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SUMMARY

A non-linear lifting surface theory is postulated which incorporates
the leading edge separations, by extending Brown and Michael's slender wing
model, but satisfies the Kutta trailing edge condition. Results of a numeri~

cal application to a delta wing indacate acceptable trends compared wath expera-
mental data.
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Notation
X,¥2 Rectangular co~ordinate axes system
U,V,w Perturbation velocity components in Xx,y,2z airectlions

A Aspect ratio

Coeffacients an series expansaon for 51(i,§) in

&2p+1
priq equation {58)

B-Y(ZP + 1,4,%,5) , 35(21’ + 1,9,%,5)
Defaned in equations (63) and (64)

aw(2p + 1,9,X,¥) Upwash coefficient corresponding to By041,q
 J
b Wing span
c Wing root chord
L
G = ——— Lif't coefficient
L 1. 1s3
2PV . SW
Z
CN = — Normal force ceoefficient
1

c = = Pressure coefficient
P 1 V9
2P
p& - poc
cp T emmmemnnnd Pressure coefficient on wing lower
L ~;_,-pVa surface
pu - pou
o = — Pressure coefficient on wing upper
u 3pV? surface
File! = ¢ -c Loading coefficient
P, Py
Cm - Patching moment coefficient about wing apex
oy ‘A small tolerance (equations (48), (49))

Fy(i), Fz(i), F(X) Defined in equations (44), (43), (46)
fu(i;i.l ’71121), fv('i’i‘l 15'.1:5'1 )y f_;(i:i1 :?1;.51)
Defaned by equataons (26), (27), (28)

Coefficients in series expansion for f‘w(i) in
q equation (60)
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gy(q,i,&), ga(q,i,}) Defined by equations (65) and (66)

ew(q,x,¥) Upwash coeft'icient correspondang to 8,
k Slope of the wing starboard leading edge (i.e. y = kx)
L Upper integer limit in series form for I (x) in

equation (60)
L Lif't force

m Upper integer limit in series form for S (x,y) in
equation (58)

M Pitching moment about the wing apex

n Upper integer limit in series form for 6 (x,y) in
equation (58)

P4 Integer indices
Sw Wing planform 1n 2 = O plane
ST Trailing sheet in z = C plane
4,v,w wv, vV, wi

7, (%7,(2), 3, (2)),7, (57, (3), ()

Induced velocity in ¥,zZ-directions at the starboard
vortex (equations (ADS, (#1))

v Free stream velocity
L Force in x-direction
x, Position of centre of pressure
P
X,7,2 x/c, y/c, z/c
yv(x), zv(x) Locations of the starboard vortex
65#(2), Aiv(i) Correction to spanwise position and height of the starboard
vortex given by eguations (50) and (51)
Z Force in z-darection
a Incaidence
B(y) Angle of deflection of stireamlines at the trailing edge
&(x,y) Trailing 'vorticity', i.e. component of vorticity about the

X-darection

61(x,y) Part of trailing 'vorticity' tending to zero at the
leading edge (equataon (58))

°¢/
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65,(3(,3’)

6p(¥)
8(%,5)

y(x,¥)

Subscripts
L

R
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Part of trailing ‘vorticity'! tending to a finite
value at the leading edge (equation (5))

Trailing vorticity on the wake trailing sheet
6(x/c,y/c)/N

Bound 'vorticity', i.e. component of ‘vortacity' about
the y-direction

Part of bound 'vorticity' tending to zero at the
leading edge Equation(4)

Part of bound 'vorticity' tending to a finite
value &t the leading edge

y(x/c,y/e}/V
Circulation strength of starboard vortex above the wing
Circulaetion strength of starboard vortex in the wake

r(x/c)/(c V)

Air density

y/(k .x)

Lef't

Right

Trailing sheet

Main vortex {or vortices)

.Wing planform

.

[ ‘Upper suiface of the wing

: %~ Lower surface of the wing
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I. Introduction

The qualitative flow pattern about a low aspect ratio wing with sharp
leading edges at incidence is now well understood. Comprehensive experimental
data has indicated the main features of the flow pattern, comprising the rolling
up of the vorticity shed from the leading edges ainlo the two primary vortices,
the attachment lines, the formation of the secondary vortaces, and the character-
1stic pressure distributions with the high suctions on the upper surfaces induced
by the primary vortiices.

Theoretical work has been developed along two fronts. One front,
based on the slender conical wing approximation, has evolved through the models
of Legendrel, Brown and M:.chael2 Mangler and Smath3, Maskelll up to the detailed
investigation by Suith®; comparison with the relevant experimental pressure
data 1s good. Unfortunately the assumption of slenderness leads to a theory
which is independent of Mach number, thus, in general, the theory breaks down at
low Mach numbers in the trailang edge regions because the Kutta trailing edge
condrtion is not satisfied. The second front of approach attempts to extend the
classical low speed lafting surface theory, ancorporating the Kutta trailing edge
condition, by includang relatively crude representations of the leading edge
separatlons8 The works of Gersten6, Garner and Lehr1an7, and Sacks, Neilson
and Goodwin® all replace the wing with the usual form of bound vorticaty but with
some additional system of separated trailing vorticaty although the rollang up
process 1s neglected; distributions of loading are not obtained only the overall
forces and moments.

In this paper an attempt 15 made to combine these two approaches, the
conventional lifting surface of vorticity an the plane of wing is taken together
wath a more realistic pattern of rolled up trailing vorticity above the leading
edge ., This can be regarded as an extension of the slender wing meodels to non-
slender waings in whach chordwise effects are signifacant. Obvaously it as not
feasable at this stage to generalaise Smith's latest work since the numerical work
already required in this slender wing case 1s formidable. So the task of genera-
lising the 'simpler' model of Brown and Michael to non-slender wings 1is undertaken.
It 1s recognised that the model of Browm and Michael in which the spiral vortex
sheets from the leading edge are replaced by two concentrated lane vortices of
variable strength with two feeding "cuts" between the line vortices and the res-
pectaive leading edges, is open to criticism and that guantitative results
cannot be regarded with any confidence. But in the opinion of the authors at is
essentaal to keep the model as simple as possible sance it is expected that
numerical work will be extensive. In any case the extension of the Brown and
Michael's model will be an advance on the exasting work., Even with this limated
objective the authors have not come up wath a programme which can be plugged anto
the nearest computer, all that has been achieved 1s a grasp of what ihe solution
entails and the order of magnitude of numerical effort which is reguared to gave
reliable quantitative answers relative to the assumed model.

The flow past a finite thin symmetrical delta wing at incidence with
separations all along the leading edge 1s considered. The aim is to extend
the Brown and Michael model to include the Kutta trailang edge condition.  The
basic model is shown in Fig. 1.

The origin of Cartesian co-ordinates, x,y,z is placed at the apex
of the wing and the x-axis is taken to pass through the mid~point of the trail-
ing edge. The strength of the starboard line vortex above the wing is denoted
by T (x) ; and taking the axis of the 'cut' an the plane normal to the wing

surface the strength of the 'cut' 1s denoted by ﬂ . The vortex
dx

system/
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system on the port side as equal and opposite to the starboard system.

The wing surface Sw 13 to be replaced by a vortex sheet with das-

tributions of bound 'vorticity' y(x,y) and trailing 'vortacaty' &(x,y) .

To salasfy the boundary condation that the upwash gust off the leading edge 1s
fanate the vorticity component parallel to the leading edge tends to zero as
d*’? , where d ais the distance from the leading edge, then the vorticity
component normal to the leadang edge at the leading edge represents the strength

of the 'cut!' <1Je.
ox
The weke af't of the trailing edge comprises the vorticity shed from
the wing trailang edge together with the two convected separated leadang edge
vortex systems.

Because of the velocity iield ainduced by the separated leadang edge
line vortices, the vorticity shed from the trailing edge f'eeds anto the down-
stream discrete vortices. Thas aspect 1s included ain the present model by
introducing an approximate form of the wake shown in Fig. 1. Filamenis of vor-
ticity which leave the trailing edge are deflected outwards at an angle F(y)
under the anfluence of the spanwise velocity field due to the main leading edge
vortices. Downstream of the trailing edge 1t is assumed that these vortex
lines remoin straight at the same angle until reaching the side edges of the
wake ( y1yy = s} where they are immediately convected into the main vortices
via cuts joining the side edges of the wake to the main trailing vortices.

Thas model crudely represents the absorption of the vorticity shed from the
trailing edge into the leading edge vortices and gaves far downstream a complete-
1y rolled up trailing vortex system. The rolling up process has necessarily
had to be incorporated into the present non-lainear theory; the concept of a
non-rolled up trailing vortex sheet extending from the trailing edge to infinity
1s only feasible and consistent within the framework of a linear theory.

A mumerical collocation method 1s developed., The wing vortiacaty

&(x,y) on Sw 1s expressed as a double Fourier series in terms of 20 unknown

coefficients, while the strength of the leadang edge vortex is expressed a

f1f'th order polynomial with 5 unknown constants. Por a specified position of
the leading edge vortex the complete vorticaty system (i.e. both 5(x,y) and
rw(x)) can be evaluated in terms of these 25 unknowns. The upwash condition
1s satisfied at 20 points on the wang and the condition of zero load at the
trailing edge 1s satisfied at b dascrete points. These last fave equations are
non-linear since there 1s an interaction between the wing vorticity and the
leading edge vortices. To cope wath this dafficulty a method requiring a double
1teration procedure 1s developed. First the position of the leading edge vortex
1s assumed; the variation of the shedding angle A(y) of the trailing sheet
vorticaity from the trailing edge is assumed across the span, and the appropriate
equations, which are now linear, are solved; it 1s feasible to recalculate

the sheddang angle of the trailang sheet vorticity and this aspect can be 1tera-
ted out further. Based on the results obtained the condation of zero force

on the leading edge vortex system leads to a new position of the leading edge
vortex and the whole process can be repeated. As will be discussed later, one
of the major difficulties 1s that the two 1terations cannot be accomplished

one within the other, it 1s best to let them develop in parallel. These daffi-
culties are dascussed from the experience of a worked example in Section IIT.

In this worked example ihe intracacies of convergence have not been completely
unravelled, however the theorcectical results obtained are encouraging and the
trends compare favourably with experimental data.

1./



II.

hathematical Tormulation

IX.1 Mhodel and axes

For a delta wing in a low speed flow of velocity V the
origan of the rectangular set of Cartesian co-ordinates x,y,z is
located at the wang vertex. The x-axis is taken to pass through the
mad-point of the trailang edge as shown in Fig. 1. The dimensions of
the delta wing are denoted by the root chord c¢ , span 2s( = 2kc) and
the leading edges are given by y = ox .

An uncambered wing surface at an incadence a 15 defaned by
(x,5) =0 . 1The wing surface area 1s denoted by Sw + The extension

aft of the trailing edge on the plane 2z = O of the wake strip

(x 2 ¢, 1yl € s) 1s denoted by Sp - These defamitions of §, and §;

daffer from those in conventional linear theory where both SW and ST

are usually projections on a plane parallel to the free stream.

As mentioned previously the strength of the starboard vortex
over §, 1s denoted by Pw(x) » positive anti-clockwise, and 1ts posi-

tion 1s denoted by (x, Y, (x), zv(x) ) . The strength of the port
vortex is given by ~Iw(x) (in anta-clockwise sense) and its positaon in
this symmetrical problem by (x, —y\r(x), zv(x) ) . Aft of the trailing
edge, x > ¢, above S;, the strength of the starboard vortex will be
written as Pw(c) + PT(x) .

Since each of these line vortices increases in strength down-
stream of the origin, the feeding of these line vortices 1s accomplished
by the introduction of 'cuts', In the region of the wing SW each of

the cuts extends from the leading edge to the neighbouring lane vortex;
in the region of the trailing sheet ST the cut extends from the side

edge of ST to i1ts neighbouring line vortex. The strength of the ‘cuts'

are equal to

or, (x)
L Ogx<gc
ox
and
aPT(x)
C £ X % x
ox

A 'bound vorticity' distribution y(x,y) and a 'trailing
vorticity' distribution &(x,y) are introduced about mutually perpendi-
cular directions as shown in Fag. 1. These vorticity dastributions
over the wing are related by the equation of continuity of vorticity

3y(x,y) . 3s(x,y) e (1)
oy ) 90X

Te comply with the conditions of leadang edge separation the
upwash just off the leading edge must be finite. It should be noted that
this condition does not imply zero loading at the leading edge although it

does preclude an infinite loading there.
Following/
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Following the observataions of Brown and Mlchae12 fanite upwash
velocities off' the leadang edge are ensured if the vorticity parallel to
the leading edge tends to zero as the square root of the distance from
the leading edge, the vorticity normal to the leading edge at the leadang
edge remains finite and represents the feeding vorticaty connected through
a 'cut' to the main separated 'concentrated' vortices. In general, tHe
vorticity on the wing Sw can be written

it

v(x,¥) Y1(XJY) + Yg(xsy') e (2)

B(xy) = 8,(y) + 8(xy) e (3)

where the functions y1(x,y) and 61(x,y) both tend to zero as the square

root of the distance from the leading edge; at the leading edge the func-
tions yg(x,y) and Bg(x,y) are both finite and their resultant vorticity

1s normal to the leading edge. The 'vorticity' dastribution representing
yg(x,y) and BE(x,y) in the present case of a delta wing 1s assumed to

comprase lines of constant vorticity on circular arcs with the apex as thear
centre. The reswltant vorticaity at the lemding edge 1s therefore at right-
angles to it, as indicated in Fig. 2. The expressions for y (x,y} and
6g(x,y) can be written. &

ar, . x ar
Yg(X,.Y) = cos GL- (ﬂz _ (x:::j)ua:  +y ):./n ' ( d:]?: ()c:_:i)ua
oo (4)
ar -y ar
Bg(x,y) = -sin eL‘( W) . 179 S )2 ( w) B af 23
dx“(iu&) o dx“(m&) '

e ()

Next the conditions at the trailing edge are dascussed.
Because of the outward deflection of the streamlines and vortex lines at
the trailing edge both y{c,y) “and &(c,y) will exist. Straight fila-
ments of vorticity leave the trailing edge at an angle A(y) in the
present model and continue downstream until reaching the edge of Sp where
they are immediately convected anto the main vortex via the ‘cut' 15
ancrease the vortex sirength PT(x) . The angle @A(y) 1s given by

VI‘(F’Y’O) e (6)

tan B(y) = —
B V cos o + ur(c,y,o)

oo iR . )
where vr(c,y,é) *, 800" gfig,yépjﬂ_are the velocity components induced at
- o el

the trailing edggfﬁﬁggébér@jéa?iiﬁe'vgrtlces. Sance the zero load con-
dation at the trailing edge is satisfied if

v(c,¥)-(V cos a + ur(csy’o))" 6(013')' VP(C)Y:°)= 0 e (7)
then from equations (6) and (7)

Y (e,y)/
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V(ch) Vr(ch:o)
= - tan ﬁ(y) . LR (8)
65(c,y) V cos a+ ur(c,y,o)

‘ A relationship between the vorticity shed at the trailing edge
and the strength of 'trailing' vortices PT(x) can be deduced. By

reference to Fig. 3, if A 18 a point on the trailing edge and D is a

point on the side edge of S such that AD 1s at an angle B(y) to the

%-axis, then the circulation about the strip along 4D of width &n is
equal to &(c,y).dy (= y(c,y).dx) . The addition to the trailing vortex
PT(x) from the wake can therefore be written as

(%) - y(c»y) ce (9)

x = [(s-y)cot g(y)+c]

or 5
Tp(x = [(s-y) cot B(y) + c]) =f 6(e,y') dy' - -+ (10)
y
Thus the vorticity distribution in the wake ST together with the vortex
strength PT can be expressed in terms of the wing vorticity distrabution

over S, and the trailing edge sheddang angle A(y) .

The problem reduces to the determination of the following
unknowns :

(i) the strength of vorticity components y1(x,y) and 51(x,y)
on the wing Sw »

(ii) the strength of the main vortices Pw(x) over the wing Sy ,
(iii) A(y)
(iv) the position of the main vortices over Sy and 35; .

The boundary conditions to be applied for the calculation of
these unknowns are:

(i) +the flow is tangential over the surface of the wing SW »
(21) =zero load at the trailing edge,

(iii) zero f'orce on the vortex-cut arrangement over both the wing
Sw and the trailing sheet ST ; 1t is assumed in this paper
that the force components in y- and z- darections are the
amportant ones, the x-component force is not considered.

I1I.2 Calculation of induced velocaities

II.2.1 Velocities induced by the waing vorticaty distributions
y(x,y) end 6(x,y)

The non-dimensional induced velocities ﬁw(i1,§1,i1) ,

?w(i sy, ,21) and ww(i1,§1,51) due to the vorticity distributions

=/

>
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¥(x,¥) and 58(%,7) distributed over 8§ in terms of the non-

‘W‘ !
dimensional parameters defined in the Notation, are

1 F
Uy (%,5,,%,) = ";[[ ¥(%,3) L &x dj -+ (11)

[x-%0+ (7-3,)% 71

z

N X (%) ! ax ay +e- (12)
vw(x'l,y‘l’z‘l)_—m'[] [(i _21)8*‘ (? _?1):3 +?1]312

Vo &-%) 53 -G -7) 8%,
_(’—‘1”-"5)=“‘f./( ) ¥(&y) - (5 -5 ) 8 y)didi. - (13)

s (GRS G ost e

The subscript W on the velocity components indicates that the velo-
cities are induced by the wing vorticity. As far as satisfying this
condltlon of tangency of flow on to & first order, only

U (x »¥,++0) from equation (13) is required, this is the classical
llnearlged downwash integral where the integrand possesses the usual
gingular behaviour as 51 -+ 0 . The other velocity components

ﬁw(i1,}1,'£1) (equation (41)) and ?rw(i1,3r1,‘z1) (equation 12)) will
be required in the calculation of the velocity fields around the leading
edge vortices,

IT.2.2 Velocities induced by the vorticaty on S

T

As described in Section I, the trailing vortex sheet ST

consis ts of straight filaments of constant vorticity which leave the
trailing edge at an angle P(y) . First the downwash due to the fila-
ment AD (shown on Fig. 3) as derived, Taking x,, as a general point
on the line AD the equation of AD may be written in non-dimensional

terms,

X, = (J, - ¥) cot A7) + 1 -re (1)

Thus the angle S(y) is given by

dyh ?(1:5)
— = - se (15)

using equation (8).

First the important upwash velocity in the 2-direction is
consdered. The induced upwash due to AD at a general point
P(x1,y1,z1) , denoted by Aw,, is

8, /
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- s L ~ 638 _
o o 165 3y - %)~ (3, - F,) ay W,
Awﬂn(x1,y1,z1) = 8(1,y).dy — — — — - 4

%=y
& se e (16)

Integration of equation (16) between the lamits 0,k
yields the effect of the right-hand side of the trailing sheet S_. in
inducing upwash at a point P(x1,}1,i1) ; wrating this term as

W, then
r .k
. PP (17)
where
- 5 dib
1(y) =] —— - - —
| (5, -5 ) cot B(F) + (1 =%+ (5, -7,)% + £ 1°7
h J
soe (18)
_ 4,
after substituting for X, and —= from equations (14) ana (15).
dx

The analytic reduction of I(§) is‘deslt with in Appendix II. The
corresponding expression for the induced upwash effect due to the left~

hand side wake ﬁT is simply obtained by changing the sign of Sﬁ

L
in the expression for ETR s thus
wTL(x1,y1,z1) = WTR(x1,-y1,z1 . eee (19)

The total upwash effect due to trailing vortex sheet ST is therefore
wT(x1,Y1,z1) = wTR(x1,y1,z1) + wTL(x1,y1,z1) evs (20)

The induced velocities uU_ and W, due to the wake can he deraved

T T
in a similar manner %o that outlined for Ww, above; it is found that

T

I

-k
ks % v - ks ¥ - .z z1 2 Ir v 7 .
uTR(x1,y1.z1) uTL(x1.,-y1,z1) = ;lﬁ(‘l,y)- (1(7)] & e (21)

3 ( %.3) =% (% .-..3.) = El./kg y).cot G(y).LI(} y
VTH(x1,y1,z1) rl.L(x1, 4224) g} (1,¥) B().[1(3) ] T (22)

11.2.3 Velocaties induced by the discrete main line vortices

Expressions for the velocities induced at a general point
by the right-hand vortex are derived first. The three induced
velocity components up , ;P and ir due to right-hand vortex

R R R
of non-dimensional strength T'(X) can be written in the concise form

¥/
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EACEALYE [ F(2).£ (%%, ,7,,%,) & cer (23)
PACERARYRIORNCE RN RE e (2)
[o]
ﬁrR(i1,}1’E1) = /' f‘(i)'fw(i,i."i.ll_z.l) di se (25)
0
where )
I - ) R VA € )
G, -5 —— - (3,(®) - ) —

f(‘i:ir-&:‘é)=_'
ST e (G-m P G,R) -7)% ¢ (B, - 5,) 1

cew (26)

d"z.v(i)

G -3) - &-%) —

f(isiy—jsz)':—'
VTV 1@ - %) e (5,00 - 5,7+ (3,00) - E)7 ]300

cee (27)

&

1 (% - x,) po -3, -73)
L (XX, 5F,0%,) = = *
TN 1R - ) (5,8 - )+ (3, - 5)7 ]

awe (28)
Since T(X) has been separated into the form
T‘(i):ﬁﬁ’wﬂ(“) for  0sx< 1 (i.e. over the wing)
FWR -
=T ()# T(X). ~for 1< X<« (i.e. in the wake)
L ) R I
SNSRI ey cee (29)

IS, . ey ,_"":"' > rv-:!{ % — _
the induged;V ?ﬁ% “i(X) and T(x) can also be

ce"d__‘ velocities can be written

H

K Qgijjxljjﬁﬁ:l;z?) + uFT (x1 ,y1,z1)

WPR(X1’:Y1,Z1) = WI\“Ir (x1’y1’z1) + WI! (x1,y1,z1)
"R

where u%l /
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U (%,,5,02,) = j T(x) £ (%,%,,5,5%,) & + T (1) j £ (%,%,,5,0%,) o
Wﬁ A 1
s (30)

i (-4

er (X1JY1:Z1) ==j‘rw(x)-fv(x:x1sy1:z1) dx + rw(1) /.fv(x:x1:y1,z1) dx
R i

ese (31)
i o
i

iz

cos (52)

i (%,,7,5%,) =/f‘T(i).fu(i,?c1,3r1,i1) dx
T
R ! k
- f [ j 8(1,5") ay'J {fu( [k - 7).cot A(F) + 1J,i1’?1’51)}
k -
y
x [ cot B(3) ~ (k ~ ) cosed®5(¥)

ay

38(¥) ]

dy
e (33)

o
(Bps305%,) = [ Ty®)6, (3,05, &

T |

=f|: [k5(1,§') dy'] {fv( [(k - 7) cot B(F) + 1],x1,y1.z1)}
y

B(F) y
x [ - cot B(¥) - (k - 3) cosed®A(F) --——]-dy
oy

vr

eoe (34)

W (%705 = f TL(®).1, (2%, T,07,) &
]

&

= [0‘: fl;'( 1,¥") d'jr"\ {.fw( ((k - 3) cot B3+ 1],x, ,371,2,)]
k y

ay

_(3)
] - oot 8E) - (k- ) eosech(3) — ]
Yy

v+ (35)

The/
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The last three eguations (33), (34) and (35) have been
transformed into spanwise integrals since T,(%X) is known only as

s function of ¥ by the statement leading t0 equations (10) and (14},
the transformation used is

x=(k=3F) cot B(F) + 1

_ o Eorrespondin§ eXpressions for tEe induced velocities
uI\w (x1ly1’z1) 3 wr (x1,y1,z1) ’ uIl (x1,§1l-§1) and
W T
L L L

ﬁrT (x1,y1,z1) due to the left-hand vortex may be derived by changing

L
the sign of §, in equations (30), (32), (33) and (35), while
p (x1,y1,z1) and ¥, (x1,y1,z1) are given by changing the sign

WL TL

of }1 and the overall signs of equations (31) and (34).

II.3 Application of the boundary conditions

The boundary conditions representing the tangency of flow over
wing and gzero force on the vortex-cut arrangement are now formulated. It
is assumed that the condation of zero pressure loading on the trailing vor-
tex sheet need not be considered further since the wake model has been
designed to meet this requirement.

For a flat wing at incidence a +the condition of tangency of
flow over the wing surface in non-dimensional terms is

ﬁ(i1,}1,o) = - gin a - +ss (36)

The induced upwash velocity ﬁ(x1,y1,o) includes the contributions from
the vorticity on the wing surface S, , the vorticity on the trailing

vortex sheet S ard the ma.in concentrated vortices above both SW and
ST , therefore

ﬁ(i.‘ 53110) = Ww(ial )}1’0) + .ﬁT(i.l .!?1’0)

+ "'_"'11 (3&1 :?110) + EII (i1i-i1lo)
W T
on e (37)

where all of these contributions have been defined in Section Ir.2.

Zero loading of the vortex-cut combination 1s satisfied on the
starboard system only, then by symmetry the port system will also be
satisfied. Only the force components in the Jy- and 2z~ directions
are consxered since it is thought that these flow forces are the signifi-
cant ones, effectively the force components normal to the vortex should
have been used but the extra computational effort is probably not justified
at this stage.

The force on 1 (%) at (i,'jv(i),iv(i)) is

v ./



_ dy. (% -
e T @[ y;i - %, (2,7, ()5, (x)
in the Z-direction e+ (38)
- - dz_(%)
and v, T(%). . |_ —— - ?v1(i,3rv(:‘c).av(:‘c))] cer (39)

in the Yy-direction. These relationships are to be applied over both
3, and S .
W T

The farst terms in equations (38) and (39) represent the force
on the vortex due to the free stream V . The second terms represent the
force on the vortex due to the perturbation velocities ¥ (i,}v(i),ﬁv(i))
and ﬁ1(i,§i(i),iv(i)) induced at the point (i,yv(i),avzi)) on the
starboard main vortex by the whole system of vorticity but excluding the
starboard main vortex itself. Theoretically since each main vortex is
curved it induces anainfinite velocaty on aitself; this infanite velocity is
not included in the subsequent analysis. Intuitavely it would be expected
that these self-induced velocities would be small compared with all the
other induced velocities but there appears to be no valid reason for ignor-
ing this behaviour, in any case the authors were not sure how this effect
should be ancorporated into the analysis in a sample way. The breakdown
of the induced velocities from the various sources can be written

51(i,§v(f),§v(i)) = wa(i,yv(i),iv(i))
+ Vo(%,5,(%),2,(%)) '

¢ E@RE, 3E)

v L(' 7. (%),z (%))
+ VTTL X,3,%),2 (X
e (40)
7, (5,7, (3,5, (8) = %%, (%)%, )
+ ?’T(iy-jv(i)siv(‘i))
" Ty GG
v (3,0,5,)
. o (14_1)

where the various terms are given in Section I1I.2.
The force components on the cut arise mainly from the free

stream V because the streamwise perturbation velocities are small in
comparason with V ; these force components are therefore

pvic./
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ar (%)
pVic. (7,(X) -~ kX ) dX  in the Z-direction ie (42)
dx
ar'(%)
and  -pVic Ev(i) 1n the ¥y-darection vee (43)

Thus the total force components onthe vortex-cut arrangement in y- and
z- darections, combaning eguations (38), (39), (42), (43) are

~ _ wd‘iv(i) 1 df‘(i)__ o
B = - 2F)| o e o ) - w1(x,yv<x),zv(x))J
B _ _ sse (l'_h_)
_ _ dyk(x) 1 ar (x) o o
Fz(x) = + 2T(x) —— (yv(X) - kx) - V1(X:Yv(x)’3v(i)):\ .
- dx T(x) ax

s (I“E)
In accordance with the boundary condaitions these two forces F (x) and

F (x) are to be made 2ero. As stated earlier, the numerlcal procedure
14 to assume an 'initial' vortex position end to apply the boundary condi-
tions of tangency of flow and zero load at the trailing edge. And then
the velocities ¥ (x,y (x),z (x)) and (x,y (%),% %x)) can be

calculated at the 1n1t1a1' vortex pos;tlon s0 equatlons (44) and (45) can
be used to estimate a 'new' vortex position. It has been the experience
of Smith® and the authors that the forces Fy(x) and Fz(i) are

extremely sensitive to vortex position. To derive a new vortex position
by simply equating the forces to zero can lead to large movements from
the initial positions; an fact the authors found this procedure divergent.

To avoid divergence, the movement of the vortex is restricted.
A new vortex position is calculated only if' the force on it exceeds a pre-
specified 'tolerance' and then the vortex is moved a small amount in the
direction of resultant force (components F_ and P ) to a 'new' vortex
position. y z

The resultant force vector F(X) at the starboard vortex is

given by
FE) = (77 (%) + F2E))/F s (46)
and its angle of inclination to xy- plane is given by
F_(x)
tan"( 2 ) s (47)
F (%)
The ‘'corrections' to the slopes of the vortex geometry are then
given by
(6,0 S 18)
— (06z (X)) =4, * if PX)»F cee (48
ax v tol 269 tol
i (%)) 7, (it F(x) ) (49)
— (87, (%)) = -4, . if F(x)2F s
dx v tol F(x) tol

where/
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where d 13 a small specified 'tolerance' in the slopes of the vortex
tol .
to] 15 & small tolerance for the force.

geometry and F
The actual ‘corrections' to the vortex geometry can then be

written %
4z (x) = .—- z (x! X! ses
o) jdx (o (x')) & (50)
x d
09, = [ — (03,6) & coe (51)

which leads to the '"new' position of the vortex

(@ = 3. + 07,3 (0<X<e) e (52)
new initial
2, (%) = 2 (%) + 0% (%) (0<% <o) eee (53)
new initial

11.; DNumeraical method

The unknowns in the present problem are:

(1) the related vorticity distributions ¥(%,y) and o(%,J) over
the wing Sw

(2i) the main vortex strength fw(i) over the wing S

(1ii) the main vortex positions v(x) and Z (x) over both the
wing SW and the trailing vortex sheet’ ST

The vorticity in the trailing vortex sheet §,, and the partial
contribution to the wake vortex T (x) have been expressed in terms of

the vorticity dastribution over the wing from the condition of zero load
at the trailing edge as indicated in Section II. 1.

As discussed in Section IX.1 (equations (2)~(5)) the vorticity
distributions &(%,¥) and ¥(%,§) over the wing Sy » eare divided into
two parts

3(%,7)

8, (%,3) + §,(%7) eoe (54)

1t

H5%,3) = Ty(5%T) + 7,5%) e (55)
where 51(2,3) and ?1(2,5) are continuous functions which tend to zero
at the leading edge with the square root of the distance froa the leading
edge while 5g(i,§) and ig(i,ﬁ) are related to the strength of the cut
dfw(i) _
+  In particular, equations (4) and (5) can be written in the

dx
non—~dimensional form

e
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) = ;)1“ ' ( dl"f)) segren )
(%

Sg(:'c,'fr) = = :3'}9)1“ . ( dr:;i)) e . cee (57)
% = ( e
( 1+ k*

IT.4.1 Series expansions

A series expansion for wing trailing vorticity 6 1(2,3?)
2p+

() e

R
8,(%)3) = L Z.“zpn.q 'iq(
p 631 (]-{,3') 3171 (is§)>

p=0 q=0
The conservation of vorticity ’Ki.e.

T

&
B f e

3% 3y
leads to the related expansion for ¥, (%X,¥) namely

n m - 8 ?.E.'.tl
y.(%,¥) = k \ a x4 1 —Z 2
TRRIT ZJ 2p+1,0" % ( 1&)
P=0 g=v
2p+)

e (59)

- It should be noted that the regquirement that both

5, (X,¥) and 2 (%,7) tend to zero at the leading edge as the square
root of the distance from the leading edge, is built into equations
(58) and (59). ‘The expansions in equations (58) and (59) are taken
as extensions of slender conical wing distributions omitting the
leading edge singularities, thus the usual difficulties in rounding
off the wing apex in conventional lifting surface theory do not arise.

A polynomial series expansion is teken for the strength
of the leading edge vortex I'W(J—c) over the wing SW in the form

)

1

Ty (%) = qu. zd . »++ (60)
q=1

The/
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The continuation into the wake 1s discussed later.
The vorticity distraibutions 6 (X,¥) and 7g(is§) defined
in equations (56) and (57) can be expressed in terms of the coeffi-

clents gq _iixtroduced in equataon (60), The complete expres-
sions for~ 6(%X,¥) and ¥%(%,¥) Dbecome

__n__'\ m
- v
S(Xsy) = Z__/ Z‘ 32p+1,q- 35(213 + 1, Q.visy)
p=0 g=0
.
+Z‘gq- gs(a,x,7)
q=1
n m
- — — _n\ v - "
y(x,5) = Z > Sone1,q" &P+ 1, @, %, §)
P=0 q:o
4
+ > gq . gy(zp +1,49,Xx, ?)
or
where
_ - g 2ptl
o y y 2
ag(2p + 1, q, %, ¥) =xq<—:> [1 -(—_—) }
kx kx
12 2p+i
a (2p + 1, q,x,7) = 5’tq-k[:{1 -(—*) } 2
Y KX
- g 2p¥3
2p - q + 2 ¥y 2
+ [-(%) ]
2p + 3 kx
7 . 50 \E-
gs(L%,5) = - q(—-_-—) - .
Gt (}—ca‘_'ja)i/a 1+ka 2.:1
(1 +IC") 2
d .4
y(x2+ 577) 2
- - -3 =1
o X x"'+y 2 q = /g _n-%-
ay(q,X.y)r'j-—_;j-q( ) = x (%% ¥°)
(s 7))/ 1+ K -1
(1 +k)°

PPN (61)

e (62)

san (63)

e (6)
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As far as the wake is concerned (i.e. X > 1) fw(1)
follows from equation (60) and the additional strength TT(x) can

be expressed’ in terms of the above coefficients using equation (10),
by

Ty(x = [(k - 7) oot 6(F) + 1)) = jk[ Z ia2p+1 L ag(20+1, 4, 1,5')
Y p=0 g=0
+isq . sa(q,h?‘)] dy’
=1
T B k q " 222t2
=26 Loazp+1,q.[+2p+5{1-(;) ] :l
p=0 g=
£ U+f%
+Q=Z1,gq .[- (1 + x)*/2 m%l] .
eer (67)

The strength of the cuyt in the wake becomes

T ¢ () SRS i
( p ) = Z z_,aZP*-":q . ay(ap +1,9,1,¥) .

% = [(k-F) cot B(F)+1] p=0 =0

coe (68)

II.4,.2 DBasic eguations

Substituting the series expansions for b5(%,§) and

¥(%X,¥) into the upwash integral (equation 13))} the induced upwash
velocities can-be wratten

mCml -
ﬁw(i10?1’°) = Z/ 32p+{,q * a'ww(zp + 1: q.’ i1l§1)
p=0 g=0

;, 5 &, - I . )

I S o "

+L 8y + (2,55 )

_q:;_‘])“ - [f ( see (69)
Whex.e :ug'—; = - -j“‘ . B

aw(2p + 1,4,%,,7,) o

1 5 (i - 21) a-y(ZP + 1, q’is?) - (3’ - 3’1) 9.5(213 + 1, q,'i,i) & &
‘m/f (% - %)% + (7 - y,)%+ £ 1%*
S
W
Z{'PO [
X x) (70)

I and/
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and
EWW(Qs§1s-5’1)
(i - X ) ( :i;— - (_ - _) si:—
=_1[f -1fyq f)*y irga(q y)didsr. e (71)
4 [(x - x1)9+ (y - y1)2+ 21 ]319
Sw
21—>0

The upwash ¥, (21,3’,21) due to the contributions T (%)
W W

from the two separated leading edge vortices over Sw together with

the contrabution T (1) aft of the trailing edge is given by subati-
tution of equation ' (60) into equation (32).

¢
T GpTpe) = ) e oy (a:%,57,) cee (72)
g=1
where
gwr (q,i1l?1)= gwI\ (Q..)-i-l.’?.l) + gwr (q.,i.l’?al)
w W. W
Rk L
3/ iq fw(i’i‘l’?f'o) + fw(i’i‘l "'3}1’0)] ax

o s

o] A0 + fw(i,i1.-3r1,0)]di (73)

The upwash ﬁIR('J"c1 ,'3'(1 2 Z 1) due to vorticity on the right

half of trailing vortex sheet ST , defined in equations (17)-(19),
becomes, on substitution of equation (58) ,

y=k n m
_ _ 1 - T -
WTR(x1ay1:°) = ;f [ Z_» L a'2p+1,q . 8.5(2p + 1,4,1 l.Y)

y:o pzo q_:o

+ ; g, * ga(q,‘l,ir):\
Lo -5 - 6 -3 wram)|[10) | &

cee (74)

The upwash due to the raght-hand weke main vortex fT(i) ,

defined in equation (35), substituting the expressions in equations

(58), (67), becomes

Ty
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F=0 F'=k n m

_ o - —
WI\T (x1,y1,0) =[ l: / [ >1 2__4&21”1"‘1 . 5-5(213 + 1351»1,.7')
R - " - ——r
y=k  y'=y

p=0 g=0
¢
¢
+ qu . sa(qn,i')] d?l]
q=1

: [fw(i = (k - 3) oot A(3) + 1',;:1,5,1,0)] [t B(F) - (k = 3) coseA(3)

aﬂ(?)] & .

7 v+ (75)
And on substitution of equations (63) and (65), equation (75) becomes
_ 2
I‘ (x1,y1,0) ) / [ %‘,0 % 2P+1’q[ 2p + 3(1 -( ;j> }
£
+ Z=,15q [ (1+ 1@:)‘5‘2_,T [(1 : ka)-z me ya)'z] } ]

[ £® = (- 9) 00t 85) + 1,2,,5,,0) | | - 00t 45) = (k- 7) eosea(3)

(¥) -
0]

These two expressions for i‘I‘ and 'iiI. together with
i R

the symmetrical contribution from the left-hand wake can now be com-
bined to yield an expression of the form

- (76)

Ap(X,07450) + wI.T(x1,y1,0)
n m
T U] _ _ _ _
L Z a2p+1,q -[aWT(ZP + 1’q,x1’y1) + a-WPT(zP + 1’Q’x13y1)]

p=0 g=0
£

+ Z' Sq . [@T(q’idl 1?1) + SWI\T(Q.’E-‘ 3?1) J
g=1 ees (77)

where/
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where the terms in square brackets involwve integration in the
y~darection only and these terms are defined as follows

LawT(Zp + 1,0,%,,7,) + aer(Zp + 1,q,i1,§1)]

= awTR(Zp + 1,q,i1,§1) + awPT (2p + 1,q,i1,§1)]
R

+ aWTR(ZP + 1,q,x1,-—y1)+ aer (213 + 1!Q1x1’-y1)
- R

end

= gWT (Q’i1 ’}1) + gwr (Q:i.' 5}1)]
. R T
R
+ 5WT (Q’x.i .l"?.‘ ) + gwr (‘-15%:"?1 )J
L. R Tﬁ

where

[}WTR(ZP + 1:Q:i1s§1) + awPT (ZP + 1:Qsi1:§15:1

j=s]

22+1
2

)) i [(1 “%) - (7 - wcotﬁ@)]}(sﬂ
_[ 2:: 3( - ( E) ) 2 J[fw(i = (k - 'j)cotﬁ(?)+1,i1,§1,o):\

. [— cot B(F) - (k - ) cosedB(F) -:-g} } ay

T
51
TN
1<l
—
VAR
-
I
TN
L B

coe (78)

and

[“TR/
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and

[gwmn(q,xal’y") + gWrT (q)x13§1)
R
a1

([ e ) fos-ssgemao]
o]
(1+ 7)V2

+ {(1 + 157 m}[fw(i = (k - F) cot B(F) + 1,3‘:1,31,o)]

. [— cot A(F) - (k - ) cosed®5(7) aﬁ(ﬁ)_\ ] & i -

oy

«es (79)

Thus combining all the upwash terms in equations (69), (73),

(77), the boundary condition of tangency of fiow on this wing, equa-
tion (36), becomes

N .
L Z’aZp-ﬂ,q ‘I:aww(.?p + 1:st1,y1) *I:B-WT(zp + 19‘1:3‘1:.71)

p=0 q_:O

+ a.wI.T(Zp + 1,q,x1 ,y1):\

¢
Z 8, [sww(q,i.,.i".,) +[ng(q,i1,3r1) + ser(q.i1,':?1)]
g=1

+ em (9,%,,5,) =~ sina .
w R see (80)

Next, t.he equations for satisfying the zero loading condi-
tion on the tra:.l:mg edge are developed. In non-dimensional form,
equation (8) becomes

.. ¥(1,7) - ten (7). 5(1,5) = 0 cos (81)

After substitution of the series for ¥(x,j) and 6(%,¥)
from equations (61) and (62}, equation (81) becomes

n

3

p:
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;

p=0

Bop+t, g -[ay(2p + 1,9,1,5) - tan 8(7) a5(2p + 1,q,1,§)]

PIngl

2
- qul:&y(%":§) - tan A(3). ga(q,‘l,?r)] = 0
=1 tes (82)

The angle B(¥) in equation (82) is given by equation (6)
which 1n non-dimensional form is

vr(‘llilo)

tan A(¥) = «ee (83)

V cos a + ﬁT(1,§,o)

this involves the spanwise and streamwise velocities induced due to the
two separated vortices.

For a specified leading edge vortex position over both Sw

and S, equations (80) and (82) can be set up., If B(¥) is assumed

then equations (80) and (82) are lanear in a and g ; so

2p+l,q q

for a given number of coefficients the resulting samultaneous equations
have to be satisfaed at the same number of collocatiop points. In

the present solution the number of collocation points over the wing is
deliberately restricted, because the present intent is to investigate
whether the approach leads to a sensible solution and also to find out
the extent of the computational task relatave to a limited number of
collocation points. So in thas study the upwash conditions are satis-
fied at 20 collocation points over half a wing (5 semi-spanwise points
at 4 chordwise stations) while the condition of zero load on the trail-
ing edge is satisfaed at 5 trailing edge points along the semi-span,
thus there are 20 coefficients a and 5 coefficients g to be
found. 2p+1,q q

The dastrabution of the collocation points in spanwise
direction is based on Multhopp's rule for odd number of points over a
span. The chordwise distribution of these collocation stations is
based on the intuitive feeling that as the effect of the wakes becomes
more important towards the traziling edge region, the collocation
points should be weighted towards the trailing edge. 3o somewhat
arbitrarily the chordwise stations were distributed according to
Multhopp's rule over a daameter of 2c for an even number of points.
The full 20 collocation points thus chosen are shown in Fig. 4.

The positioning of 5 trailing edge points for the applica-
tion of the boundary condition of zero load follows the same principle
as the spanwise dastribution of collocation points.

An 1terative procedure suggests itself for solving the
complete non-linear equations starting wath an initially assumed value
of B(¥) . Equations (80) and (82) can then be solved and the resulting

coefficients a and g can be substituted into equations (83)
2p+l,q q

to give a new distribution of B(3) , so the process can be repeated.
Tt was initially antzcapated that once B(¥) had been iterated out
the induced velocities at the assumed vortex position could be celecu-
lated and a new vortex position found from the equations (44) and (45),

PanTeearttr e 7
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representing zero force on the vortex-cut arrangement.

As will be discussed later, this iteration cannot be used
in such a simple fashion.

II.4.3 Evaluation of upwash integrals

Once the collocation points are decided upon it is necess-
ary to evaluate the upwash integrals aww(gP + 1,q,i1,§1) ,

aWTCZP + 1:‘1»3—{1 931) + &WPT(ZP + 1:‘193—(1 9?1 )_I ’ SWI\W(Qsi,I »?1) ’

[gwnr(q!i1l§1) + 6“&1&‘1:321,}1):\ and Sww(q’x1:y1) in equation (80)°
Of these aww(2p +1,q,i1,§1) and gww(q,i1,§1) are functions involv-

ing double integration over the wing planform and need only be evalua-
ted once, these are singular when 51 = 0 and require special care.

The technique employed to deal with this type of integral is described
in Appendix I. Of the remaining integrals, the integrals &y, (q,i1,§1)

are functions of vortex position, the 'combined' integrals

awp(2p + 1,4,%,,7,) + aer(2p + 1,q,i1,?1{] and

gwn(QrX,,7.) + aw, (4,%,,7,) depend on the deflection A(¥)
T 17791 PT 1771

of the vortex lines at the trailing edge as well as on the downstream
vortex position. Since both the vortex position and the angle

8(3) vary during the iterative loops in the calculation, these last
series of 'combined' integrals have to be re-evaluated several times.
Fortunately these integrals are not singular.

Expressions for [:awT(Zp + 1,q,i1,§1) + aw, (2p + 1,q,i1,§1§}
T

and l:ng(q,i1,§1) + gw; (q,i1,§1j:l given by reference to equations
T

(78) and (79) are line integrals in terms of y . After trying the
12-point, 24-point and 4B8-point Gaussian integration rules to a
typical case it was decided that the 24-point rule was sufficient for
the more general cases.

The expression for gwy, (q,i1,§1) given by equation (73)
W

involves some difficulty in accurate calculations using Gaussian
quadrature methods especially in the region of the wang apex when

X and ¥ are both small. As a prelude, a test was made to evalu-
ate numerically the upwash expression for a particular case of a pair
of straight line vortices using Gaussian quadrature and to compare

it with the exact analytical result. It was shown that splitting

the integration ranges of O to 1 and 1 to infinity in equation (73)
with small intervals was necessary. The X integration from O to

1 was split into a further 4 intervals, viz., O to 0+13, 013 to

0+25, 025 to 0-57, 057 to 1*0 , and four figure accuracy was obtain-
able using a 48-point Gaussian quadrature method for these four inter-
vals. For the second range of X of 1 to infinity a 24-point
modafied Gauss-Laguerre9 rule was found sufficient.

The/



- 28 -

The induced velocities at the raght-hand vortex

G%(i,}v(i),iv(i) Y, ﬁ1(§,§v(i),iv(ﬁ)) depend on the wing vorticity,

the trailing sheet vorticity and the left-hand vortex. As discussed
an Section II.3 the effect of the right-hand vortex on itself has
been neglected. The contribution due to the wing vorticity was
evaluated by a 24 by 24-point double integration Gaussian method.

The contribution due to the trailing sheet vorticity was evaluated
using the same 24-point Gaussian quadrature technigue as used in

the calculations of the upwash due to the trailing sheet at the wing
collocation points. For the effect of the left-hand vortex on the
right-hand vortex, the range of integration was split up in the sane
manner as for upwash estimates.

II.5 Application of the theory

Initially it was anticipated that once the number and position

ing of the collocation points had been decided that the numerical pro-
cedure would be as follows:

(1)
(2)

(3)
(%)

(5)

(6)

(7)

(8)
(9)

The upwash integrals aww(2p + 1,q,i1,§1) and gww(q,i1,§1)
are evaluated.

An initial position of the vortex is specified. A convenient
starting point is the Brown and Machael value of the spanwise
position J_(X) and the height of the vortex % (%) together

v ay (%) az_(¥)
v .
and » gdiven
dx dx

in a tabular form. Over the wake aft of the trailing edge

initially the vortices are teken to be straight and parallel

to the free stream direction.

with their respective slopes

A distribution of A(¥) is specified.

The upwash integrals due to the vortices and the wake are
evaluated.

The coefficients of equation (82) expressing the zero load con~
dition at a discrete number of points at the trailing edge
are estimated.

The solution of the 25 linear simultaneous equations (80) and

82 ield the values of unknowns and .
(82) ¥ 85041,0 8,

B(¥) can be reassessed from the same position of the vortex
specified in step (2) using the vortex strength calculated in
step (6).

Steps (4) to (7) are repeated to iterate out B(¥) .

The force on the main vortex is calculated using equations {44)
and (45). If the force exceeds a prespecified 'tolerance’
(factor Fiol ) then the slopes of vortex geometry (equations

(48) and (49)) are calculated withain a prespecified tolerance
(factor dtol) . The 'corrections' to the slopes are then

integrated to yield a new vortex posation,

(10)/
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(10) Steps (3) to (9) are repeated until the forces on the main
vortex (step (9)) are below the prespecified 'tolerance'
(factor Ftol) .

Thus this method envisaged a significent iteration of A(¥)
for each vortex position, but prelaminary experience showed that itera-
tion of B(y) could not be divorced from the iteration of the vortex
posation. It is necessary for both iterations to progress side by side,
and the following modifications have been developed:

Step (3) The distribution of @(¥) 1s so chosen that it never exceeds
tan* (¥). The reason for this empirical step is not evadent
but the calculations have shown that if A(y) exceeds
tan™* (¥) then the subsequent steps in calculations yield
unrealistic negative values of vortex strength Pw(i in
the apex region of the wing.

Step (8) In step (7)a new dastribution of A{(¥) 1s calculated and
compared with the initaal value an step (3). If the new
value is higher or equal to the initial value in step (2),
then the calculation 1s taken directly forward to the stage
of obtaining an estimate of the new vortex position
(Steps (9) and (10)). If the new distribution of B(F)
is lower than the ainitial value in step (3), then the calcu-
lation is talen back to step {4) with an intermediate value
of ﬁ(?) as a part of an iterative procedure to 1terate
out A(¥) the empirical condition of ensuring B(¥) to be
below the 'critical' tan™*(J) curve need no longer be
conformed to.

It 1s of interest to note the effect of ﬁ(}) on the coeffi-

85041,q * Bg in eguation (82) whaich expresses the zero load

condation at a discrete number of points on the trailing edge including
the centre and tip. It has been observed that if A(y) never exceeds
tan* (3) in step (2), then all the coefficients of equation (82) are
positave. If B(¥) exceeds the 'cratical' value of tan™* (¥} , the
coefficients are negative for collocation points at the trailing edge
near the tip whach leads to negative values for the vortex strength an
the apex region.

caents

This modified procedure is shown in a block diagram in
Figl 5.

IT.5.1 Computer programmes

The application of the numerical procedure is by means
of four general digital computer programmes written in Algol &0
language. During the development period the input was an form of
punched 7-hole paper tape, but after development and during the
'production' peraod the programmes were loaded in the compiled form
onto magnetic tape. The function of the programmes, which are
tabulated in Table I, are:-

(1) Programme I evaluates the upwash coefficients
aww(2p + 1,q,i1,§1) from a knowledge of the equations

of the leading edges of the delta wing and the positions
of the collocation 'mesh'. The upwash coefficients

need/



need only ve calculated once and for all for
a particular planform and a collocation 'mesh'.

(2) Programme 1I, similar in structure to Programme I,
evaluates the upwash coefficients gww(q,i1,§1)

which again need to be calculated once and for all for
a particular planform and a collocation 'mesh'.

(3) Programme III uses the upwash coefficients
E-WW'(zp + 11 q_,.x_1 ,y1 ) and ng]( q’3.c1 ’?1 ) Calculated

from Programmes I and II, the specifaed posataon of
vortices, and the 'initial' value for the function
B(¥) to calculate first the upwash coeffacients due
to the wake and then solves equations (80) and (82)

for the values of unknown a and g . A ‘new'
2p+l,q q

value for the function A(¥) as estamated. The pro-
gramme can be made to compare the two values ‘initial'
and 'new', of the function B(F) and if required, it
can 1terate on B(¥) , producing thus 'nmewer' sets for

the values of unknowns a and g . This
2p+i,q q

programme also includes the estimated 1ift distribution
cn the wing.

(&) Programme IV uses the calculated values of unknowns

a2p+1,q and gq from the Programme III and preduces

a 'new' vortex geometry within a specified small toler-
ance on the 'initial' geometry.

The details of the store and computation fame require-
ments of the four computer programmes on the Atlas computer are
shown in Teble I. It may be observed that the compiling store and
computing times are both reduced for the programmes loaded on magne-
tic tape. The rcductions are very signiaficant for running of
Programme III, which with paper tape input would need almost the
whole of the Atlas core store.

With the present collocation mesh (Fag. 4) Progremme I
and II take a total of about 25 hours to compute 400
aww(Zp + 1,q,i1,§1) and 100 gww(q,x1,§1) upwash coeffacients.

This represents the largest proportion of computer time for the
overall development programme of the theory. During the initial
phase of numerical work it was necessary to test various integration
procedures in the calculataon of upwash coefficients and therefore
these two programmes were wraitten to feature a certain amount of
generality and adaptibilaty. This in turn has required large exe-
cution time on the computer. It 1s believed that starting afresh
on another wing wath the experience gained so far, it is possable

to reprogram the imner and more repetitive calculation loops more
efficiently and therefore reduce the computation times of Programmes
I and II by a factor of 5.

The number of times the Programmes III and 1V are

required to be run performing the necessary iterations on A(F)
and the position of the vortices is dependent on 'initial' estimates

and/
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and various 'tolerances'. Experience of the worked example

(Sectaon III) suggests something of the order of one A(y) calcu-
lation (1 minute, execution time) for each of the 7 i1terations in
vortex position (2 minutes execution time for each iteration)

starting with Brown and Michael values. It is anticipated that

as the experience with the programme grows, improved initial estimates
with 'proper' tolerances would reduce the computation time require-
ments.

III. A Worked Example

The theory has been applied to the case of a delta wing of aspect ratio
1 at incidence 0*25 radian. The initial vortex position was based on that calcu-
lated by Randal110 using Brown and Michael theory; this position is shown as
0 an Fig. 6. The assumed dastribution of A(y) chosen such that it did not
exceed 'cratical' tan™* (¥) curve 1s shown in Fig. 7b. Wath this informataon

the coefficients a and g  were evaluated. At this stage the vortex
2p+l,q q

strength Tw(i) which is easier to visualase, 15 shown; its first value denoted
as O is indicated in Fig. T7a. It shows a peak in the region near the apex,
hence the feeding vorticity drw(i)/ai 1s positive in the region near the apex

but mostly negatave over the rest of the wing. The 'calculated' B(F) curve
was found to be higher than the initial guessed B(¥) curve (Fig. 7b) so the
calculation was taken to the next stage of obtaining a 'new' vortex position.

The force on the vortex was calculated as discussed in Section II.3
and two new positions 1 and 1' (shown in Fig. 6) based on tolerances

dtol = 0+005 and ©+01 respectavely on the slopes of the inaitial posataon O

were determined. Two dafferent 'tolerance' were antroduced mainly to obtain
some idea of their influence on the vortex movements. The general trends in the
vortex movement, shown by positions 1 and 1', relative to position 0, are
outwards and downwards in the forward part of the wing and inwards and upwards
over the rear part of the wing. Aft of the wang the tendency for the vortices
15 to become parallel to each other. These positions 1 and 1' with a suitable
A(y) dastribution (bounded by the cratical tan™*(y) curve) were then used to

solve for the unknowns a2p+1 a and gq . The vortex strength based on position
3

1 is shown in Fig, 7a (the curve for 1' is similar); 1t shows less peaks in the
apex region than the previous estimate based on the positaon O +thus increasing
the feeding vorticity in the rear positions of the wing. Also the dafference
between the two F(¥) curves, 'initial' and 'calculated', decreased slightly
for(the vorgex position 1 (Fig. 7c) when compared with those for vortex position
0 {(Fig. 7b).

The calculation was continued by deriving a new vortex position 2
from vortex position 1' waithin a tolerance of 0:01. Using vortex position 2,
and a guessed distribution B(F) +the vortex strength Tw%i) (Fig. 7a) the

wing vorticity distribution and a new A(¥) dastribution were calculated
(Fig, 7d4). 4ll of these quantities showed a much improved character and the
feeding vorticity was for the first time positive over the whole of the wing.

It seems reasonable to stipulate that tolerance dtol should be

reduced as the aterations progress and consequently the next vortex position 3
(Fig. 6) was developed by a further iteration on the vortex position 2 with
tolerance dtol = 0°005 , and the results of vortex strength and A(y) were

observed to maintain the established trends,
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Further iterations of thas example were not completed because the
time allotted to the project ran out.

_ However, there appcars to be convergence of the vortex strength
Pw(i) and of the vortex positions but the convergence of the zero load condi-

t1on on the trailing edge indicated by the B(y) curves, is not too successful.
The vortex positions in Fig. 6 are more 'kanky' than maght be antuitively expec~
ted to occur in practice but it is probable that this aspect 1s a reflection of
the small number of chordwise collocation points used here. Also it is known
from experience with the slender wing Brown and Michael model that at least seven
spanwise collocation points are needed to give a numerical solution close to the
analytical solution, in the present three-dimensional problem only 5 spanwise
points have been taken.

It has already been noted that wath the original vortex position over
the wing assumed on the basis of the “two-dimensional® theory of Brown and
Michael, the vortex strength Fw(i) over the front part of the wing showed a

peak, and the corresponding strength of the cut dfw(i)/hi was found to be

positave only in the forward part of the wing, and negative over most of the
rear part. The peals an the vortex strength over the front of the wing reduced
as the vortex position was successaively moved outboard and downwards over the
forward half of the wing and inboard and upwards over the rear part of the wing.

Mathematically the effect of 78 s Whaich is much more dominant than

& , is to induce upward velocity over the forward part of the wing and downward
vélocity towards the rear part of the wing. To balance this effect, the main
vortex has to be aligned closer to the wing surface over the forward part of the
wing, and further away from the surface over the rear part of the wing. The
movement of the vortex over the front part of the wing is downward, and in accord-
ance with the usual Brown and Michael trends, there is an outward movement of the
vortex.

IV. Comparison of the Method with Experimental Results

The calculated lift distrabution for the flat delta wing at incidence
of 0+25 radian has been compared in Fig. 8 waith experimental results obtained
at Queen Mary College (so far unpublashed).

First the overall force coefficients are

C, = 0°495
Experinent
CL = 0'14.5
Theory
while the centres of pressure are
Xc = Q61
pExperiment
x = 060
c
Prheory

The agreement of these overell features is encouraging.
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For the load dastributions, in Fig. 8, 1t should be noted that the
theoretical curves are not at the same chordwise station as the experamental
ones. The general trends seem to be predicted. The fall off of laft towards
the trailing edge is reasonnble. Along the centreline the theoretical 1lift
distribution 15 an remarkable agreement with experiment. The characteristic
features of the basic Brown and Michael model where the suction peaks are out-
oocard of the experimental peaks is stall present as might be expected.

The theoretical dastribution at the leadi edge shows a finite load
which 1s proportional to the feeding vorticity dPW(i /dx ; this is seen to
tend to zero at the tip of the wing ain accordance with the boundary conditions.

Slight 'up-kanks' appear near the leading edge on the last two chord-

wise stations. These are not reasonable but they are probably due to the res-
triction of the number of terms in the series expansions,

V. Concluding Remarks

The theoretical approach ocutlined in this paper is an attempt to
satisfy the zero load trailing edge conditaon on a delta wing an the presence
of a separated vortex sheet from the leading edge of slender wings.

The approach has been restricted to a simple model employing a small-
1sh number of collocation points over the wing. Even though a complete itera-
taon has not been achieved the main features of the loading predicted by the
theory tie in encouragingly with the experimental trends.

The application of the mathematical technique, apart from the numerical
aspect, in solvang this particular non-linear problem by iteration has shown up
some interesting aspects, ain particular the interaction of the two iterative pro-
cedures relating A(F) and the vortex positaon.

The numerical aspect has involved complicated programming to enable
the computation time to be kept to & minimum at every stage, especially where the
integration has occurred of a fundtion which includes a varaable index but con-
stant limits of integration.

The estimated computation time for the present application is of the
order of half an hour on 'Atlas' for each inciadence with a reasonable initial
assumption of the position of main vortices. It 1s estimated that the use of
more collocation points would not greatly increase the computation per incidence
time provided some of the numerical techniques could be further refined and if
possible, use is made of machine code procedures for the 'inner' or more repeti-
tive operations.

To proceed further in the development of the present method, aimproving
the efficiency of the integration procedure, searching for faster iterative
dodges, coping with more and more collocataon points, the final result will only
marginally be a better representation of the physical flow. By ancorporating
the Erown and Michael model into the lifting surface theory framework all the
inherent faults of the model wall still remain; the leading edge vortices will
be too far outboard, finite loads at the wing leading edge will remain, and the
suction peaks on the wing upper surface will be toc high. Admittedly it is
possible to superampose on the theoretical results empirical factors based on the
large fund of experience now available on the loadings of these types of wings.
But the question which needs at least recognising before proceeding further 1is
vhether it is worthwhile to incur large expenses utilising the resources of a

large/
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large computer for long periods when for the practical application empirical
factors might have to be thrown in at the end somewhat arbitrarily. It is

the hope of the authors that the present paper throws some light on this parti-
cular wing problem, and that some of the implicataions and trends have been
established; what happens next depends largely on the reaction whach this
paper arouses.
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APPENDIX 1

Calculation of Upwash Integrals

The upwash due to vorticity over the wing surface is given by
equations {13) and (69) as

1 - %) 77 - 7 -7,). 8,7
" (F,,7,,0) = — 1 1 &
WW 1 y1 J-JJ‘ S.{:[ ﬂ(i _11)9 + (? _'5,1)2 +_2'?a;]3“ Y

7'51->O
n m £
) _ z. L
= Z Z‘azp+1,q . aWW(ZP + 1,Q,X1;y1) + qu . gww(q,x1,y1) .
p=0 ¢=0 q=1

-

when the series for ¥ and 0 are substituted.

The problem is to obtain the upwash coefficients gww(q,i1,§1) and
aww(2p + 1,q,i1,'§1) for various values of the indices p,q (o < psn,
0 < g<m) and various values of the positions ?c1 ,§1 » corresponding to each

of the collocation points on the wing surface. Since the expressions for
¥(%,7) and &(%,F) contain powers of X and ¥ it will be sufficient to
discuss the procedure corresponding to just one term of the above two series.

Taking the case of aw, {2p + ‘l,q,i1,§1) the expression is expanded
to reduce the order of singularity. Thus

1
aWW(ZP + 1:‘1;3-51:?1) = ;[[{(i - -x-’l) [La-y(zp + 1:q,is§) - ay(ZP + 1:Qa3{1:§1) ]

Sw

P 1—>0

- (5; - y‘i) [9-6(21) + 1:Q_:i:§') - a6(2P + 1:‘1:3_‘:1»‘371)] ]-

1

. ax.dy .
W -x) + (F-7,)%+ A1°

1 - =
v —a (2 + 1,0,5,7,) ff G-%) & 4y

wr Y [G-%)%+ G -7)%+7 1*°

z1->0

1 ( ) = (?"?1) &% 47
+ — a.(2p + 1,0,%,,¥ f/ Y-

b B TR S DL Ak

Sy

20 ree (at)
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The last two integrals in the above equation can be reduced analytically to
y1eld the following results with = 4 = 0
+k 1

] 4555
dx dy
Kz E-x) e G-7)0
|1

Yoo % =
= sin h?! y1+sinh1 £
1 - i_l 1 - x,
+ - [sm it Ghet) - Gy + xy) - sin K*
(1 + k®) /8 k* + 1)(‘:&l +“jr’fl) - (ksr1 +i1)‘]1-”
[+ 1)(E + 75) - (5, + %,)°14*
+ _._._%........._..... [sin h-i _ (ky1 - x1) - s8in h-1
(1 + x°)t/3 [ + DG +T2) - Gy - %) 1
- (ka + 1) = (1@1—21) ]
[(x® + 1) +7})- (5, -x,)" 1"

ess (AZ)
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and ¢ +kx -
/ -6-7,) }
dx dy
0 _kx E(i - 21)2 + (§ - ?1)2]3/2
-1 (x*+ 1) - (x, +17,)
= =————— | s2n H*
(kﬂ + 1)1/9 [ [(kn+ 1)(331 +-3;31) _ (3':1 + @1)9]112
- sin K% - (21 + k§1)
e+ )G+ 57) - Gy + kil)’]“’".\
»«—1—[:'_1111'1 @2+ 1) - &y - y)
(k® 4 1)*/% [+ )R + 77 ) - (£, - k7,)® 147
- san h* _ (i1 _ k§1)

[+ )GEP+ 7)) - &, - kiq)"]”“]

.oe (A})

The first double integral in equation (A1) features an integrand

which 1s zero at the point X = i1 and ¥ = ?1 for all values of 21 .

However, the behaviour of' the integrand in the neighbourhood of this peant is
dependent on E1 and as 31 decreases, sharper variations of the integrand

are shown across the point (21,§1) + This double integral therefore necessi-

tates an efficient computing technique with 2, chosen in such a way that it

1
makes only a small difference in say the fifth or sixth figure of the overall
value of the integral and thus a small value for 31(2 1 x 10%) may be pre-
specafied.

In an effort to relate the efficiency of computation with accuracy
obtainaeble for numerical integration of the double integral, a number of methods
were investigated. One of the methods considered was that of double integra-
taon over a triangle developed by Bartholomew! ' . Briefly stated the ante-
gration of a function over a triangle can be calculated by summing the function
evaluated at mid points of 1ts sides waith unity weighting. Thus the first
approximation to the value of integral involves evaluation on the integrand at
3 points (Fig. 9) and second approximation involves 9 such points. These
points for the second approximation, however, do not include the points of
evaluation for the first approximation and the method therefore can not be set
up efficaently to work successively to a desired accuracy. The ‘order' of
the approximation has therefore to be pre-specified. It was dascovered that

the/
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the seventh-order approximation whaich involves 6240 evaluations of the inte-
grand was capable of producing results to about 5 figures accuracy for the up-
washe s near the centre line of the wang but this accuracy reduced somewhat if
the upwash calculation were required near the leading edges.

The second method considered was of the applicastion of Gaussaan
methods of quadrature12 over the delta wang sub-davided as shown in Fag. 10
with a higher density of points for evaluation of the integrand in the neighbour-
hood of point X = 21 and ¥ = §1 . Three cases of Gaussian methods using

12, 24 and 48 points in each interval were further investigated and the last omne,
using 48 points over an interval , was eventually adopted for double integration
over the delta wing.
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APPENDIX II

Reductaion of Intepral [I(¥)] (Equation 18)

By defaination

[I(7) ]
k

1
Ny — .
LG, - 3) cot 8(F) + (1 - %) P+ (5, - 5% 7 1379

1 _
dy

y
k
_[[ ¥, {1+ cot®4(F) } +5, { - F cot? BF) + 2(1 - %) cot B(F) - 2513}3“ ¢
¥

+ §(1 - :-?1) + 72 cot®B(3) - 2(4 -5':1) cot B(F) ¥ + y‘,’l +"z?"1 }

This 1s recognised as a standard form and on integration gives

(1(3) ]
_ TF
i cot’8F)(F,5) + (g -54) + cot B(F)(1 - %)
LG %)+ cot BEF, - I+ 11+ cot?B(3)] EE ]
{ x [{(1 - %) + 0ot BT, - DNI* + (5, - 7,)% + 32} /2
L 7y

1

[{(1 - %) + cot BF)F, - DI + (1 + cot? p(F) 7]

(- 7,) + cot A1 - %,)

[(1-%,)% + (3 - 5,) + 22 1*2

(cot? £(3) + 1)(k - ) + cot AF1 - F,)

RIGE i.l) + (k-F) cot B(F)1% + (k _31)2 + —212 ]2 :
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TABLE I

Details of Computation Store and Time Reguirement
of the Four Computer Programmes on atlas

Comp&tatlon Time Sec. -
Programme vore ;2Eelon
Compaling Execution Compiling Execution for
I 80 40 12 18 One aw(2p + 1,9,%,,7,)
LO* 1% (For present 'collocation
mesh! : 400 required)
I 80 1O 12 15 One gw.(a,%,,7,)
O# ®
L 1 (For present 'collocatilon
mesh' : 100 required)
111 165 80 40 60 One value of @By} at a
8o* ¥ given vortex position
v 120 60 20 1,0 Prediction of new vortex
70%* 1¥ geometry specified at 15
poants

&
Programme loaded on magnetic tape for

preduction runs

~— L'i]..
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