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SUMMARY

For the analysis of gust loads on aireraft, a method is described in
which the cccurrence and magnitude of the loads are represented as random
variables.

The paper begins with the discrete gust, and goes on to treat the case
in whach the disturbances are too freguent to be considered singly and become
indisorete, In the limit this leads to the usual results obtained from the
spectral approach, but in the observatiocnal material examined this limit is
not reached. The simple mathematical model developed here gives a

consistent picture 6f the properties of observed gust load frequency
distributions.:

* Replaces R.A.E, Teohnical Report 69062 — AJR.C. 31386
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1 INTRODUCTION

When making comparisons between aircraft of the loads imposed by atmos=-
pheric turbulence it is useful to set up a theoretical model representing the

statistical properties of the turbulence.

The usual procedure is to observe, say, the normal acceleration on an
instrumented aircraft; from these observations deduce the parameters of the
assumed model, and finally to estimate the response of a second aircraf't,
Quantities of particular importance are the magnitudes of the high loads,
from the point of view of ultimate strength, and the number of the smaller

loads for fatigue considerations.

Since the steps taken in deducing the parameters of the model from the
cbservations are retraced when meking further predictions, most models work

reasonably well for aircraft of similar geometrical and dynamic properties.

Some years ago what is called the 'discrete gust' model was widely
used. This assumes that the aircraft normal acceleration increments - humps -
are all caused by discrete gusits of a standard shape; knowing the aircraft
characteristics, their frequency and distribution of magnitudes is determined

from the observations.

More recently, the atmosphere has been defined in terms of & spectrum,
usually of a standard shape, the disposable parameters being a scale-length
and an intensity or root-mean-square value. Given this 'input' spectrum and
the aircraft response characteristics {i.e. its 'transfer function') the out-
put spectrum is deduced. 3Subject to certain conditions, from the output spec-
trum may be determined the root-mean-square value of the quantity under
examination, and the number of times its mean value is crossed in the positive
direction per unit time (or distance), usually designated by the symbol N0 .

When the disturbances encountered by the aircraft occur in isolation,
a discrete gust approach is appropriate, As the disturbances become more
numerous so that their effects become superimposed, the discrete gust

approach is no longer satisfactory.

If', in these conditions, spectral methods are used without establishing
to what extent the conditions under which they are valid are satisfied in
practice, then little reliance can be placed on the results, particularly in

the case of the number of gzero crogsings.



It is the purpose of this paper to examine these problems from a new
standpoint, Rice1, in his paper to which we refer in detail later, bases
most of his results on the representation of a random process in terms of a
large number of sinusoidal disturbances. He remarks, however, that its
representation as a 'shot effect' may also be used as a starting point. In
this, the random process is represented by the superposition of a large number

of identical pulses occurring randomly with respect to time.

This idea is pursued here and compared with the spectral approach. The
simple model developed 1s also found to be successful in explaining many
fspects of observed gust distributions, and this is 1llustrated by observa-

tional material.

The paper falls into two main parts. Sections 2 to 5 deal with the
theoretical aspects and derive a simple model for gust loads which is
summarised in Appendix A. Sections 6 to 9 deal with the observational
material illustfatiné various aspects of the model. Readers mainly interested
in practical applications may prefer to read Appendix A in place of sections
2 to 5. Finally, broad conclusions are given in section 10 and some remarks

on curve fitting are made in Appendix B.

2 MATHEMATICAL ANALYSIS OF SIMPLE CASE

2.1  When an aircraft is in turbulence, a response quantity under consideration
can be examined by means of random process theory. The representation often
adopted for the random process 1s a spectral one., An alternative representation
is considered here, in which the random process x consists of the sum of a
number of identical pulses occurring at random with respect to time. The pulse

shape is given by F(t) and

X = ZF(t-tk) (1)

k
where the kth pulse arrives at time tk and the summation is over all pulses.
Initially, the pulse shape considered is defined by

P(t) = a et (2)

for values of t 2 0 and zero for t < Q.

The pulse shape is illustrated in Fig.%ta, (A range of pulse shapes con-

sidered in section 4.3 is also shown in Fig.1b.) Each pulse thus consists of
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instantaneous build-up of magnitude a and an exponential decay of rate X

per unit time*. Let the average number of pulses per unit time be v.

Then, by Campbell's theorem, the mean value of the random process is

given by

; = va/l (3)

{see Rice1 1.2-2); and the variance about the mean value is given by

o0
0'2 = vy [az e-zlt dt
o

Lo

® = vel/(2n) ()

(Rice 1.2-3).
Furthermore, for large values of v/A the distribution tends to become

of Gaussian f'orm and is then given by

£(x) = —— exp I- (x - D2} . (5)
o ™

The rate at which positive crossings of the mean value occur, for the

case of v/A large, is determined as follows. At all times except for the

* This pulse shape has a bearing on the aircraft problem. If we consider
a rigid airecraft flyaing without pitching into a sharp-edged gust, and assume
that the 1if+t builds up instantaneously, (i.e. neglecting Kussner and Wagner
effects) then its normal acceleration is given by

where ¢ 318 the aircraft chord

s 1is the disfance flown into the gust
U is thé gustyvelocity

V is the aircraft velocity

z 1is the aircraft normal acceleration

K is the aircraft mass parameter.

(



infinitesimal time when the pulses build up, the value of x approaches zero
at a rate Ax. A crossing of the mean value in a positive direction can only
occur at the build-up of a pulse,and then only if the variable x is in a

range of width a %below the mean value, immediately before its occurrence.

The fraction of time the variable x spends between Xx-a and X 1s
given by
x
[ e b G- 0] e (6)
o Von

X=-a

Since v/A is large, a is small compared with o and the integral
(6) is approximately equal to

a/(e V2x) . (7)

The number of positive zero crossings per unit time, No’ is thus

va/(oc V2m)

and substituting for o from (4) gives finally

No= vow/x) . (8)
It is seen that N0 depends partly on A, the rate at which x returns to
zero, and partly on v, the number of pulses per unit time, each of these

being of dimensions [T]-1.

2.2 An alternative approach is now considered. The autocorrelation function
of the random variable x is first derived. Since the pulses occur at random,
¢cross contributions to the autocorrelation function vanish so that the auto-

correlation function depends only on the shape a single pulse itself.

Using Rice {2,6-2) and finding the autocorrelation function for x about

its mean value gives

=AT

R(r) = 2% e (9)

where R(7) 18 the unnormalised autocorrelation function so that when
2
7 =0, R(T) = va™/(2%), that is, the variance.
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The Fourier transform of R(T) gives the spectrum S(w) which is

2
va 2A
S((.D) = b (10)
2h ﬂ(lz + m2)

If this function is used in Rice's fgrmula for the number of zero
e o]
crosaings (Rice 3.3-11), as j.wz S(w) dw is infinite, an infinite
0

number of zero crossings per unit time is predicted, in contradiction

of (8) above.

2.3 Rice himself discusses the problem in connection with "a broad band
noise voltage" applied to a resistance and condenser in series. This is
analogous to the case discussed here. The arrival of an electron at the
condenser corresponds to the initial build-up of the pulse and the total
charge on the condenser decays exponentially. Rice attempts to explain
the difficulty by considering the spectrum as consisting of two bands of
noise and discusses this aspect in some detail. It is also argued that
in a physical system there is always a high frequency cut-off to the spec-
trum which prevents the required integral becoming infinite in practice.
These arguments however, do not resolve the theoretical problem which is

of an entirely different origin.

In deriving his formula for the number of zero crossings,Rice (3.3-7)

takes as lis representation of the random process

N
E = j{: ¢, cos (wn 1 -’¢n) (11)
n=t1.
and uses the fact that & and m, dits first derivative with respect to
time, each have a Gaussian distribution and are independent. (Rice's & and
! corresbond to our x and x ;) ) However, in fhe case under consideration,
x and % are not independent, since, apart from the infinitesimal time

during which pulses arrive, x and £ are related by the equation
¥ = - (12)

and, furthermore, the distribution of % is by no means Gaussian., It

appears from the analysis given in section 4, that the latter fact plays



the greater part in invalidating the procedure. It may be concluded that the
representation given in (11) is not a satisfactory one for the random process

under consideration here.
2.4 We return to a more general discussion of' the problem in section Ik.

Section 3 digresses to some extent from the main argument to consider a
few simple extensions of the above treatment, making it somewhat more repre-

sentative of the gust problem, and to derive a number of formulae illustrating

limiting cases of the subsequent analysis.

3 EXTENSIONS OF THE SIMPLE CASE

3.1 If the pulses, (2) are assumed to be positive or negative at random, as
well as berng random in time, the process will have zero mean. For an average

pulse rate v, (v/2 positive, v/2 negative), the variance as before is
2
va /{21).

Positive zero crossings occur at a rate v/2 +times the fraction of time

spent in the range =-a to 0O, where a 1is small compared with O, Proceeding

’ A
NO = % %F . (13)

This process is symmetrical while that of section 2.1 is markedly skew

as before then gives

for moderate values of v/A .

It may be useful to have a second-order approxamation for No . If in
(6) we put x - x =y , keep the first two terms in the expansion of the

exponential, and integrate, we obtain

v = 2(1-2) (18)

The number of crossings of any value x can be found by a similar
method. When the distribution of x approaches the Gaussian form and a is
small compared with <o, +the distribution of =x-crossings tends to that of
x itself. As will be shown (section L4.1) this is also the case generally,

when x and X are independent.

3.2 As a further extension, let a vary from pulse to pulse, having &

distribution given by



"

£(a) = —— exp - a2/(2pD)} . (15)
p VZr

Again the mean is zero and the variance is given by
o_2 2
= vp /(22 . (16)

This follows from an extension of Campbell's Theorem derived by Rice (1.5-2).

A positive zero crossing occurs when the variable is in the range
-x to -x + dx and receives a pulse of magnitude x or greater. The

probability of the first event is

U}ﬁ exp 1- x°/(207)] dx (17)

and the probability that a pulse 15 of magnitude x or greater is

= ]Xp (- &2/(20°)} da . (18)
P t %

Integrating the joint probability and multiplying by v gaves:-

< 2 2
X a
exp { - -~ —») da dx . (19)
5[ ( 2;: 2p )

o0
No = 21 p c'.[
0
To evaluate the integral substitute

G r sin 6

a prcecosé .,

PR
E s R -

The area of~ 1ntekr§t10n is a sector bounded by © = O (when % = 0) and
8 = arc tan (ﬂﬂ:f*(when a = x),_ and extendlng from r =0 to r =o0,
Thus ) - f; :j

. L 2

j é-? Ala: (P/G.) - r?’
{? E: f e rdr d ., (20)
T - o

£

Interratlng & %’ﬁﬁtﬁfg_ap/ig%% 2%/v) glves finally

N = 5 arctan V(2\/v) (21)
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or for large v/\
1 Ay 2N
N L S, 22
N, 7‘4’ 5 (’I 5 (22)

as far as second-order terms.

3,3 As a final example in this section, the case when a 1s distributed

exponentially is considered. Let

J el

fla) = é% e P (23)

so that
2’ = 2p° (24)

and
s 2
= vp /A (25)
The probability that a exceeds a value x 1s : e—x/p, and the

probability that x lies between -x and -x + dx is

L exp {- /(20°)} ax .

o VZn
Thus,
v T x2 X X
Tt T je’m[';;f'ﬁ}“(ﬁ) ' (e

The integral reduces to Mills' ratio for o©/p. Kendall and Stuartz {Vol.1
P 157) give for this ratio an asymptotic expansion in which the remainder
at any point in the summation is less in absolute value than the last term
taken into account. Keeping the first two terms in the asymptotic series

gives

. (£ _£
Yo 2«'2&(" 05}> (27)

and using (25) to substitute for o/p we have finally

N, = 4 "—ﬂ< %) : (28)

T
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3.4 A1l the formulae for No derived in this section are, to the farst

order of small quantities, of the form

No = constant x VvA

and although the distributions assumed for a differ considerably, the con-
stant shows comparatively small differences. Evaluating the constant in
{(14), (22} and (28) gives 0.2821, 0.2241, and 0.1995 respectively.

L GENERAL, MATHEMATICAL ANALYSIS

4.4 In general, 1t is necessary to derive for the random process not only
the rate of zerc crossings, but alsc the rate of crossing of any value x
and hence, the frequency distribution of crossings. In order to do this,
knowledge 1s required of the joint frequency dastribution of x and X,

It can then be shown that the number of x-orossings in the pesitive direc-
tion, Nx’ is given by '

o0

N = ‘[ % £(x, %) ak (29)

X
o}

where f(x, %) 1s the joint frequency distribution of x and x. (See for
example, Crandall and Mark3 P 45).

Thus, Nx 13 the average positive value of X at the value x,

o0
multiplied by -[ f(x, %) d%, which is the value of the one-dimensional
0

distribution of x for positive values of x.

When x and X . are independent, then

o x) £,(%) (30)
R . )
and i afne ﬁ;?ﬁﬂ K s . . ’ )
b vy E?»??@%qat K Fifr (%) dx . _ E ( (31)
:*':;:arg%g@ TR

Snly on' “theSfunction fé,fﬂéé

ol ‘£, (x)y ¥that 1s, to'the » 71

v

The integrail ﬂs

a!\ .l‘u k;
ek

that the m{c@oféx
B j_, gﬁ
orlglnalfdﬁstrlbuﬁigggo

e T . Y
.- = oo

R "'3-;4 - R » . & . 1

4.2 In order to determine thé 301nt dlstrlbutlon of x and X use is made

' -
T - A %

of a result given by Rice (sectaon 3.11)., This states the following.
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Ir,
E = Z F(t - %) (32)
k
and
n = Z 6(t - ) (33)
k
where the t, are the same in (32) and (33), then the cumulant L of the

joint distribution of & and m is given by

o0

K = vj F(t) 65(t) at . (34)

T,s
=00
For the case being considered here, € = x and M = X, The characteristic

function of the joint distribution is then given by

du) = e ) S ()7 (7] (35)

and the joint distribution itself follows by taking the transform of the charac-

teristic function, so that

flx, %) = —1-2 ff e-iux-ivz'c o(u, v) du dv . (36)
b 4o 2o

A simple extension of the above formulae allows the magnitude distribution
of the pulses to be taken into account. Let the magnitude of the pulse be
proportional to a variable a of known distribution. It follows from the
additive property of cumulants that it is merely necessary to replace a”
where it occurs in (34) by its mean value a”. Apart from this, equations
(34) are unchanged. For the symmetrical case, a” =0 for n odd and
hence k. = 0 for (r + s) odd. Thus the problem is theoretically solved.
The procedure, then, in the aircraft case is as follows. The atmosphere is
defined in terms of a population of discrete gusts of standard shape, cccurring
with a given mean freguency, and with a given magnitude distribution. The
aircraft response to a single gust is then determined in as much detail as is
neocessary, there being no restriction on the number of degrees of freedom

considered. From the response to a single gust the cumulants of the joint
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distribution of x and x, the variable under consideration and 1ts first
derivative, are determined from (34). The joint distribution of x anmd x
follow from (35) ard (36) and any information regarding the crossing distri-

bution from (29).

This procedure will now be illustrated by means of a very simple model,
applied to aircraft normal acceleration. However, simple though the model
1s, we shall see later that it 1s adequate to explain many of the observed

features of gust load distributions.

4.3 The pulse shape assumed in this section 1s a rough approximation to
the resvonse of an aireraft to a discrete gust, If unsteady 1ift functions

are 1gnored amd the gust shape is assumed to be

-A.8
o= U1 -e 2) (37)

then the aircraft normal acceleration 1s given by

N 1 2
z énLg Y f‘x (e -e 7)) (38)

where A, = 1/(c pg) and s is the distance.

This 18 equivalent to assuming a sharp-edged gust with

I
—
1

0]

¥

¢

(39)

(]
-

for the unsteady lif't functions.

In the following analysis the symbol t is retained for the independent
variable and UVAc P‘g) replaced by the symbol a, so that we let

a i —l1t At

F(t) = T2—_%q-(e - e 2) (I"‘O)

and a for the time being is assumed constant.

This pulse shape is illustrated in Fig.1(ii) for X, =10 %, A, =52%; and

12 =2 11. The maximum occurs at time tm where

t = log(hy/A)/(hy = &) (1)
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..7L1 tm

and is of magnitude ae .

Differentiating (L0) we get

- al

e(t) = TE-:-%? (e

At

- 12 e- 2 ) .

—11t

(42)

The cumulants of the joint distribution of x and % are then given by (34).
Up to the fourth order these are listed below in (43) together with the form
taken when setting R1/12 = a

1,0

“0,1

2,0

i

H

va/l1
0

va2 AQ

N+ &) TR

2va3 Kg

3

va

Sh (2N + %) (& + 2%)

0

. 343
¥owd K2

32N, F %) (%, + 2%)

vad 23 (3 + )

3R R, ) (R + 2%

AT + 29) (T + &/2)

U31\
& My

6(1 + 2a) (1T ¥ a/7)

va3 7\2 (‘I + u,)

3(7 + 20} (1 +o/2)

b\3
A

3va

L

va

(43)(1)
(i)

(1ii)

(iv)

(v)

(vi)

(vii)

(vii1)

(ix)

TR KT (R + 387 O, + A) T T+ T+ 30) (T ra/3)

sessses (X)

(xi)
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'ualL Kg val" ?\2
2,2 T TR+ ) (K #3080 5y + %) © TET R a) (T + 38) (T * &/3)
vevees (xii)
vah Rg vah lg
1,3 T ITX v 3%) 6+ ) T+ 56 (5 5/3) (xiii)
2
jval" ?Lg' (7\? + 37\1 Ay + kg) vab' 'Ag (1 + 30 + a”)

04 T TR T R) (% + 3%,) (3%,

When A, 1s large compared with A

lants become

[}

=
n

&
[}

It “is"edsystonshow: that~for-thi
ot

w

* &) T KT +a) (T 730 (T +a/35)

cesves (xiv)

then a + 0 and the non-zero cumu-

ve/, (42)(4)
va’/(2h) (i1)
va® A2 (4ii)
va/(3y) (iv)
va? A/ (v)
va’ Ao/3 (vi)
(vit)
(viii)
(1x)
()
(xi)
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and
r . r-1 .
= 1 .
Ko, va® A, /r for r > (i)
In passing, we note that Ry 4 = 0. This, in 1tself, is not in general
-
sufficient to ensure the independence of x and % . It is however, sufficient
when x and x are both Gaussian., In the general case, x and X are

=0 for all K in
r,s

independent, though not necessarily Gaussian, when Kr s
3

3
which r and s are both non-zero.

To determine the degree to which the distributions of x and x tend
to Gaussian form, the cumulants are expressed in standard form by daviding by
the appropriate power of the standard deviation., Using the approximations

of (44), for x
2N
05,0 (k0,00 = 2/3 «J_vi (45)(1)

and

2 .
KA,O/(KZ,O) = l-1,/“’ . (ll)
Thus, the distribution of x tends to the Gaussian form as MY

tends to zero. For x,

2X
KO,B/(KO,2)3/2 = 2/3 «/:;;% (46)(1)

and
2 ..
KO,A/(RO,Z) = lz/v . (i)

Here the cause of the difficulty encountered in section 2 in determining the
number of zero crossings is clearly seen. The case considered there is the
limiting case of the present one when 12 =+, Tt is now apparent that for the
distribution of X to be Gaussian it is necessary for )2/b - 0 and these

two conditions are inconsistent unless v 1s doubly infinite.

When 12 is not infinite and v 1is large compared with both A, and

kz then the joint distribution of x and X% is approximately Gaussian and

we can use the result that
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o,/(2n ) (47)

=
I

giving at once

=
1

o - J M l2/(2ﬂ) (48)

from (43)(iii) and (v).

When, however, 12 is large compared with v, approximating to the
simple case considered in section 2, then it is to be expected that

equation (8) will give an approximate value of No'

4,4  Before proceeding with the analysis, it is of interest at this junc-

ture to compare the above approach with the spectral method.

From the pulse shape given in (40) 1t 1s found that

a2 KS e-k1T 6-121
R(7) = { - ] (49}
23 -39 U M Ay
2 1
and
a2 1;
S(w) = . (50)
(3] +0) (A5 + &)
Also,
(v a]
j' dew _ 4
: (13 + w2) (kg + w2) 2 ACIERYY
and
< 2
f 0 dw _ i
. (xf R w2) (Ag R w2) 2(?\1 + Ay)

so that N =«}11 12/(2n), agreeing with (48) above.

In cases whére Rz is large, this method 1s not applicable, since the
dzstrabution 'of % 18 no longer approximately Gaussian. In such cases
N, tends to the value derived'ani section 2.1, equation (8), which, not
surprisingly, diffé?s from that obtained by applying the spectral formula
in circumstances in which it 1s not valad. Thus, before using the spec-

tral method, the distribution of both x and X% should be examined in
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order to establish the fact that the results are valid. It is not sufficient
merely to examine the time history of x alone to determine whether it is

Gaussian, this may well prove to be a good approximation when v/11 is large.

Furthermore, it is to be noted that in the simple case considered here,
as may of'ten happen in practice, the spectral method gives a finite value for
No and so does not arouse suspicion regarding the validity of the procedwre,

as would an infinite value.

Returning to the main discussion, we continue consideration of the case
when 12/l1 is large but now allow the magnitude a +to vary in accordance
with a known distribution. As pointed out in section 4.2, the result of this
is to replace a" by a" wherever it occurs in (44). It is assumed that the
distribution of a is symmetrical about zero* and |a, is distributed expo-
nentially in accordance with (23). By symmetry, the odd cumulants of the

distribution of x alone vanish, and for the even cumulants (44 )(xd)

becomes
= v-;z-;/(.?rl) . (51)
Yor 1
From (23)
2r 2r
a = (21‘)! P (52)
giving
X = v(2r - 1)t 2#/X (53)
or T * P /M 53
and thus
o0
- v 2r - 1)1 . \er
W) = e [ ) L (10)®] (54)
r=1
* If a has an exponential distribution, but takes only positive values
(up gusts only) a similar analysis to that followed here yields
-v/\
ou) = (1-ipu)
and

v

) = ()t 1 e'%/{p (;{; - 1);}

a Pearson Type IIT distribution.
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i.e. v
Y
2 2 1
ou) = (1 +p u) . (55)
The distribution of x 1is then given by
v
oo T 2h,
1 2 2 ! inx
f(x) = 5 [ (1 +p" u) e du (56)
-
i.e.
v i
™, T F i

4 -z
o0 = (3) K%I . (3) [\m = oA - 1):]

for x positive, and the distribution is symmetrical about the origin,

(K being the modified Bessel function).

This is the distribution derived by the author by an entirely different
approach in an earlier paperh. There, the distribution is derived from the
agssumption that it results from a large number of Gaussian distributions, the

varlances of which are themselves distributed in a certain way.

For small values of v/(211), a plot of log {f(x)} against x is con-
cave upwards., As v 1ncreases the distribution becomes exponential, plot-
ting as a straight line on the logarithmic scale, for v = 211, and then
for larger values of v Tbecomes concave downwards, tending to a Rayleigh

distribution in the limit as v - oo,

As- shown 1n the earlier pgpér&5 if such Rayleigh distributions, with
values of p2 distributed in Pearson Type ITI fashion are combined, as the
distribution of p becomes more heterogeneous, the series of shapes is
retraced in the reverse direction. In this sequence, a given shape may
occur twice, so that 1t 1s not 00531ble from a cursory examination of f{x)

.‘ Tere

to determlne whether 21 results from a statlonary process or not.

] ! PR S -’_A ZEET

Returning to the present_model, the cumulants for the distribution of

% alone, from (44)(xa1), are

2r 2r-
icO,2r =V /(2 )
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and a similar analysis to that for x yields

-1 v
. 'ETE 2 . ETE -3 )
o = (i) sy %GE?) (=2t (- I
vevees (58)

The joint distribution of x and x is not of course given by the
product of (57) and (58); (57) is the joint distribution integrated with respect
to %, and (58)is the joint distribution integrated with respect to x. The pro-
duct would, however, be the correct form if x and X were independent and we

now examine how far this is likely to be a reasonable approximation.

Independence results when all Kr,s =0 for both r and s non-
zero., In the symmetrical case, up to the fourth order, there are only two
such cumulants, ¥, , and Ky 30 which are not zero. From (43) and (44)
the fourth order cumulants are

“h.0 = va'/(in,)
33’1 = 0
K2,2 = v;; 12/12
x1’3 = v;;'l§/12
!CO’L = v;Z 13/4 .
The cumulant Kh,O is less than K0,0 by a factor 1/(11 Rg), and it might

be expected that, apart from the numerical factor, the intermediate cumulants
would each reduce by the quarter power of this value., This is not the case

1
is low by a factor (lﬂ/12)4, and K low

however; on this basis
2,2

K
1 1’5
by a factor (11/12)2.

Thus, since 11/12 15 small, there may be some grourds for hoping that
the assumption that x and X are independent is a reasonable approximation

to the truth, and this assumption is in fact made.

Putting F,(x) equal to (57) and f2(i) equal to (58), and substi-
tuting in (31), gives
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0y}

e 0 ) my B/ e

veess (59)

where n, = v/(2l1) and n, = v/(212) .

In particular

N, = A(ny = 3/2)0 (0, - $)t/ fEﬂ(n1 - 1) (n2 -1} . (60)
When v is large compared with both X, and 12 so that n, and
n, are both large, then
(ny = DY(ny = 3720t = (0, - 3)
and
(ny - D1/(n, - Dt = ¥

so that (60) gives

o=, VEflend (n - D). (61)

o

If, finally, % is negligible compared with ng, then (61) reduces
to

N, = .’7\1 7\2/(21:)

in agreement with (48).

If v 1s large compared with K1 and small compared with A, then

and

F - (33_ ;:_1)! = 1/, .

Again ﬁeg%%é%ﬁig % compagéa with Ny (60) gives
VA

1

Vo = =N

v}

in agreement with the first order term of (28).
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Thus, the formula for the number of zero crossings given in (60) agrees
in the two limiting cases considered with those derived more simply. It has

L

already been established” that crossing distributions from aircraft normal
acceleration records are satisfactorily described by functions of the form of
(57). It therefore seems worthwhile pursuing the model further and examining
it in relation to observational data. Before doing so, however, a further
modification to the formulae will be made to take more account of the second
order terms, as in the examples considered these are often not sufficiently
small to be neglected. The procedure adopted is to assume distributions of
the form (57) and (58) but with the values of the parameters adjusted to fit

exactly the second and fourth cumulants in their full form of (43). This

gives
n, -4 -
() = (g-:-) K, - %(ﬁ)/m 217 (n, - 1t p,] (62)
and s
272 . n,-%
A R (53)//*“”‘2 Ty = D gy (63)
where
n, o= v(1+3) (1 + a/})/i211(1 + a)} (64)
ny, = v(1+3) (1 + o511+ a) (4 + 30+ o)) (65)
Py = pAL(1 + 30) (1 + a/3)} (66)
and

Py = PAy V(1 + 30+ AIAI(1 + 30) (1 + a/3)] . (67)

For the x-crossing dastribution

(F) /ey =2 Gy - 01 (- 0
eeees (68)

and

N, = pplny - ¥/2)t (ny - Hffenpy(ng - Dt (my - 1) . (69)
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The application of these formulae to observational material 1s con-

sidered in sections 6 to 8.

5 POSSIBLE EXTENSIONS OF THE MODEL

5.1 Various extensions of the model immediately suggest themselves. Con-
sidering first of all the distribution of the pulses in time, 1t has been
assumed that their arrivals form a Poisson process, and this implies an
exponential distribution of time intervals between pulses. Patchiness can
be introduced inte the pulse occurrences by assuming an alternative distribu-
tion of time intervals. A Pearson Type III might prove satisfactory for
this, in which the probability of a time interval between t and t + dt

is

£ o dﬁ//gmp(p - 1)} . (70)

Al et

The case already considered is for p = 1.

For p <1 the distrabution of pulses becomes patchy, and for large values
of p the pulses tend to occur periodically and so might be used in a des-
cription of wave phenomena., In this case, the assumption of the independence

of x amd % would doubtless no lenger apply.

5.2 It would also be useful to consider alternative distributions for
pulse magnitule other than the exponential and to examine the effect this

would have on the dastraibution of the resulting variable.

5.3 In the examples considered in sections 6 to 8, the model 1s applied
to describe the behaviour of aircraft normal acceleration, There is, of
course, no restriction on the variable quantity considered, or on the com-
plexity of the assumed pulse gshape, which may take account of as many
degrees of freedom in the response of the aircraft as are considered
necessary.

A simple extension of the model to include the effect of flexibility

on the aircraft normal acceleration can be made by assuming a pulse shape

of the form

Wo) = a(e-x1t ) e-xzt) . bie-(x3+114)t ) e-(KB—ilh)t} . (71)
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5.4 It is also necessary to examine in more detail the importance of the
cross-cunulants in the joint distribution of x and %. Apart from a
slender order-of-magnitude argument, the justification for ignoring these
cross-cumulants at present lies in the resulting agreement with observation.
Certainly, for the treatment of quasi-periodic disturbances as suggested in

section 5.1, the cross-cumulants would become important.

6 R,F, JONES'S THUNDERSTORM DATA

6.1 The first application of the theoretical results is to observations-

in storm clouds wath a Spitfire aircraft made by Jones5. In this paper,
frequency distributions of aircraft peak normal accelerations are given for
flights through cumulus and cumulonimbus ciouds at heights ranging from

2500 feet to 42400 feet, grouped into eight height bands. These observations
are quoted here in Tables 1(i) to (viai) in the form of cumulative frequency
distributiong, whereas we have been dealing with crossing dastributions.
However, for such data it has been shown6 that the cumulative distribution

of peak values gives an acceptable approximation to the crossing distribution,
becoming increasingly close as the excursions from the mean become larger.

It is therefore assumed in all the examples considered here that the dif-
ferences between the cumulative peak distribution and the crossing distribu-

tion may be ignored.

Curves of the form of (68) are fitted to these data using tables of the
function7 prepared for the purpose 1n which the shape parameter n takes
half integral values. These appear to give a sufficient graduation of shapes
and a reasonable fit was obtained by trial and error*. The values from the
fitted curves are also given in Tables 1(i) to (viii), and the observed
values and fitted curves are shown plotted in Figs.Z2a to 2h on a bumps-
per-mile basis, The parameters for the fitted curves are given in Table 2,

repeated below for convenience,

* The curve fitting for this particular example was done some time before
the ideas 1n the present paper were developed.
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Table 2 (repeated)

R.F. Jones's thunderstorn data. Summary of parameters

Helght, £t |n, [py; g units| N_ A, per mile|v per mile 1/?\2 't
2500~ 7500 | 15| 0.1042 5.49 22,97 39.1 89.2
7500-12400 | 25| 0.0833 4. 70 19.69 56.9 99.2

12500-17400 | 2 0.1053 5.06 16.77 39.7 SN

17500-22400 | 12| 0.1316 4..86 14.20 33.3 47.6

22500-27400 ] 25| 0.1220 h.66 11,94 5044 36.8

27500-32400 | 33| 0.1036 4,33 9.97 60.7 35.4

32500-37400 | 3% | 0.0917 3,78 8.26 51.6 33.8

37500-42400 | 451 0.0858 3.84 6.57 57.0 13.3

(As up and down bumps have been added, the extrapolated value of the fitted

curve at zero acceleration gives 2No')

6.2 An examination of Figs.2a to 2h shows a fairly uniform change of
shape of the distributions, close to exponential form at the lower altitudes
and increasing in curvature with increasing height. The values of ny in

Table 2 confirm this impression.

On earlier ideas this might be attributed to.the fact that at the
higher altitudes the sample is smaller and therefore likely to be more
homogeneous. At the lower altitudes any combining of samples of different
intensities will lead to a decrease in the curvature. In other words, the
trend in the curvature of the distridutions is due to a trend in sample

S512¢€.

The present work suggests an alternative explanation. It has been
seen that the shape of the distribution is dependent on the parameter
v/, (equation (57)). 1r A, is identified with 1/(c ,) then this
itself varies very widely with altitude and its variation i1s sufficient to
explain the observed trend. In Fig.3 the values of n, are shown plotted
against the mass pa?héeter “g’. showing good agreement with the predicted
relationship. The dashed line on thé diagram is the best straight line
through the orléiﬁi'tﬁe full line is a second-degree curve passing through

the origin and the first and last experimental points.

25
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6.3 We can also make some further deductions from the model. If 12 is
large, so that we can use the first order approximations, then for the highest
altitude band v/(2lﬂ) = 4% from the observed shape of curve, Putting

A = Ae pg) gives A, = 6,57 per mile and v =59.1 per mile. From the
first order term of (27)

u?\.1

2T

and substituting the above values for v and 11 gives No = 3.93 per mile,

This is very close to the observed value of 3.84 per mile.

However, when the same calculations are made for the lowest altitude band
the value of N0 is found to be 7.93 per mile compared with the observed value
of 5.48 per mile, the comparison tending to be progressively worse with
decreasing height. Clearly the first order approximation is only adequate
at the high altitudes and the effect of terms in 13/12 become appreciable
at the lower altitudes.

&.4 To illustrate this, a model is fitted hased on the more complete repre-
sentation of (57). With a further parameter at our disposal 1t is now pos-

sible to fit n; and N exactly by a correct choice of v and 12.

The values of N based on the observations and the values of XA, cal-
culated from values of the mass parameter based on a mean aircraft weight are
shown plotted as the circled points in Fig.4 and a smooth curve fitted by
eye to the values of N e The experimental values are given in Table 2,
From the experimental values of n,, N and A and using equations (64)
to (67) and (69) values of v and 1/12 have been determined, also given
in Table 2 and shown by the circled points of Fig.5. (The parameter 1/12
rather than 12 itself has been taken as it is closely related to the old
gust gradient distance, as shown by (37), although the build-up distance of
the pulse itself depends on both KI and 12 .) From the curves shown as
the full lines in Figs.3 and 4,the full lines of Fig.5 have been calculated,
so that the full lines on all the Figs.?, 4, and 5 form a consistent set,

There is a rather large scatter of circled points in Fig.5, but 1t
should be remembered that the experimental errors of both n, and No con-
tribute to this. It is more correct to congsider the experimental scatter
from a diff'erent point of view. Postulating the variation of v and R2
given by the full curves of Fig.5, the full curves for ny and No shown

in Figs.3 and 4 are derived, in reasonably good agreement with experiment.
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From Fig.5, it is seen that there is a slight variation in the valve of v ,
but its small magnitude confirms that almost all the variation in the shape

of the bump distributions is due to the large change in A,.

The large change in 1/12 is, at first sight surprising. At LOO0O feet
the value of ?ﬂ/lz is 0,0292, A small value is to be expected since the
first order approximation gives sueh a good agreement with observation. At

5000 feet the value of 11/12 is 0.388; clearly the second order terms are

no longer negligible,

A better understanding of the behaviour of 1/12 is obtained if
equation (41) is used to calculate the pulse build-up distance, putting
t = H. Values of H calculated from the smoothed values of l1 and 12
are plotted 1n Fig.6 and show a linear relationship with height varying
from 138 feet at 5000 feet altitude to 85 feet at L0000 feet altitude. The
main function of 12 is to determine this build-up distance correctly.
How far the variation in the build-up distance is due to a change in
environment, and how far due to a change in aircraft response has yet to be
determined. Comparisons between aircraft will help to throw some light
on this problem.
6.5 The important point to be emphasised regarding this example is that
the variation in curve shape for the bump distributions follows closely
that predicted from the mathematical model, depending almost entirely on

the change in aircraf't mass parameter.

7 'SWIFTER' MIDDAY FLIGHTS OVER FLAT DESERT

7.1 The second example is taken from an extensive investigation of air-
craft normal accelerations experienced when flying at low altitude in Nerth
Africa, known as 'Operation Swifter'. This investigation has been described
in detail earlier8. The observations we now examine, relate to midday
flights over the flat desert at 200 feet altitude. The restriction to mid-
day flights has been made because environmental conditions are fairly steady

at this time,

The flights have been clagsified according t¢ the solar radiation
being received by the ground, and the cumulative gust distributions are
given in Tables 3(1i) to (x).

The results are presented in terms of gust velocities derived by
Zbrozek's methodg. As only a single type of aircraft is involved, this

merely amounts to making small corrections for aircraft weight and speed,
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converting the accelerations to gust velocities by some arbitrary factor, and
interpolating to determine the number of gusts at the required velocity level.
The gust velocity in Table 3 is therefore treated as proportional to aircraft
normal acceleration, and, as before, the cunmulative distribution is assumed to

provide a satisfactory approximetion to the c¢rossing dastribution.

Distributions of the form of (68) are fitted to the dbservations of
Table 3, in which the fitted values are also given and a comparison between the
experimental points and the fitted curves 1s shown diagrammatically in Figs.7a
to 7§ . A summary of parameters 1s given in Table 4, repeated below.

Table k4 (repeated)

'Swifter' midday flights over flat desert., Summary of parameters

Soler radiation | Py N, v 1/R2
mW/cmz 1 ft/sec| per mile | per mile | feet |feet/sec
35-39 25| 1.543) 9.590 | 101.3 | 14.38| 1.700
LO-L1 351 1.259| 8.816 130.7 24,761 1.475
L5-49 5 147 7.656 166.7 41.62]1 1.500
50-54. 55| 1.168] 7.510 180.2 | 44k.52| 1,518
55-59 N 1.202 | 7.521 180.4. 44,331 1.560
60-61 " 1.253 8.032 188.0 37.63 1.573
65-69 " 1.269 | 8.428 193.5 33.27| 1.558
70-7h. "] 1.351 | B.668 196.7 30.85| 1.637
75-79 " 1.4L08 | 8.632 196.2 21.21 1.710
80-84 " 1.323 9.000 200,9 27.81 1.577

The values of n,, p, and N, are those of the curves fitted in Figs.7a
to 73 (Tables 3(a2) to (x)).

The values of v, 1/12 and P are derived using the relationships
given 1n (64) to (69) with Ay = 23,1k per mle. These values are shown
plotted as the circled points in Figs.8 and 9.

7.2 The most striking feature of these observations is the rapid increase
in ny as the solar radiation increases from 37 m'V'{/cm2 to about

50 mw/cmz. This is detectable in Figs.7a to 7d as a change of shape

and shown more clearly in 8a . For values of solar radiation above

2
50 mW/cm~ the value of n, is constant and second order terms produce a
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slight trend in v, although whether in fact it 1s v that is constant with
a glight trend in n, it is difficult to say, as the observations hardly
warrant this accuracy, a change from 5% to 5 in n, being barely detectable.
{Curve fitting with unrestricted values for ny would also entail two way
interpolation if only existing tables were used. ) During the rapid increase
an v the value of 1/12 also increases rapidly and then falls away slightly.

There 1s a similar but smaller variation in No'

7.3 It is also of interest to consider the observations from an energy
standpoint, The energy of the disturbances i1s proportionél to their number
and to the square of their magnitude. In Fig.10 the values of vp2 are shown
plotted against solar radiation and the points lie reasonably well on a
straight line. This linear relationship has been used in determining the
curves of Figs.8c and 9c¢. The full lines of Fig.8a to 8¢, Fig.9a to

©¢, and Fig.10, are a consaistent set, as are also the circled points.

7.4 We may perhaps do a little guesswork regarding the physical implaca-
tions of these results. As the solar radiation increases up to 50 mmycmz the
number of disturbances v increases rapidly, the atmosphere "comes to the
boil" so to speak, This analegy is not strictly correct as we are dealing

with steady conditions at each value of sclar radiation,

Accompanying this rapid rise in v, the behavicur of 1/12 indicates
that the size of the disturbances also increases. As the increase in v 1is
far more rapid than the rise in solar radiation energy requirements lead to a

fall in p.

Above about 50 mW/cmz the number of disturbances is fairly constant and
the increase in the i1nflux of energy leads to a gradual increase in p.
During this stage 1/K2 decreases slightly, perhaps because the disturbances
become more sharply defained,

7.5 It would be of xnterest to extend the curves tc lower values of solar
radiation. 'Swifter' flights at these lower values were made in the early
mornings and afternoons, when, of course, the corditions are not as steady
as at midday. A cursory exemination of these observations indicates that
the values of ny seldom falls much below unity and the values of vp2 lie
above the straight line of Fig.10, This implies that under these conditions
the turbulence is patchy and the model not strictly applicable as v  1s not
constant, It may be possible to extend the theory to take this into account

(see secction 11.1). A further difficulty in analysing these results 1s that
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for these small values of n, a small change in n, leads to a large change

in the shape of the distribution and present tables are inadequate.

7.6 The important point in this example is the change in shape of the gust
distribution produced by a change in the mean pulse rate v, while the mass
parameter 1s held constant. This contrasts with the first example in which

the change in shape is mainly due to the change in mass parameter.

8 'SWIFTER' STACKED SORTIES

The final example is also taken from the 'Swifter' investigation and
refers to the flights known as the 'stacked sorties'., In these flights, which
took place near midday, aircraft flew at heights of 200 feet, 400 feet and
600 feet separated by only a short interval of time so that the conditions
were, for all practical purposes constant. (If only two aircraft were
available the 600 feet flight was omitted.) To take a fairly homogeneous
sample for the present analysis the flaghts considered are those made when
the solar radiation exceeded &4 mW/cmz. The observed values and fi1tted dis-
tributions are given in Tables 5 and 6, for flights over flat amd hilly desert
respectively, and are shown plotted in Figs,11 and 12,

Now the mass parameter varies by only just over 1% between 200 feet and
600 feet and disturbances which affect an aircraft at 200 feet probably also
affect an aircraft at 600 feet. That is to say, both 11 and v vary very
little with altitude. Thus the present theory predicts very little change
in the shape of the gust distributions with altitude aml this i1s confairmed by
the observations. On the other hand the number of zero crossings shows a
marked decrease with altitude and this must therefore be due to a variation
in 12. According to our model the variation in 12 will produce a small
second order variation in Ty Wath the values of the parameters obtained
from a first approximation this variation on the value of ny 1s between
% and 1 for each 200 feet change in altitude, and 1s barely detectable,
if at all. However, in the curve fitting, an allowance has been made for this
trend ard values of n, differing by + for each 200 feet change in altitule
have been chosen - in effect, the best set of three differing by this amount
have been fitted.

The resulting parameters are summarised in Tables 7(i) and 7(ii),

repeated below,



Table 7 (repeated)
. 2
*Swifter' stacked sorties with solar radiation 2 65 mW/cm.

Summary of parameters

(1)

Flat desert

Height n, P4 No )ﬂ " 1/12
£t ft/sec | per mile | per mile| per mile Tt
200 5% 1.295 9.337 23,14 | 204.9 25.10
LOO 6 1.326 7.275 23,01 191.5 48.28
600 6% 1.337 6.156 22,87 183.0 71,41

(ii) Hilly desert

Height | »n, Py N, [ v /%,
£ ft/sec | per mile |per mile |Per mile| gy
200 I 1.706 9.549 23.1% | 154.7 20.19
LOO L | 1.650 7.892 23,01 153.7 37.13
600 5 1.650 6.817 22.87 153.4 DLl 49
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It will be seen that in the case of the flat desert the assumed change in
n, 1is not quite sufficient to maintain v at a constant value; by compari-

son, for the hilly desert, the allowance is just sufficient to do so.

The walue of n, found here for flying at 200 feet over flat desert

is the same as the value for all groups in the second example with solar
radiation greater than 64 mW/ch. As the range of scolar radiation 1s much
wider in the present example and the value of p varies slightly the combina-
tion of results might have been expected to produce a slight decrease in the

value of Ny, but this is not detectable.

A further small point to note 1s that the value of 1/12 for flights
at 200 feet over the flat desert found here differs slaghtly from the values
in the second example when the solar radiation exceeded &4 mW/cmz. As these
values are determined from large samples, the dafference is rather too great
to be explained as due to random sampling and 1s probably due to a slight
dafference in routes flown. While all the stacked sorties were made on the
routes to the West of Kl Adam, a good deal of flying over flat desert also
took place on the southerly routes towards Giarabub. These are minor points

however. The main feature of tlis example 1s the striking behaviour of 1/K2.
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8.2 The values of 1/12 given in Table 7 are shown plotted in Fig.13. These
show a linear relationship with height within very close limits (to within
1%). The fact that the lines do not pass exactly through the origin may

result partly from a bias between the actual and nominal altitudes and partly

from altimeter errors.

In the case of the first example considered, changes in 12 are con-
nected with changes in aircraft response. Here, the aircraft response is,
for all practical purposes, constant, and the change in 1/12 is clearly due
to changes in the envaronment. The linear relationship with height shown in

Fig.13 tends to confirm this opinion.

G DISCUSSION OF OBSERVATIONAL RESULTS

a1 The application of the 'shot effect' model to aircraft normal accelera-

tions gives encouraging results in the examples considered.

The three examples illustrate the effect of varying each of the para-
meters Ay, v and 12 in turn. The first example demonstrates a change
in shape of the gust dastribution due to a variation of K1; the second, 2
change in shape of the gust distribution due to a variation in v; and the
third shows the effect of 12 on the number of zero crossings NO. The
model satisfactorily predicts all these trends and presents a consistent picture

of the phenomenon.

1,2 In earlier models the range of shapes in observed distributions was
usually explained by postulating a distribution of root-mean-square values
for short intervals of Gaussian processes; differing root-mean-square dis-
tributions giving rise to differing gust distributions. This procedure
suffers from a certain conceptual difficulty. These intervals must necessarily
be long enough to be considered stationary and short enough for a continuous
distribution of root-mean-square values to give a reasonable approximation
to the truth. Furthermore, the process so defined is not stationary in as
much as 1ts root-mean-square value varies with time., In many cases, for
example, when flying over a hot flat desert at midday, a& model which does
not rely on non-stationarity to predict the observed gust distributions

seems preflerable.

The present model does not suffer from these disadvantages. The shape
of the gust distribution devends almost entirely on the mass parameter and the
freguency of the disturbances, and the vrocess 1s stationary in the sense that

its statistical propertics are invariant with time.
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10 CONCLUSIONS

10,1 1In investigating the behaviour of an aircraft in turbulence the most
satisfactory method of analysis depends on the frequency. with which the

digturbances are encountered.

When the disturbances are rare, then a discrete gust approach may
prove adequate, As the occurrence of the disturbances becomes more frequent,
so that their effects become superimposed, the discrete gust approach is no
longer satisfactory. Finally, the frequency of occurrence becomes so great
that épectral methods can be used. Between the two limiting cases, the
discrete gust and the spectral approach, there 1s a wide area in which
neither is satisfactory. It is to this region, between the discrete gust
on the one hand and the spectral approach on the other, that the method
developed here applies.

The examples chosen illustrate its application to aircraft normal
accelerations. It would be of Interest to examine how far the model is
successful 1n predicting the behaviour of other response variables, with,

of course, suitable modification of assumed pulse shape.

However, above all, what 1s required at the present time is to make
comparisons between aircraft to examine the consistency of the various para-
neters under these conditions and to discover how far predictions based on
one aircraft are valid for another. It should always be borne in mind that
the purpose of the analysis is to predict, from observations of gust loads
on one aircraft, the loads experienced by a second aircraft flying in the
same environment. For this purpose it i1s not necessary for the model to
ref'lect accurately the true physical picture. In fact, it should be as

simple as possible consistent with the aim defined above,
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AEEendix A
SUMMARY OF MATHEMATICAL MODEL

4.1 The mathematical model developed in the paper is summarised here. The

equations given all occur in the main text and are quoted with their original

equation numbers.

The random varisble x, (in the cases considered, the aircraft normal
acceleration) is assumed to result from superimposing a large number of pulses
of the form

alz -A,t -K2t
F(t) = TE—:MXT (e - e ) . (140)

These pulses occur at random with respect to time at a mean rate v per
unit time. In the aircraft applications considered in the paper, the indepen-
dent varisble is distance rather than time, and the parameter 11 is identa-

fied with 1/(c pg), where ¢ is the aircraft chord and b, the aircraft

mass parameter,

The magnitude parameter a 1s assumed to be distributed exponentially:-

— ema—

£(a) = _;5 . ) (23)

| ]
P

The distributions of x amd X are assumed to be, respectively

_ X 1'1.1"';' X n'l-% .

f1(X) = <p—1' Kn,]-Jg- (P_»}) {{'K 2 (n1 - 1)' P1} (62)

and
N . n,-%

where

n, = v(1 + 30) (1 +a/3) / {211(1 +a)} (64)

n, = v(1+3a) (1+a/3) / {20,(1 +0) (1 + 38 + a%)] (65)

py = p/VE(1 + 30) (1 +a/3)] (66)
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b = Phy (1 + 30+ )N+ 30) (1 + 0/3)] (67)

and

When & ocan be neglected, (62) and (63) are exact. Otherwise, the parameters
in (62) and (63) are so chosen that the second and fourth cumulants have their

correct wvalues.

Assuming further that x and X are independent, then the x-crossing

distribution 1s gaven by

N = pyln, - 51 (—;‘;) i K3 (%) fpy = 21 (ny = 11 (n, - 1)t}
veees (68)

and

Ny = pplny = 3/2)1 (1, = Bfiom py(ny - D1 (ny - 18] (69)
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AQEendix B
NOTE ON CURVE FITTING

B.1 A1l the fitted curves tabulated in this paper have been fitted by trial
and error, using the set of functionsg previously tabulated7 for

n = (%) 6(1) 12. These tables give a sufficient range of shapes for most
practical purposes, except perhaps near the lower end of the range., The
adequacy of the fit has been judged subjectively without recourse to a least-
squares or minimum x2 procedure. It would be necessary to congider a

number of factors if this were done.

When the number of gusts in a class interval is large, most of the error
arises from instrumental and iike causes, which lead to an error in the range
of the interval. This might be of the order of a few per cent. At the other
extreme, when the numbers in the classes are small, the largest contribution

to the error is due to sampling scatter.

If the instrumental errors amount to, say, 4% then the contribution to
the variance from this cause is N2/625, where N is the number in the class
{strictly speaking, the expected number). For a given total number-in the
whole distribution the sampling contribution to the variance of the class is

N, making for the total variance N + N2/625.

For classes contalning over 625 gusts the instrument errors predominate;

below thas figure sampling errcrs predominate,

da 2 . . . .
To minimise ¥ it 1s necessary to minimise the squares of the dif-
ferences between the observed and expected numbers divided by the respective

variances, 1,e., to minimise

j{: {(Nobs - Néxpii///(Nexp * Nixp/625)}

where Nobs is the observed number in the class and Nexp is the expected

number.

It is to be noted that the distributions tabulated here are cumulative
before the above procedure can be applied the numbers within each class inter-

val must be found by differencing.

A computer programme for curve fitting based on these considerations and

allowing for unrestricted values of the shape parameter n would be useful.



Appendix B

B.2 Two specifiic points regarding the actual curves fitted should be

mentioned.

The first is the appearance on several occasions of a few large gusts
not fitting well into the general pattern. No simple expression fitting
the main part of the distribution satisfactorily fits these tails and on
any simple theory it 1s necessary to assume that such a tail results from
a separate population of rare events, Whether these rare events are gusts,

manoeuvres, or a combination of these 1s not yet established.

The second point concerns the Swifter results only. The observed
totals at a gust velocity of 74 ft/sec show a small positive bias of about
one or two per cent. This 1s not a serious discrepancy and is undetectable
on the diagrams, but it is consistent enough to give rise to the suspicion

that 1t may be due in gome way to the data processing, possibly the instru-
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ment response characteristics, the addition of up and down gusts,or the method

of interpolating between the acceleration levels to obtain the number of

gusts at a given deraived gust velocaty.
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Table 1

R.F. JONES'S THUNDERSTQRM DATA

CUMULATIVE BUMP DISTRIBUTICNS

(1) 2500 feet to 7400 feet; 227.1 miles

No. of bumps Bumps per mile
g

Obs. Fitted Obs. Fitted
0 243 10.98
0.1 | 1554 | 1554 £.84 6.8
0.21 755 | 745 3.352 3.28
0.31 330 | 333 1.45 1.47
O. | 147 | 1hi 0.647 0.63h
0.5 56 60.1 0.247 C.265
0.6 22 25,2 0.0969 0.111
0.7 11 10.3 0.0484 | 0.045L
0.8 5 .20 [0.0220 | 0.0185
0.9 2 1.70 |0,00881 | 0,00749
1.0 1 0.683 | 0.00440 | 0.00301
1.1 0
n, = 1%; Py = 0.1042 g

(i1) 7500 feet to 12400 feet; 495.3 miles

No. of bumps Bumps per mile
g

Qbs. Fitted Obs. Fitted
0 4654 940
0.1 ] 3495 | 3495 7.06 7.06
0.2 | 1869 | 1874 3.77 3.78
0.3 823 | 859 1.66 1.73
O.h | 350} 360 0.707 0.727
0.5| 145 142 0.293 0.287
0.6 54 53.6 0.109 0.108
0.7 18 19.7 0.0363 | 0.0398
0.8 7 7.05 10,0041 | o012
0.9 3 2,48 | 0.00606 | 0.00501
1.0 3 0.861 | 0.00606 | 0.00174
1. 1 0.295 | 0.00202 | 0.000596
1.2 0
ny = 23; p; = 0.0833 g




Table 1 {Contd)
(iii) 12500 feet to 17400 feet; 241.2 miles

No. of bumps Bumps per mile
8

Oba. | Fitted Obs. Fitted
0 2440 10.12
0.1]1839 (1839 7.62 7.62
0.2 | 1064 | 1058 A g %.39
0.3 527 | 52 2,18 2.25
0.4 | 251 | 26k 1.0k 1.09
0.5 123 122 0,510 0.506
0.6 55 54.8 0.228 0.227
0.7 27 24,2 0.112 0,100
0.8 9 10.5 0.0373 | 0.04L35
0.9 4 y.51 |o.0166 | 0,0187
1.0 2 1.91 | 0.00829 } 0.00792
1.1 1 0.811 | 0.00415 | 0.00336
1.2 1 0.340 { 0,00415 | C,00141
1.3 1 0.142 | 0,00415 | 0.000589
104 O
n, 2; py = 0.1053 8

(iv) 17500 feet to 22400 feet:

108.6 miles

No. of bumps Bumps per mile
g

Obs. | Fitted Obs. Fitted
0 1055 9.71
0.1 750 | 750 6.91 6.91
0.2 44 L32 4.06 3.98
0.3 230 234 2.12 2.15
O | 123 ] 123 1.13 1,13
0.5 59 63.0 0.543 0.580
0.6 30 32.5 0.276 0.299
Q.7 18 16.5 0.166 0.152
0.8 9 7.91 0.0829 |[0.0728
0.9 4 3,90 [0C.0368 |0.0359
1.0 1 1.91 {0.,00921 | 0.0176
1.1 0

11. =

n, 3 Py = 0.1316 ¢
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Table * (Contd)

(v) 22500 feet to 27400 feet; L6.2 miles

g No. of bumps Bumps per mile
Obs, | Fitted Obs. Fitted

0 430 9.31
0.1 372 372 8.06 8.06
0.2 | 244 264 5.28 5.72
0.31173 167 3.75 3.62
O.4 | 104 99.0 2.25 2.1
0.5| 60 55.7 1.30 1.21
0.6 30 30.3 0.650 0.656
0.7 16 16.1 0.346 0.349
0.8 7 8.37 |0.152 0.181
0.9 5 4.28 | 0,108 0,0927
1.0 2 2.15 | 0.0433 | 0.0L66
1.1 0

ja]
Y

= 2% py = 0.1220 g

(vi) 27500 feet to 32400 feet; 22.3 miles

g No. of bumps Bumps per mile
Obs. | Fitted Obs. Fitted

0 193 8.66
0.1 {173 173 775 775
0.2 | 127 128 5.69 5.76
0.31 79 84.0 3.5L 3.76
0.4 | 50 50.1 2.24 2.25
C.5| 30 28.0 1.34 1.25
0.6| 15 14.9 0.672 0.668
0.7 7 7.60 0.314 0.341
0.8 5 3.77 j0.224 0.169
0.9 5 1.82 |0.224 0.0818
1.0 3 0.865 |0.134 0.0388
1.1 3 0.403 |0.134 0.0180
1.2 2 0.185 |0.08%6 | 0.00829
1.3 1 0.0832|0.0448 | 0.00373
1.4 1 0.0375/0.0448 | 0.00168
1.5 1 0.016610.0L48 | 0.000746
1.6 0

ny = 3% py = 0.1036 g



Table 1 {Contd)

(vii) 32500 feet to 37400 feet; 20,4 miles

No. of bumps Bumps per mile
g

Obs. Fitted Obs. Fitted
0 154 7+56
0.1 1341 134 6.56 6.56
0.2 93 93.0 L.56 L.56
0.3 49 B5.3 2,40 2,71
0.4 28 29.7 1.37 1.45
0.5 15 14,9 0.735 0.730
0.6 8 7.06 | 0.392 0.346
0.7 3 3.23 | 0.147 0.158
0.8 2 1.42 | 0.0980 | 0.0696
0.9 2 0.608 | 0.0980 | 0.0298
1.0 2 0.255 | 0.0980 | 0.0125
1.4 2 0.105 | 0.0980 | 0.00516
1,2 0

. ng = 3z; Py = 0.0917 g
(viii) 37500 feet to L2400 feet; 13.7 miles

No. of bumps Bumps per mile
g

Obs. | Fitted { Obs. Fitted
0 105 7.69
0.1 9L 9l .88 6.88
0.2 68 69.1 4.98 5.06
0.3 L3 1.0 | 3.45 3.22
O.k] 25 25,0 1.83 1.83
0.5 13 13.1 0.952 0.957
0.6 6 6.0 | 0.439 0.469
0.7 0
ny = 433 p, = 0.0858¢

L]
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Table 2

R.F. JONES'S THUNDERSTORM DATA
SUMMARY OF PARAMETERS

Height n, [py g units | N M v 1/

Teet © per mile | per mile| reet
2500~ 7400 1% 0.1042 5.49 22,97 39.1 89.2
12500-17400 | 2 0.1053 5.06 16.77 39.7 6.4
17500-22400 1% 0.,1316 4.86 14.20 33.3 47.6
22500-27500 2? 0,1220 L.66 11.94 5044 36.8
27500-32400 3§ 0.1036 L.33 9.97 60.7 35.4
32500~37400 3? 0.0917 3,78 8.26 51.6 33.8
37500-42400 | b3 0.0858 3.8, 6.57 57.0 13,3




*

Table 3

'SWIFTER' MIDDAY FLIGHTS OVER FLAT DESERT CLASSIFIED WITH RESPECT TO

SOLAR RADIATTON.

CUMULATIVE GUST DISTRIBUTICNS

(i) Solar radiation 35-39 mW/cmz; 1620 miles

Gust velocity

No. of gusts

Gusts per mile

£t/sec Obs. | Fitted Obs. Fitted

0 31073 49,181

5 7337 | 7337 4.529 L.529

% 234 | 2293 1447 1,415
10 638 6h4r.3  |0.3938 0.3977°
15 L 42,58 |0.02716 0.02628
20 1 2.45710.0006173 | ©.001517
r. = 2% p; = 1.543 ft/sec

(ii) Solar radiation 40-kd mW/cm% 2953 miles

Gust velocity

No, of gusts

Gusts per mile

£t/sec Obs. | Fitted Obs. Fitted
0 52070 17.633
5 12667 | 12667 4..290 4,290
7% 3769 | 3584 1.276 1,214
10 850 864.L | 0.2878 0.2927
15 38 38.16 | 0,01287 0.01292
ny = 3z e = 1.259 ft/sec

(iii) Solar radiation 45-49 mW/cu; 2532 miles

Cust velocity No. of gusts Gusts per mile

£t/sec Obs. | Fitted Obs. Fitted

0 38772 15,313

5 12828 | 12828 5.066 5.066

3 4492 | 4233 1.77% 1.672
10 1124 | 1143 04439 0.4514
15 55 57.31 [0.02172 0.02263
20 5 2,1160.001975 0.0008357
25 2 0.0007899
ny = 5 py = 1.7 ft/sec
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Table 3 (Contd)

(iv)} Solar radiation 50-54 mW/cm% L9994 miles

Gust velocity No. of gusts Gusts per mile
£t/sec Obs. | Fitted Obs. Fitted
0 75008 15.020
5 27501 | 27501 5.507 5.507
% 10025 | 9760 2,007 1.95L
10 2752 2819 0.5511 0.5645
15 147 158.6 {0.02944 0.03176
20 10 6.42510.002002 | 0.001287
25 1 0.0002002
n, = 5%, Py = 1.168 ft/sec

2
Solar radiation 55-59 mW/cm ; 2051 miles

(v)

Gust velocity No. of gusts Gusts per mile
£t/sec Obs., | Fitted Obs. Fitted
0 30853 15,043
5 11894 | 11894 5.799 5.799
= A | 4420 2.165 2.155
10 1345 | 1344, 0.6558 0.6553
15 85 84,37 [0.0414 0,011}
20 7 3.831|0.,003413 0.001868

25 1 0.0004876
30 1 0.0004876
n, = 553 Py = 1.202 f£t/sec

(vi) Solar radiation 60-6h mW/cmz; 2255 miles

Gust velocity No. of gusts Gusts per mile

£t/sec Obs. | Fatted Obs. Fitted

0 3622 16,064

5 14969 | 14969 6.638 6.638

% 6091 | 5931 2.701 2,630
10 1928 | 1938 0.8550 0.859%
15 142 142.0 |0,06297 0,06297
20 7 7.57910.003104 0.003361%
25 1 0.3312|0,004435 0.0001469
n1 = 5%; p1 = 1.253 ft/sec




Table 3 (Contd)

(vii) Solar radiation 65-69 mw/cm% 2691 miles

Gust velocity No. of gusts Gusts per mile
ft/sec Obs., | Fitted Obs. Fitted
0 45359 16.856
5 19122 | 19122 7.106 7.106
7% 7923 | 7721 2,94, 2.869
10 2510 | 2575 0.9327 0.9569
15 200 197.5 |0.07432 0.07339
20 15 11.05 [0.005574 0.004106
25 1 0.5068[0.0003716 | 0.0001883
n, = 5% Py = 1.269 ft/sec

(viii) Solar radiation 70-7L mﬂ[gm% LOL1 miles

Gust velocity No, of gusts Gusts per mile
£/sec Obs, | Fitted obs. Fitted
0 70053 17.336
5 32436 | 32436 8.027 8.027
1 14607 | 14304 3.615 3.540

10 K208 | 5272 1.289 1.305

15 478 502 0.14183 0.1242

20 5h. 35.21 |0,01336 0.008713
25 7 2.0350.001732 0.0005036
30 3 0,007424

35 1 0.0002475 ®
ny = 5%; Py = 1.351 ft/sec

(ix) Solar radiation 75-79 mW/cmz; 2858 miles

Gust velocity No. of gusts Gusts per mile
ft/sec Obs. | Fitted Obs. Fitted
0 L9341 17.264
5 24169 | 21169 8.457 8.457
. 11483 | 11254 4.018 3.937
10 L334 | 4409 1.516 1.543
15 472 | 479.6 | 0.1652 0.1678
20 Ly |- 38.74 | 0.01540 0.01355
25 5 2.586 1 0.00174L9 0.0009048

30 g 0.003499
n, = 5% p, = 1.408 ft/sec

f
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Table 3 (Contd)

(x) Solar readiation 80-84 mW/cm%; 2148 miles

Gust velocity No, of gusts Gusts per mile

£t/sec Obs. | Fitted Obs. Fitted

0 38665 18.00

5 17359 | 17359 8.081 8.081

7% 7706 | 7436 |3.583 3,462

10 2586 | 2651 1,204 1.234

15 237 234.9 0.1103 0.1094
20 23 15.29 [0.01071 0.007118
25 3 0.8180j0.001397 0.,0003808
n = 55 py = 1.323 ft/sec




Table &

'SWIFTER' MIDDAY FLIGHTS OVER FLAT DESERT
SUMMARY OF PARAMETERS

Solar radiation Py N v 1/ P
o n, o . 2
mW/ cm ft/sec | per mile | POT Bile} peet ft/sec
35-39 2% 1,543 9.590 101.3 [14.38 1.700
LO-4,. 35| 1.259 8.816 130.7 |24.76 1.475
45-49 5 1,171 7.656 166.7 [41.62 1.500
50-54 55 1.168( 7.510 | 180.2 |ak.52 | 1.518
55-59 5? 1.202 7.521 180.4 (44,33 1.560
60-64 52 1,253 8.032 188.0 [37.63 1.573
65-69 5§ 1.269 8.428 193.5 [33.27 1.558
70-74 ] 1.351 8.668 196.7 [30.85 1,637
75-79 5? 1.408 8.632 196.2  |31.21 1.710
80-8L4 551 1.323 9.000 200.9 [27.81 1.577

The values of Ny, Py and No are those of the curves fitted in
Figs.7a to 7j (Tables 3(i) to (x)). The values of v, 1/12 and f are
derived from these using the relationships given in (64) to (69) with
A, = 23.14 per mile.

aHaw ek va# en Lk e




Table 5

'SWIFTER' STACKED SORTIES WITH SOLAR RADIATION 265 mﬂ/cmz OVER FLAT DESERT
CUMULATIVE GUST DISTRIBUTIONS

(i) 200 feet; 2103 miles

Gust velocity No. of gusts Gusts per mile
ft/sec Obs. | Fitted Obs. Fitted
0 39272 18.674
5 17089 | 17089 8.126 8.126
5 7365 | 7108 3.502 2,380
10 2401 { 2452 1.142 1.166
15 198 202.1 0.09415 0.09610
20 10 12.20 | 0.004755 | 0.005801
n, = 553 Py = 1.295 ft/sec

(ii) 400 feet; 2174 miles

Gust velocity No. of gusts Gusts per mile

£t/sec Obs. | Fitted Obs. Fitted

0 31633 14.551

5 15351 | 15351 7.061 7.061

75 7141 | 7009 3.271 3.22L,
10 2641 | 2665 1.215 1.226
15 285 | 265.6 |0.1311 0.1222
20 17 19,15 | 0.007820 | 0.008809
n, = 6; Py = 1.326 f't/sec

(i1i) 600 feet; 1342 miles

Gust velocity No. of gusts Gusts per mile
f't/sec Obs. | TFitted Obs. Fitted
0 16522 12,311
51 8617 | 8617 6.421 6.421
7% 4229 | 4193 3.151 3.124
10 1672 | 1703 1,246 1.269
15 208 192.9 0.1550 0.1437
20 20 15.63 | 0,01480 0.01165
25 2 1.017 | 0.001490 | 0.0007578
ny = 63 py = 1.337 ft/sec




Table €

2
'SWIFTER' STACKED SORTIES WITH SOLAR RADTATTION 265 mW/cm  OVER HILLY DESERT

CUMULATIVE GUST DISTRIBUTIONS

(i) 200 feet; 1221 miles

Gust velocity No. of gusts Gusts per mile
£t/sec Obs. Fitted 0bs. Fitted
0 23319 19,098
5 11256 | 41256 9,219 9,219
% 5534 | 540U 4,532 b k26

10 2189 | 2261 1.793 1,852

15 319 305.2 0.2613 0.2500
20 L5 33.17 0.03686 0.02717
25 6 3,449 ] 0.00491L 0.002579
n, = 4 Py o= 1.706 ft/sec

(ii) 400 feet: 1252 miles
Gust velocity No. of gusts Gusts per mile

£t/sec Obs. Fitted Obs. Pitted

0 19762 15,784

5 10077 | 10077 8,049 8,045

7= 5228 | 4997 4.176 3.991

10 2175 | 214 1.737 1,712

15 276 297.2 0.220k 0.237L
20 319 32.41 0.02476 0.02589
25 2 3,035 | 0.001597 0.00242L,
30 4 0.2561 | 0.0007987 | 0.0002046
n, = A4f; py; = 1.650 ft/sec
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Table 6 (Contd)

(1ii) 600 feet; 688 miles

Gust velocity No. of gusts Gusts per mile
ft/sec Obs. | Fitted Obs. Pitted
0 9381 13.635
5 5174 5174 7.520 7.520
7% 2745 | 2730 3,990 3.968

10 1206 | 1245 1,750 1.810

15 19 192,6 0.2820 0.2799

20 32 23,06 |0.04651 0.03352
25 L 2,340 [0.,00581L | 0.003L01
30 2 0.2416|0.002907 0.0003076
ny = 5 p; = 1.650 ft/sec




Table 7
'SWIFTER' STACKED SORTIES WITH SOLAR RADIATION 65 mW&mZ
SUMMARY OF PARAMETERS
(i) Flat desert

Height n, 24 No ?“-1 v 1/7\2
feet £t/sec | per mile [ per mile | PET mile | feet
200 |5%) 1.295| 9.337 23,44 | 204.9 |25.10
400 6 1.326 7.275 23,01 191.5 48.28
600 |65 | 1.337 6.156 22.87 | 183.0 | 71.41

(ii) Hilly desert
Height n, Py N A v 1 /)\2
feet ft/sec | per mile | per mile per mile feet
200 L 1.706 9.549 23,14 154.7 20.19
400 21 1.650 7.892 23.01 153.7 | 37.13
600 5 1.650 6.817 22 .87 153.4 54 49
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SYMBOLS

a magnitude parameter in the definition of pulse shape F(t)
aircraft chord

the defined pulse shape, a function of

ete,

the frequency distribution of x, similarly £(%)

a further function of t, wused mainly as the first derivative of
F(t)

the pulse build up distance

the modified Bessel function

the

the observed number in a c¢lass

expected number in a class

the number of positive crossings per unit time {or distance) of the
value x

parameters determining the shape of frequency distrabutions

a parameter 1n the distribution of time intervals between pulses

the autocorrelation function

the spectrum

distance

time

the pulse build up time

gust velocity

dummy varaable in characteristic function

aircraf't forward velocity

dummy variable in characteristic function

a random variable

aircraf't height

the ratio K1/12

cumulant of distribution (with suffix or suffices)

parameters in the definition of pulse shape

moment of distribution (with suffix or suffices)

aircraft mass parameter

scale parameters of distributions

standard deviation (with appropriate suffix)

time variable in autocorrelation function (in (71), a scale parameter)
mean pulse rate per unit time or distance

a characteristic function, (or in (39) an unsteady 1ift function)



SYMBOLS (Contd)

unsteady 1lift function

frequency variable in spectrum

An extended use is made of the factoraal sign, writing
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for T(x + 1).
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GUSTS, DISCRETE AND INDISCRETE

For the analysis of gust loads on aireraft, a method is described in
which the occurrence and magnitude of the loads are represented as randam
variables,

The paper begins with the discrete gust, and goes on to treat the case

in which the disturbances are too frequent to be considered singly and
become Indiscrete. In the limit this leads to the usual results obtained
frac the spectral approach, but in the observational material examined thls
limit is not reached. The simple mathematical model developed here gives
a consistent picture of the properties of cbserved pust load frequency
distributions,
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