch 1s necessary 
for the solution of the spanwue vortlclty equation (4;: Hence in this Report 
the small aspect rat.10 correctIons introduced by KEohemann2 are not attempted. 
It is though2 that such corrections are slgxnflcant only for straight mngs of 
aspect ratlo less than about 6,and for wugs swept back 45" of aspect ratlo 
smaller than about 3. 

For small flap angles, the equvalent angle of uxldence Aa 1s a llnezr 
function of the flap deflection angle p (equation (19)). Flg.4 shows the 
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variation of the equivalent angle of incdence acrcss the span of a wing of 

45' sweepback and constant chord of aspect ratio 4. The full span trailing 
edge flap has constant flap chord ratlo 0.35. The large loss in lift at the 
centre and gain at the tip 1s a sweepback effect. This figure also shows 4 
scme values found on an electrolytic tank analogue computer by Malavard and 

10 Duquenne , and the results of a calculatuxn made by Brebner and Lemaire 4 

based on these values. Over the range 0.2 < q < 0.7 the agreement 1s good, 
but there IS considerable scatter in the tank test values at the wing txp, 
presumably due to experunental dx?flcult.les here. This scatter throws acme 
doubt on the accuracy of the wzng tip value whuh was used by Brebner and 
Lemalre in then calcula'non. At the wing centre-section the tank test 
result 1s much larger than the theoretical: thus agan may be due to scatter, 
or It may unply tnat the equvalent angle of uxxdence due to flap deflectIon 
does not fall off at the centre of sweptback wings as rapidly as 1s given by 
the h-vanatlon of equation (7). 

That the effects of sweepback and spannse position owthe equ-vale& 
angle of uxldence are so large is a result of the fact that the chordwlse 
loating ACp(x) IS completely changed by these effects. To illustrate this, 
chordwlse loadings at the centre-sectlon of wings of large aspect ratlo have 
been calculated by equation (15) for sweepback angles 'p'= 0, 20, 40 and are 

shown on Flg.5. Thus figure may also be used to indicate the change in chord- 
wise load tistrlbutlons wth spanwlse posltlon for flxed angle of sweepback. 
For the example of a large aspect ratlo wing swept back &O', the 'p = 0 curve 
represents the dlstnbution of AC 

P 
at md semz-span, factored by l/cos l+O". 

The 'p = 20' curve corresponds to the loating dlstributlon at an intermedIate 
station near 'cc the wng centre section, factored by ccs 20°/cos 40'. 

3 SPAWISE LOADING 

The uduced angle of lncdence ai at the spanuse posltwn q is 
determned by the whole of the trading vortex sheet: 

(Here al has been written 13 pl-*,: of Ei to make this sectlon rather 

more generally suItable: it sxgxnfies that the aerofod itself may have an 
angle of lncxdence in adclxt~on to the equvdlent angle due to flap deflectlon. 
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Slmllarly 6 and (6 - S1) are now replaced by a and ae, respectively.) 

Tne downwash factor w 1s defined as the ratlo of the mean value of the 
uCtuced downwash over the chord at a g:lven spnnvnse station, to one half the 

downwash at inf'lmty at the same station. Although for most purposes in this 
Report the downwash factor will be assumed to be constant and equal to unity, 

It 1s written into equation (22) to facilltste the possible future appllcatlon 
of a non-constant tistrlbution of w (see Appendn B). 

The spanvnse loading y(q) 1s related to the spanvnss dlstnbutlon of 

ilft coefflcxnt C,(q) by 

c&d = $y Y(q) 

The boundary condition 

lmplxs that 

a = ae - ai 

ai(q) = a(d - -$f$$ 

For physical reasons the spanwse loating y(q) must be a con'nnuous function 
of spanwlse position. However, as the wing chord and angle of incidence can 

both be &szontlnuous at the flap tips, equation (23) shokvs that the lnaucea I 

angle of xncldence may also be a tiscontnuous function of spanwise posltxon. 

Equations (22) and (23) can be combined to give an ntegral equation 

for y(q) :- 

(24) 

If al(?$ 1s a continuous runct1on of 77 then this equation can conveniently 
be solved by Multhopp's approxxnate quadrature method5. It 1s assumed that 
the spanvnse load dlstnbutlon can be expressed as a Fourier series and 
equation (24) satlsf'xd exactly at a flrnte number of given spannse points. 

. 
The values of y(n) at these points are foundfrom a system of linear, 



14 

simultaneous, algebrax equations. Obvxusly the Fourier series technique 
1s invalidated of' the spanwue distribution of vang chord or angle of 
1nc~3ence III equation (24) is &scontuwous. Multhopp gave a motifled 
scheme5 for the case of known dlscontinulties in geometric incidence, and 
Welssinger6 has shown how the spanwise loating on an unswept wing of large 
aspect ratio may be calculated If at one point on the wing there is also a 
discontinuty in chord. For the general case of a swept wing of a~ aspect 
ratio where the lift slope IS a function of spanwise position, Weber 7 has 

given a method for calculating the spanwue load~~ng if there IS a discontu-uity 
in geometric incidence, chord and lift slope at one point. In Appendx A 
Weber's method has been extended to deal apprcxlmately with the situation of 
discontuultles xn geometrx inculence and chord occurring at any number of 
spanwise points. 

The spanvase load distribution 1s &vi&d into two parts yI and p. The 
former produces a discontinuous &strlbution of induced angle of inczdence 

Ft 
01 

depending on the amount and posltlon of the discontinuities and the latter 

a continuous ~str~bution. It 1s supposed that p can be represented by a 
Fourier series and solved exactly at m spanwise Multhopp points (the Y 
points) and at the k discontinuity points (the s points). It is further 
assumed that the calculation of y at the v points IS not seriously affected 
by the additional points qs. The loating YI and its dutrlbutlon of induced 
angle of incidence C?.i 

01' 
can both be expressed III terms of the values of y* 

at the s poults. The (m + k) values of p are calculated from two coupled 
sets of linear, simultaneous, algebraic equations by an iterative method. 
With p at the s pounts known, the loadu,g rI may then be calculated and hence 
the complete spanwsse load dutribution y(q). Details of the method are 
given in Appendix A. 

The spanwztse distribution of lift coefficient C,(q) 1s related to the 

spanwse loading by 

and 1s thus discontinuous at the flap tips if the flaps extend the chord. 
The total lift 1s given by 

+I 

% = A 
J 

dd drl ( 25) 
-1 
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It is customary to refer EL and A to the wing area with flaps unextended. 
The spanivlse tistrlbutlon of drag due to lift ‘92 can be approtimated by 

where h(q) 1s the spanwse interpolation fknctlon of equation (7). The term 
X CL2/a arises from the changes in chordlase loading along the span on swept 

w3ngs of flnlte aspect ratlo. It represents a drag force at the wng centre 
a~3 a corresponting thrust force at the tips; its sum over the whole wing 
span 1s zel-0. The term CD (11) is the local vortex drag coefflcxnt gzven by 

v 

Tie overall:drag due to lift, or vortex drag 1s the integral of the local 
vortex drag:- 

+I 

"D 
= A 

J 
dd al (d dv 

v -1 0 
(26) 

where the aspect ratlo 1s the same as that used in equation (25) for the total 

lift coefficient. 

4 EXAMPLES 

At present there appear to be no experimental data suitable for making 
comparisons with the results of this Report,l.e. no test results are available 
for plain hinged flaps on thin isolated wngs. However, in Flgs.6 and 7 
comparisons are made with some semi-empirical results of Brebner and Lemaue 4 , 

and the electrolytx tank test data 10 
upon which they were based. For the 

case of the unswept wing, the theoretical results derived by using a constant 
dcwnwash factnr, of value unity, agree very well with the tank test results, 
in fact better than those of Ref.&. 

For the swept wing, however, this 1s not so, the present method 
apparently underestxnates the spanvnse loadng*(usng the electrolytic tank 
tests as a standard). The first pcnnt to note 1s that the tank value for the 
equvalent angle of incuknce at the centre line (see Flg.4) 1s much higher 
than the theoretical, thus glvlng a higher overall loating. This &screpancy 
between tank results and those of theones sunilar to the present one has 
*Subsequent to completm of thu Rcpart. Garner and ~ehrm,,‘~ hrvr pubbshed a” a~~rox~rndte thcore.trcal method for 
t~Xflng oa~dldtlng control surfaces They bavr conxdrred rxam~lss w,,,,ar tc, tb,,. and have obt.uned better .,grcrmcn, 
wth the ekctro,yt,c tank rcsult~ 
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been noted before4 and has not yet been explained. However, Kiichemann's 
swept wng theory extended to thxn cambered wings mthout flaps3 gives good 
agreement with wind-tunnel results, hence It seems possible that in Flg.7 the 

tank test results have the grosser error. 

The second point to note is that this theory assumes the downwash factor 
to be the same as on a wing vathout flap (1.e. umty,as an aspect ratlo of 
4 for 45' of sweepback 1s considered to be 'large') and thus constant across 
the whole span. This assumption may well be invalid on a w~.ng mth part-span 
flaps. Brebner and Lemaire used a constant va2ue for the downwash factor, 
deduced from the tank test results, but introduced a. spanwise loading factor 
wluch multiplied the loabng yI due to the flap dlscontinultles. This 
factor 1s a function of spanvase posltlon, 1s dependent on wng and flap 
geometry and. 1s umty for straight wings. It cannot be determined theoretically, 
but its use appears to be an alternative to allowxg w to vary acrcss the span. 
To investigate the effect of a non-constant downwash factor, Flg.7 also shows 
the result of a computation using values of w found after the manner outllned 
in Appendix B. The value of w on the wing centreline was O-85, w decreased 
to a minimum of about 0.8 at the flap tip and rcse to I.0 at the wing tip. 
Outboard of the flap the loamng is not changed very much, whereas on the flap . 
itself there 1s a consGierable Increase in spanwlse loabng. Tests usmg 
constant values of the downwash factor but not equal to unity have resulted in 
inferior unprovements to the spanvase loading (by increasing the loabng 
inboard of the flap discontinuity but decreasing It outboard). These expert- 
merits indicate that the effect on the spanwzse load-Lng of using a non-constant 
downwash factor tistrlbutlon, such as could be produced by ccnsideratlon of the 

downwash due tc the flap tip trailing vortxes, can be important. 

Effects of changes in flap or wing geometry are easily lnvestlgated by 
thz. method wlthout recourse to a~ graphIcal ~nterpolatlcn. Fig.8, for 
example, indicates the effect of varying the span of an inboard flap on an 
'Azrbus' type of wing, all other parameters being kept constant. The downwash 
factor IS unity, and the flaps do not extend the wing chord. The or&nate 
used is the increment of the local lift coefflcxnt made nontimenslonal on 
overall lift, and the figure indicates how the peak sectional loading 1s 
influetlced by flap span. 

. 
Part-span factors for the increments in lift due to flap, relevant to 

the loadwgs of Flg.8 are shown on Flg.9. This factor 1s defined as the ratlo 
of the lift increment due to the part-span Inboard flap to that due to a similar 
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full-span flap. A comparison 1s made with factors detertnned from the 
11 

Royal Aeronautled Society's Data Sheets , and It appears that these can over- 

estimate 3 by as much as 5%. 

The vortex drag factor, defined as the ratlo of the vortex drag on the 

vang wth flap to that of the same rung without a flap but twsted to give 

elllptx loating, varies from 5.434 for the flap of 2C$ span down to 1.016 for 

the full-span flap. The vortex drag coefflclent can be wrItten 

E 
Dv 

= -$ [K, CL2 + K2 ACL* + 2Ks EL AC,] (27) 

where ?L 
is the overall lift coeffxlent (produced by angle of uxdence and 

flap deflectlon) and ACL the increment due to flap deflection. The factor 

K, represents the departure from elllptlc loding of the bas1.c wing and 1s 

unchanged by flap deflection if the wng chord remains unaltered. For the 

wmg descrlhed on F1g.8, K, has the value 1.015. The method of the Royal 

Aeronautical Soc~ety's D&ta Sheets 1s to assume that vortex drag can be 

expressed as 

where E L and ACL a-2 defined as for equatl0n (27). From equation (27), 

vortex drag at zero lift ED 
vO 

is given by 

cD 
*2 = z ACLz 

vo 

and by equation (28) 

ED = I$* ACL' 
v 

0 

The part-span factors K and 7di < are compared on Flg.10 against relative 

flap span. Unlike gz2 for a full-span flap K2 is not necessar11y zero. 

Equation (28) assumes that K, is uuty and that munmum vortex drag occurs at 

zero 1tit. From equation (27) this happens when 
__ 
K 

c 
Lm 

= - 1 AcL 
5 



The factor K3 1s also shown on Flg.lQ. It IS numerically small compared with 
K, and K2, but as indicated above 1s not necessarily inslgruflcant. . 

Flg.11 shows the effect on the spanwlse load dxstrlbution of having a 
portion of the flap undeflected at a posltion typical for an engine xddlatlon. - 

The wing 1s the same as for Flg.8, using a flap span of 8046. Both flaps are 
deflected equally and again there is no tiscontznulty in the wing chord. The 
effect on the spanwise loating IS consderable, especially outboard of the cut- 
out. For comparison purposes, the figure shows the distribution for the 
continuous flap of the same span, and also that for the unflapped wing tinsted 
to give elliptic loabng. 

The angle of incidence of the wing is zero and the dlscontlnulty in flap 
def'lectlon proawes a rise m the vortex &zag factor from l-168 to I-311, 1.e. 
about 18. However, 1x1 a more typical case, for example at take-off wth 
the wylng at an angle of lncdence of about 11' and a flap deflection of 15', 

the loss in lift due to the cut-out requires an increase in angle of lncldence 
of about I0 and the vortex drag factor IS raised by only I$, from I.026 to 

l-039 (see Flg.12). If the flaps extend the wing chord, then the loading due 
to mcidence 1s also affected by the cut-out. Fig.13 shows the effect of a 
208 ~~~-ease in unrig chord, keeping the flap chord ratlo constant. The 
comparison 1s made for CLc (or 2by) rather than for the sectlord lift 
coeffxxnt, since the latter 1s dlscontlnuous at the flap tips. The wing 
area has been Increased, so that in order to maintain the same overall lift 
with the same flap setting of ?5', the wing angle of incld.ence has been reduced 
to 100; the vortex drag factor 1s increased by approximately 3% to 1.067, 

5 CONCLUSIONS 

This Report describes a simple extension of the R.A.E. Standard Method 
for calculating spanwse loadings, to include the effects of part-span 'waling 
edge flaps on rylngs of large aspect ratlo. The sectlonal lift produced by 
flap deflectlon I.S represented by the ld't generated by an equivalent angle of 
lncldence of the basic flat plate aerofoll sectxon. The local lift slope 1s 
assume& not to be affected by deflection of a flap, and the chordwse load 
hstrlbutlon 1s motifled by sweepback and spanw~~se posltlon in a slmllar manner 
as that due to the angle of lncdenoe of the basx aerofod. Small aspeot 
rat10 and thickness effects are not Included. As yet there 1s no sultable 
experImental evxlenoe to indxate how better 1s thx theory at predlctlng lift 
and vortex drag Increments than exzstlng technxques. 

. 
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Most calculations III this Report have been performed assurnng the downwash 
factor w to be unchanged from its constant value of unity appropriate to 

jxngs of large aspect ratlo without flaps. However, a tentative scheme to 
include part-span effects 1s put forward, usmg ideas of'Ref.4 to generate a 
non-constant SPXIWIS~ alstrlbutlon for w, md an example 1s given which 
udlcates the conwderable effect on the span-ense load dxtrlbutnn. To take 
t?ns matter further would mean renslng the theory of section 2 to Jncorporate 
a chordwzse alstrlbutxn of awnwash due to streamwise vortlclty that 1s not 

nearly constant over the wng chord. Further, the means of generating w 
outlined III Appendix B would have to be consu3,erably reflned and put on a 
fumer basis. Nevertheless, the apparent sensltlvlty of the spanwse loadu~g 
to the value of the downwash factor would seem to indicate that the matter 
merits further att?ntnn. 

The theory enables the effects of flap or wing geometry changes to be 

easily investigated using a consistent set of assumptions. The vortex drag 
un?ements due to part-span flap deflection include the effects of sweepback 
and implIed camber, which is an advance on the calculation method of the 
Royal Aeronautical Society's Data Sheets. Systematic u-nestigatlons Into the 
effects of aspect ratlo, sweepback, taper ratio, flap chord ratlo, etc., as 
reqlnred for design work can easily be carried out usug t.hu theory. As It 
is an extension of the R.A.E. Standard Method, a number of n~~r~al methods 

which have been developed for classical aerofoil theory can be applied so that 
a consutent and complete set of calculations can be carned out. The effects 

of cranks in the leading and trading edges may be uxCr&ed by the method of 
12 Brebner , ana the effects of a fuselage by applying the method of Weber, Kwby 

and KettleI . 

The theory as developed 1s lneai- and numerous approxlmatuxls have been 
DLXI~ (e.g. that m spite of deflecting the flap, linear aerofcnl theory stdl 

apFh?S; that the vortex sheets from the flap and undeflected parts of the 
tralllng cage 8.ll he in the plane z = 0). The test of a mathemat~calmodel 
is how well it agrees vnth experimental facts. At present such a comparison 
cannot be made, so It 1s not possible to predict with any degree of reliablllty 
the practical llmlts of aspect ratlo, sweepback, flap deflection angle, etc. 

for whxh the theory can be appllea. 
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Appendix A 

THE SPANWISE LOAD DISTRIBUTION WITH DISCONTINIJITIES . 
IN ANGLE OF INCIDENCE AND WING CHORD 

Weber has given a method7 for the calculation of the spanwise loa&ng 
at the Multhopp points '1, and one arbitrary point '7, at which there 1s a dls- 
0ontxu~t.y in 0, or c (called a 'discontinuity' pant). It was shown that 
the oalculatxon of y at the q, points 1s not affected by the addltlonal 
dU00nt1nu1ty point. However, if there is more than one discontlnulty, then 
It is difficult to produce an analogous method. An approximate scheme is 
given here whereby It is assumed that the loading at the q, points is not 
affected by the k discontinuity points, and further, that at each of these 
points, the Induced angle of 1ncldenoe ai, may be expressed in terms of the 

loating at the Multhopp pants and the loading at that tiscontlnuity point only. 
Thus the error 1s likely to be least, 3.f the qs points are well awsy from 
each other or from the q, points- 

The spanwise load tistributlon is drrvided into two parts 

Y(d = Y+l) + Y'(d (A-1) 

where yI produces a dlsoontinuous dlstrlbution of induced angle of inoldence 

-01 
and y* a continuous distribution a* . 

10 
Consider the point. qs, where 

there occurs a hump in the angle of incidence of amount rs, i.e. 

c- = 
s &I, + 0) - &l, - 0) (A-2) 

arid also a dump in wing chord. Define 

As the load dlstrlbution y must be continuous at qs, 

(A-3) 
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Y(‘1, + 0) = Y(rl, - 0) = y s 

On equatmg these two expressions for ys, there results for the hump in 
induced angle of mcldence 

% (3 + 0) - ai (q, - 0) = zs ys + “s 
w (A-4) 

0 0 

The lift slope a and downwash factor w can both be functions of spamuse 
position. They are assumed here to be continous and evaluated at the appro- 
priate point. 

If the functmn F(8, 9s) is defined as follows (see Mul.thopp5) 

F(4, 4s) = ; 9 - cos 5) log (A-5) 

then the load &stnbutlon yI given by 

k 

$79) = 
c 

y, =s + 0s 
w3 

F(4, es) b-6) 

s=l 

produces a tiscontmuous distrlbutlon of induced angle of incidence a 
lo1 

mth 
a .~ump at each discontmulty of the required amount. 

c etc. 

b-7) 
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From equation (A-l), the load distribution p can be wrItten:- 

2b 
- YI G - w a; 

3 
(A-8) 

9 0 

where a* is the con'nnuous &stribution of nduced angle of incidence 
10 

generated by the loading p. a!‘ 
10 

can be expressed =n terms of 9 at the 

Multhopp points and the discontlnulty points:- 
m . 

a*i 

OY 

= b p - by,Y*n 
vv v c 

l-l= 1 

m 
a*. =b y*s- 

c 
b 

=o.S ss sn y'n (A-IO) 

n=l 

The second of these two equations II? conJunctlon rnth equation (A-7) 1s II? 
accordance vnth the assumption that at a discontlnulty point, alo may be 
written xn terms of the loating at the q, points and at that point. The 

coefflcxents b andb 
"V vn are the famdlar Multhopp coeffxvents 5 

are given by WebeT as 

; bss and bsn 

b m+l 
ss = 2 sul as 

a 
b = 

sn sin 19~ 
Sll (m + l)(cos as - cos on) 2 

n even 

n odd 

(A-11) 

In equation (A-8), substitute for a?* from equations (A-9) and (A-10). 

For the Multhopp points there result m equations:- 
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, 

where subscript v denotes evaluatmn at the spanwise positlon q, s For the 

d-Lscontumrty pomts qs, there is a choice of evaluating equation (A-8) at 

ather side of the aiscontmulty: the (q, - 0) alternative 1s chosen here. 

Thus there are obtaned k equations 

These two sets of linear, simultaneous equations are coupled through 

r", and a, 01' yI 
which are functions of p,, and it is convenient to use mstrlx 

methods for them solution. Values of yI at the Multhopp and discontinuity 

points are given by equation (A-6) thus:- 

Y 
IV = 3, L,Ts +3v L2 (A-14) 

Y 
IS = "sL.1 s I- +3saC2 (A-15) 

where 

F(Q OS ), I Fbv, as 
2 
1, . . . . , F@,,, es ) 

k 

3 1s a kxk matrix with s th row: s 

F(Bs> fis )> F(9s, 0s ), . . . . . F(4s, OS ) 
1 2 k 
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In vector notation, equation (A-l) at the discontinuity point can be 
written 

Y =Y *Y* 
s Is s 

and similarly for the Multhopp points. y, can now be expressed in terms of 

y; by substitution into (A-15):- 

Y 
S 

= [.f - 3s q-1 w, + 3s k2] 

where 9 is the umt matrix of order k, and the inverse operation 1s 

assumed to be non-singular. Hence yI a~dyIs can also be wrltten in terms 

of y' S and known geometric terms only:- 

YI" = 3v x, [9 - 3, x,1-' [y*, + .q' q (~-16) 

r 
Is = 3s 2, r‘4 - jrs t,1-' [r* + ";I .zJ S (A-17) 

If there are no dlscontinuities in chord, then k -1 . 
1 

1s singular, and In this case 

yIV is simply jrv t2 and correspcn&ngly for the ms points. 

Equations (A-12), (A-13) and (A-l), (A-7), (A-16), (A-17) constitute a 
sufficient set of simultaneous, linear equations for the (m + k) unknowns F,, 
and. y' . S They can be solved by an iterative process. Iutully assume that 
there are no discontlnuities =n chord (i.e. 2, zero) so thatYI, and al are 
determined solely by geometric quantities. o1v 

Equation (A-12) can thus be solved 
for y*, . Substitute these values into (A-13) and solve for Y*s (applying 
equatxcns (A-17), (A-7) and (A-l)) using the correct values of the tiscontinuities 
in chord. The values ofyes thus found may be substituted into (A-16) and 
(A-7) so that a new estimate of Y*" may be obtained from (A-12), and so on. 
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. 
THE EFFECT OF PART&PAX FLAPS ON THE DOWWASH FACTOR 

I&hemann 2 assumed that w &cl not vary across the span of swept vrlncs 
and tnat It was an adequate approxlmatron to take w equal to twice the value 
of n at the mid semi-span posltlon. Thus for ivlngs vathout flaps, w 1s a 
function of A and rp only. For large aspect ratlo wings, w + 1 as A +m ; 
for small aspect ratios, w -t 2 02 A - 0. However, for wngs with part-span 
fiaps, the tiscontuwous tistrlbutlon of angle of incidence may prsduce a 
spanvase load &strlbutlon whcse slope is not small at spanwise statzons 
outsde the tip resons. In such cases It may no longer be an adequate 
approxlmatlon to take the downwash factor constant across the whole ~lng 
span. 

In a prevu3us attempt to determine the effects of part-span flaps on 
snept wings, Brebner and Lemaxre 4 considered the ud'luence of the down+\ash 
produced by the strong trailing vortxes at the flap tip &scontux&tz.es. 
They produced qualitative arguments for the effects a? aspect ratio and sweep- 
back and used them to assist =n the analysis of electrolytic tank test data 10 . 
The spanwse dlstrlbutlon of the downwash factor due to an isolated tradu,: 
vortex 1s a function of the aspect ratlo of the wxng, its angle of sweepback 
and tne chordmse posltlon of the podc of origin of the vortex (the hinge for 
a flap dlscontinuty vortex). For unswept wngs wzthout flaps, It was 
argued that there would be little overall change xnthe dlstrlbutlon of w 
and It would still be an adequate approxlmatxon to take It constant across 
the span. F1g.6 compares the spanvr=se load tistrlbutlon calculated by the 
method of this Report using w = 1-O with electrolytic tank test results for an 
unswept wng with inbard flap. The agreement 1s very good, in fact better 
than that of Brebner and Lemaire which used a constant value for w slightly 
gr*ai;er than umty (small aspect ratlo effects are just apparent on unswept 

wngs of aspect rat10 4). 

For swept wings inth part-span flaps, Brebner and Lemawe considered 
that there may well be sigruflcant departures from w = constant, but were 
unable to give a quantztatlve assessment of w(q). In order to see what 
effect such a non-constant dlstrlbutlon of the downwash factor would have on 
the spanbase loating, a factor has been derived which tends to unity as the 
angle of deflection, or chord rat.10 or span of the flap tends to zero. At 
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all spanw~se statmns, the mean value over the chord of the downwash produced 
by trading vortices at the discontmuities sprmgmg from the local centres of 
pressure mth the flaps deflected, was divided by the mean downwash produced by 
trading vortices of the same strength but springing from the centres of 

pressure mth the flaps undeflected. This factor thus varies wxth the 
proportlon of the total lift that is due to the flap and 1s .sutomat~csXly unity 
wlsn the flap 1s undefltoted. For the prrr:~oses of this exarci:e, tlxs fnctor 
has been called the dmmrash factor, hut it is not mtended that thu should 
ncJcxssarilJ- be th,= WS~ thdt w shod2 be estmated. 



SYMBOLS 

scctlord 1lf-c slope, CL/a, 

wing span 

local wmg chord 

flap chord 

mmber of dlscontlnultles in induced angle of mmdence 

number of spanw~se Multhopp points 

chordwxe loadng parameter 

z-component of induced velocity 

rectanguhr cooralnates: x m free stream &rector, zero at 

leadxlg edge; y in spanmse dlrection,posltlve to stsrboarl; 

z posltlve vertically downwards. x,z non&~mens~onal on c 

chordwxse point of Oregon of a tralllng vortex 

Wing aspect rat10 

sectional vortex drag coeffxlent 

overall vortex drag coefflclent 

Gl %I at zero lift 
vo v 

C L sectlonal lift coefflclent 

EL overall lift coeffxnent 

CLhln 
CL when CD 1s a rnlrnrnum 

v 
c m sectlonal pltchxng moment coefflcxnt about quarter chord position 

Kl,2,3' s2 
part-span drag factors 

r, part-span lift factor 

v3 free-strea* velocity 

a local angle of uxzdence (equals the sum of ACJ, and the angle of 

lncuience of the aerofoll -ath undeflected flaps) 

a e effective angle of incidence (equals a less the induced angle 

of incidence al) 



28 

SYMBOLS (Contd.) 

induced angle of mcidence 
a1 on wmgs of large aspect ratlo 

angle of flap deflectv3n (streamwise) 
C L c/2b, nondimensional load dlstrlbutlon 
load distribution that produces a dxcontinuous dlstrlbutlon of a1 

0 
Y - Y, 
&stribution of spanvnse vortices along the chord 

angle between chordllne and aerofoil ahead of the flap hinge 
value of 9 when the aerofoil mth flaps undeflected IS at zero 
angle of incidence 
spanunse coordinate q = ccs 4 

0 t, = Z'/b I 
spanwise interpolation function 

7[ cot(7c no) 

angle of swapi~a~n of' mi;l-chord line 

5 
% 
PC 

6 

6 I 

P 

'1 

A 

c- 

‘p 

w 

A Cp(x) 

AC?. 

downwash factor 
difference between pressure coeffwlents on upper and lower 
surfaces of the aerofoil 
equivslent angle of incidence due to flap deflectwn 
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- ----- No cut-out; xA&$L2 = I.026 . 
CL = I 60; flap deflection = 15" 

I I 
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Fig. 12 Effect of flap cut-out on spanwise loading with 

non-zero wing angle of incidence 
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