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SUMMARY

An sttempt 1s made to estimate pressure distribution, tyre deflection
and 1ift on & fully aquaplaning smooth tyre assuming an idealized non=-viscous
flow in front of the tyre followed by Stokes flow under the tyre., The
problem is reduced to solving two coupled partial differential equations,
namely Rayleights Iubrication equation for the water and the membrane
equation for the tyre. It appears that viscosity is not important except
for the no-slip condition it implies. The conclusion is reached that it will
be essential to solve a three~dimensional free stream surface problem in

order to maske further progress.

*  Replaces R.A.E., Technical Report 67228 - A.R.C. 29884,
** Now at University of Bristol.
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1 INTRODUCTION

We consider an seroplane travelling over a smooth runway on which there
is a thin film of water. Through a combination of inviscid snd viscous
effects there is an upward force on the tyre which may indeed lift it com-
pletely off the ground leaving a thin film of water underneath., Even if it
is not completely lifted the area of contact with the ground may be
significantly reduced, part of the weight being taken by fluid pressure.

Thus there mey be a drastic reduction in the apparent coefficient of fraiction
and indeed it may be practically zero, In addition the tyre is distorted
and there may be pressure forces tending to oppose rotation and this may be

sufficient to bring the wheel to rest even though it is not completely off
the ground.

There has been some discussion as to whether viscous or non~viscous
forces are the more important in this connection. Thus the standard
criterion} normally in use assumes that aquaplaning begins when the stagna-
tion pressure of the water hecomes equal to the tyre pressure multiplied by
a factor somewhat grester then unity. Neither viscosity nor the weight of
the seroplane nor the depth of the water is taken into account in this
criterion. On the other hand there seems to be no doubt that immediately
under the tyre the problem is of "squeeze film" type, more of a lubrication

problem, where viscosity is all importante.

The explenation one can give for the criterion mentioned above is
roughly that when the stagnation pressure in front of the tyre reaches tyre
pressure, the tyre gives and sllows water to penetrate underneath so that
there is now a larger area at stagnation pressure to 1lift the tyre off the
ground. This is a great oversimplification since the tyre will begin to
distort as soon as there is some cutside pressure on it, long before this

pressure has become equal to the tyre pressure.

An attempt has been made here to provide a model for what happens
under drastic simplifying assumptions, The first of these is that the tyre
and ground are smooth. This is indeed drastic though when the tyre is lifted
completely off the ground, which is the only case we shall consider here, the
effects of ordinary roughness may only be slight. Let us suppose that the
aseroplane is at rest and the ground end water are moving under it, In this
study we shall suppose that the wheel is actually off the ground and that it
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is either rotating fully or not at all, The water film will be supposed to
be very thin and the flow laminar, For thick flilms vortices seem to appear
under the wheel and the flow may be turbulent3, but we shall not consider
such cases, The next and possibly the crudest assumption that we shall make
is that the tyre is completely flexible, rather like a balloon, and yet we
shall suppose that the tread is flat along its width, so that there must be
thicker material on the tread towards the sides than at the middle, Strictly
one should take stiffness into account and this will be variable, being
presumably greater towards the sides than in the middle owing to the thicker

material there,

The fluid dynamic assumptions we shall meke are also crude., If the
wneel 1s off the ground and rotating at the speed it would have if it were
in contact one might expect all the water in front to go under, (Fig.1)
dragged in by the moving tyre and moving ground, and as it encounters
reduced height it will flow out at the sides and the back; there will be no
stagnation point and the pressure everywhere ocutside the tyre will be zero,
(By "pressure" we shall always mean the excess over atmospheric pressure,
Just as we do when we talk of the pressure inside a tyre as being so many
pounds per square inch,) This seems to be a problem in which purely viscous
Stokes flow need only be taken into account, and it is quite straightforward
to pose and solve under the assumptions made,

If the wheel 1s stationary the water is not dragged in by the wheel
though it is still dragged along by the moving ground. In this csse there
must be a stagnation point on the tyre, not at the surface of the water, but
at some distance underneath, (see Fig.2), In this case we divide the problem
into two parts, Near the stagnation point we assume inviscid flow and
stagnation pressure, dying away quadratically to zero towards the sides and
the front., From the stagnation point region onwards we assume viscous Stokes
flow with zero pressure at the sides and back, We find in these circumstances
that the 1ift on the wheel is very much greater than when the wheel is
rotating, since there is stagnation pressure in the front and viscosity does
not allow the water to get away easily towards the sides and back and so
relieve this pressure, However, in this case, though viscosity is important
in that it leads to the no-slip condition its actual magnitude is not very
important as far as pressure and lift are concerned, though it will affect

the velocity of the water under the tyre.
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The problem in either case reduces to the solution of two coupled
elliptic equations. The first is an equation for the pressure in terms of
the local height of the tyre above the ground, This is Rayleigh's lubrica-
tion or squeeze film equation., The second is an equation for the defleection
of the tyre due to the pressure on it, This is a Poisson equation, The
equations are solved simultaneously by a Gauss=Seidel iteration and from the
solution the pressure forces, the 1ift force and the deflection of the tyre

are calculated,

It would seem that the main problem as yet unsolved is to find a
correct solution to the inviscid part of the calculation, The problem here
is basically a three-dimensional free stream surface one which seems to be
extremely difficult to tackle, especially when the boundary represented by
the tyre is not fixed. It appears that only two-dimensionael approaches to
this problem have been made (e.g. Martinu). In Ref.4 the tyre shape was to
some extent controlled by the complexities of the problem, in that a certain
function had to be assumed and the tyre shape came out in the analysis. So
the approach was to try different functions until a tyre shape turned out to
be something which looked reasonable. When this was done the "1ift" and the
pressure distribution were reasonably close to those observed, Nevertheless
one would have thought the fact that the flow is really three-dimensional
would make an enormous difference, because the water really does escape from
the sides, which it cannot do in any model which replaces the tyre by an
infinite cylinder (see Fig.3).

We must admit, however, that the present study may not be neer to
reality either, since it relies on very much of a guess for the pressure
distribution of the inviscid part and on perfectly smooth surfaces and a very
thin film, Tt is put forward in an attempt to gain further understanding of

the problem,

2 RAYLEIGH'S LUBRICATION EQUATION

We take as origin O the point of the ground immediately below the
lowest point of the tyre at its centre line, Ox is measured forwards from
this point, Oy perpendicular to Ox along the ground and 0z vertically upwards.
u, v and w are the velocity components of the water in the x, y and =z
directions, and h is the height of a point of the tyre above the ground,
Since the film is thin the value of h at any wetted part of the tyre will
be small compared to the radius of the tyre,



6 228

Inside the "squeeze film" we neglect the rates of varistion of u, v
with respect to x and y everywhere in comparison with their rates of
variation with respect to 2z, Also, assuming that w = O everywhere we have
dp/fdz = 0 that is, p is & function of x and y only,

We may then write

bu, = P (1)

PV, = Py (2)

as in Iamb5, subsecripts denoting partial derivatives,

If the wheel is rotating at full speed and the ground is moving then
both the upper and lower surfaces z = 0 and z = h have speed -U in the
x-direction, i,e, u = -Uat z = 0O and z = h, where U 1is the speed of the

aeroplane,

Hence we have on integrating (1) and (2) and supposing alsc that

v=0atz=0andz="h
! !
u = grpo2le-n)-v , v = spozz-n) , (3)

and if we take an element of height h on a base dx, dy then the amounts of
fluid flowing into the element i1n the x and y-direction are

ho
Px 0
5yﬁdz = -Té-p—-Uh/IBy
Q

n W
6vadz = "Téﬁxﬁx
Q

and the excess of fluid flowing in over that flowing out is

3 3

h”p h”p
& X & N
&'(“ 2 "Uh) 5x 5y+ry(-1—§i:£/n Oy bx

and this must be zero by continuity.
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Hence we have
3‘-3,; (hBPx) + 59; (h3py) = -l2u U % . (4)

If only the bottom surface is moving whilst the wheel is stationary then the
boundary conditions in u are u=-Uforz =0, u=0for z =h and so we
have

b
u = ﬁz(z-h)+%-u
and equation (4) becomes
o o) dh
by (hjpx) * 5y (hBPy) = U . (5)

This equation is & special case (V = 0) of an equation given by Lamb” and
forms the foundation of the work of Michell on lubrication,

We define a velocity U, by the relation P = ip U?, where P is the
tyre pressure and we non-dimensionalize the equations by writing

h = aH , x = aX , y = &Y , p = %P U? R,

where a 1is the radius of the tyre, We note that p = PQ.

The equation becomes

8 ;3 2 Y
5% (# Qx) t oy (HEQY) = =N 3% (6)
n U #) N U
where N = B3 E<_> R = —= (7
R U ¥ v ’
ap U 1

and n = 24 when both surfaces are moving or n = 12 when the wheel is at

rest,

3 DEFLECTION OF THE TYRE

The tyre is assumed to be perfectly flexible and its weight is
neglected compared to the tension so that its tension per unit length, T,
will be the same everywhere, Considering a part far from the ground it
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can be shown that for a surface with curvature 1/e in one direction and zero

in the other
T = Pa ,

Tt can also be shown (see Appendix A) that if the water pressure on the
tyre is p, then for small h

EL%~2. - ¥n . (8)

Hence we have

Hy +Hy = 1-Q (9)

We shall assume that the undistorted tyre, lifted off the ground a
distance ho at 1ts lowest point, has a shape given by
- 1 -
Ho= B +3% (8 =h_fa)

which 1s sufficiently accurate if h is small, We take h.l to be the depth

of water on the runwey, end H, = hl/a.

If the wheel is rotating the pressure of the water at all edges must
be zero and the whole of the footprint is assumed to be & "squeeze film"
and so the boundary condition for Q is @ = O at the edges, That for H
is not easy to formulate, Originally it was supposed that outside the area
where there 1s water the height of the tyre had its undisturbed value, but
finally it was decided that it is probably more realistic to suppose that
the slope of the tyre at the boundaries is equal to i1ts undisturbed slope.
This is probably not quite correct either but may be sufficiently accurate

for our purpose, Consequently the boundary condition for H 1is

iy
P

where X] is the value of X at C (see Fig.1) and Y1 15 the non-dimensional
half width of the tyre,

= g for Y = 0 ,

n

0 for X

o

[
el

X for X HY = 0 for Y = Y.I s
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If the tyre is lifted off the ground it slways seems to cease to
rotate unless it is driven, and in this case there will be a stagnation point
at the front, (see Fig.1). It is difficult to know how to deal with this
case and we have agssumed that the pressure drops quadratically from stagna-
tion pressure at B to zero at H and K {see Figs.2 and 4) and also
drops quadratically from the known value on HBK to zero on DCG. The quad-
raetic variation in pressure is taken since in non-viscous flow near to a
stagnation point the velocity varies &s the distance and hence the pressure

varies as the square of the distance,

Thus in Fig,.4 the pressure is supposed known completely and permsnently
in the rectangle DHKG, being equal to %p UE at B and dropping off to zero
as Just described, and being zero everywhere on the boundary of full
rectangle DEFG, Thus Q 1is to be determined from equation {6) inside HEFK,
using calculated values of H in this region, whilst Hk or HY are known on
the boundary DEFG and H is to be determined by equation (9) inside this
rectangle, using values of Q in this area either known (in DHKG) or
calculated (in HEFK), H is taken to be H st F and H, at C,

In the calculations AC was divided into 20 intervals and B was taken
at the end of the seventeenth interval from A, EF was also divided into
20 intervals, Thus the flow is supposed to be a known simplified inviscid
flow up to the line HBK and to be Stokes {low between HK and EF, There
cannot of course be such a sudden transition and there should be an inter-
vening region where viscous and inertis forces are of the same order of

magnitude - that is, a flow of boundary lsyer type.

4 LIFT AND MOMENT ON THE TYRE

Ignoring squares and products of H, Hﬁ and HY’ we can write the
lift L on the wheel as

- [

taken over the wetted area, This gives

L = Pazv/l/& axqay .

To the same order of magnitude in H we have for the moment M about

the centre of the wheel
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M = Pa3b/1/§(x - Hx) ax ay ,

M being defined to be positive if its direction is such as to oppose
rotation of the wheel.

> SOLUTICON OF THE EQUATIONS

Equations (6) and (9) are linear in their own dependent variables
Q@ and H respectively, but they are coupled. The method of solution used
was the Gauss-Seidel with successive over-relaxstion, At each point of the
rectangular 20 X 20 mesh the finite difference form of the equations was
written down and the solution of both equations was effected in succession,
using when available the latest computed values and running through all the
points, The sequence was repeated until the process caused no change, the
eriterion for stopping the iteration was chosen by calculating the root
mean square of the changes in pressure that have taken place for one complete
cycle of iteration. When this became less than a pre-arranged small value

the process was stopped.

The optimum over-relaxation parameter for {9) is well-known. It is

2 -« 2 sin {n/N")
cos™ (n/N1)

for an K*® X N' mesh, In default of finding an optimum one for the more
complicated equation (6) the same parameter was also used in this equation,

6 RESULTS

6.1 Wheel rotating

Two calculations were made for this situation, It was found that for
speeds in the range of interest that the Reynolds number for water was so
high that the term on the right hand side of (6) was very small indeed. In
view of the fact that the boundary condition for @ in this problem is @ =0
at the edges, this small right hand term means that Q is never very far
from zero, and indeed the calculated 1ift did come out negligibly small in
the first case when we took H = 0.000833, H = 0.00417. It was then
decided to try Hb = 0.0000833, H = 0.00817, N = 10-5. As regards actual
values in terms of physical varisbles we cen interpret these parameters in

many ways, Takingv = 1,228 X !0-5 ft2/sec for water at 15°C, a = 1 foot,
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P = 30 1b/sq in we find U, = 66.5 ft/sec, U = 150 ft/sec, h = 0.001 in,

h-l = 0,05 in; for these figures we found that the 1ift in the wheel was only
15 1v wt, This then is the value of the lift even when the wheel is as close
as 0,001 in off the ground and the depth of the water on the runway is 0.05 in.
Thus we see that the purely viscous effect is quite smell. It is of some
interest to repeat the calculation for a completely rigid wheel, This is
simpler to do, since H is known and fixed, It leads to » 1ift more than
double. This is to be expected since no "give™ in the tyre leads to a

thinner film of water in places, even though the thickness of the film at the

lowest point is the same,

We show in Fig.5 the distribution of @ over the footprint, This
Fig. shows half the footprint area, The other half is the mirror image of
this in the centre line of the tyre. The horizontal and verticel scales in
this figure are not the same, For a rigid wheel the pressure distribution is
as in Fig.6, It is differently distributed and has much larger values.

6.2 Wheel not rotsting

In this case it was found from some sample calculations in reslistic
situations that the right hand side of equation (6) was so small that there
was little change if it was put equal to zero, In other words the only effect
of viscosity as regards pressure and tyre deflection comes from the no-slip
condition. Varying viscosity will vary the actual velocity of the water under
the wheel but not the pressure, which is tied down by the outside boundary
conditions, This is analogous to fluid flowing along a straight pipe with
inlet and outlet pressure fixed, where viscosity only affects the velocity and

not the pressure at intermediate points,

Results found are given in Table 1,

Table |
Case | Y H (u/u )2 L/Pa2
1 o H 1
0.i2 | 0.0025 | 0.025 4 0.0430
2 0.12 | 0.0025 | 0.025 2,78 0.0299
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If we take P = 60 1b/sq in, for which U; = 94,1 ft/sec = 55,7 knots,
we have U = 188,2 ft/sec = 111.4 knots in the first case and
U = 156.9 ft/sec = 92,9 knots in the next case. This gives the results shown
in Table 2.

Teble 2
b n h, U Lift
Case 0
in in | in | knots | 1b/wt

5.76 § 0.03 | 0.3 111,4 | 1486
2 5.76 | 0.03 | 0.3 92,9 { 1033

Here b is the total width of the tyre,
Tyre pressure = 60 1b/sq in; radius = 2 ft, width of tyre = 5.76 in,

It should be stressed that the value of 1ift force given represents
what it is when the wheel is actually off the ground. It bears no relation
to conditions where there is only partial aquaplsning. This problem will be
discussed (but not solved) in section 7.

Isobars snd shape of tyre are shown in Figs.7 and 8 for case 2, The
kinks in the isobars are due to the assumption of purely non-viscous flow to
the right and purely viscous flow to the left. Presumsbly these kinks will
be smoothed out in the boundary layer type of flow in which lnertia terms and
viscous terms are of the same order of magnitude, What is perhaps of greater
interest is the deflection AH of the tyre from its original circular shape.
This 1s shown in Fig.9,

The calculations for a rigid wheel show very little change in lift, as
was perhaps to be expected here, since the film is thicker and most of the

11ft arises from the stagnetion pressure,

To show the effect of the Stokes flow in delaying the escape of the
water let us imagine that the water impinges at the same stagnation point and
flows away freely to all edges, the pressure dying away quadratically to zero
at all edges, It is found that the 1ift in ceses 1 and 2 would be reduced to
622 and 431 1b wt respectively.
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T PARTTAL AQUAPLANING

The speed at which aquaplaning begins is what is really required for
practical purposes and the present calculation is unable to determine this,
A perfectly smooth tyre running along a perfectly smooth road would presumably
aquaplane immediately if there was any water, since it is known that a smooth
surface such as a square plate, for instance, pushed down on to a wet surface
would take in theory an infinite time to reach complete contact. This
applies even if it is initially at an angles, see Fig,10. The fact that in
reality such a plate can be pushed down into “econtact” in a finite time is
due to roughness which allows water to escape, and "contact” here means con-
tact between the excrescences on the rough surfaces and not complete contact,

with all the water pushed out.

We must therefore make allowance for roughness in all cases where a
wheel is in so=-called contact with wet ground. One mode of attack on the
problem might be to consider the contact to be made rather as in Fig.l1l in
which the individual roughness elements, thought to be of very fine mesh, are
supposed to offer no barrier to the flow of water between them. Then as
regards the calculation of @, equation (6) would still be used, the h
between A and B being teken as simply h0 or at least never less than h0
though it might in places (e.g. the point C) be more if § were large
encugh, The difficulty here is that we do not know in advance what the region

of contact is; attempts to solve this problem were unsuccessful,
8 DISCUSSION

It is not claimed that the mumerical results are accurate physically,
but it is believed that they show the mechanism that is operating. It may be
helpful to discuss the assumptions that have been made and to speculate on
their effects,

(a) Smoothness

Once the tyre is really off the ground it is not believed that
distributed roughness, such as thet of a concrete surface,will make a very
great difference, and may only correspond to small changes in ho' Tyres
usually have longitudinal grooves and these will obviously meke a gresat
difference, If the grooves are not too deep one could in theory use the same
general method that has been used here, but with a great deal of extra com-
plication. However, the Stokes approximation may not be valid in the grooves,
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and also the flow in them may well be turbulent, and this would make any
calculation on the present lines out of the question,

{(b) stiffness of the tyre

Presumebly the effect of this is to resist changes in h, On the
limited results so far asvailable this would not appear to make very much
difference to the lift. It may be possible to incorporate the effects of
stiffness into the equation for h,

(¢) The hydrodynemical assumptions

While it is probably true that close under the tyre the assumption of
Stokes flow is justifiable, that regarding the pressure distribution outside
this region is far more questionable. The assumed position of the stegnation
point has been entirely arbitrary and the assumption of quadratic falling off
in pressure towards the sides and front needs further exsmination. Moreover
there is always the possibility of hydrodynamic jump in front of the tyre as
suggested by Gad 7. In addition there must he a region where viscous and
inertia forces are of the same magnitude and this has been omitted from the
theory. It is difficult to see how to improve the situation here, and there
is probably not much point in attempting refinements suggested in (b) until
an improved fluid flow model has been incorporated,

() Inertia of the tyre

We have assumed that the tyre is weightless, whilst in fact the loss
in vertical momentum as a tyre is distorted close to the ground can lead to
a considerable amount of 1ift. For instance if a tyre is completely deflated
it is still possible at high speeds for the "centrifugsl force™ to hold the
wheel rim off the ground. An attempt was mede in Ref.3 to teke account of
this 1lift (which nmust manifest itself as & pressure between tyre and ground,
as the rim 1ifts off) but the details in that work have been criticised;
though existence of the effect 1s admitted, some critics believe that it is
not so great as forecast, An observer looking at such a tyre would be under
the impression that it was in fact inflated to some extent and so it is
Dpossible that allowance could be made for it in a crude way by assuming a

somewhat greater tyre pressure than is actually the case,

9 CONCLUSIONS

If the tyre is off the ground but is still rotating at full speed there
are only eppreciable lift forces on the wheel if the film of water is very
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thin indeed, so thin in fact that roughness probebly cennot be ignored, and
in these circumstances a rigid wheel instead of a flexible one may increase
the 1lift considerably. 1In this situation viscosity is all important, but the

case can scarcely arise in practice, because of the smoothness it demands.

If the wheel is at rest there is stagnatlion pressure at scme point on
the tyre and the lift forces are very much greater. The magnitude of
viscosity is not important in determining the lift force and the effect of
viscosity only appears in the no-slip condition, For the circumstances
considered in this Report there i1s very little difference in the results for
the lift whether the tyre is flexible or completely rigid, All the above
remarks are made on the assumption that the tyre is off the ground and is
smooth, though ordinary roughness (not grooves) may not make a gregt
difference in these circumstances,

These results have been obtained for an idealized situation in which
the flow has been divided into two parts - a non~viscous flow in front of the
tyre and Stokes flow underneath, and the non-viscous part has been "guessed".
What would seem to be required for a more complete study is a "free
streamline" calculation in three dimensions so as to ensure that the inviscid
part of the calculation is improved, instead of being very much of & guess as
it is here, Two-dimensional calculations on these lines have been madeu and
glve fair results, which is surprising in view of the fact that the situation
cannot by any stretch of the imagination be considered as two-dimensional.

In the case of "partial" aquaplaning, when the wheel receives some
lift but is not completely off the ground, roughness effects cannot be
ignored since a perfectly smooth tyre would be lifted off the ground at any
speed. In thls case the two-dimensional inviscid calculations would be bound
to be unrewarding since they would imply that all of the water in front of the
tyre would be pushed forward and none would escape at the sides or underneath

(Fig.3).
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Appendix A
TYRE DEFLECTION

The formula for the deflection of a membrane under a pressure

difference P 1is

1 1
P o= T{ L+ —
P1+P2>

where T is the tension per unit length and p, and p, are the principel
radii of curvature of the surface,

We have8 for the mean curvature K

1.1 _ B9t 8 dy -2, 4
P1 P2 g

where Bps and d,. are the coefficients in the first and second fundamental

ground forms of the surface and g 1is the determinant of the Brs
Hence for a surface with equation z = h{x, y) we find
(1 + h2) h o+ (1 + h2) h «2h h_ h
y XX XYy X y Xy
(1 + b2 + n2)>/?
x Yy

K =

and when hx and hy are small this becomes
K = h _+h .

Hence if P 1is the inflation pressure and p the external pressure we have

P_%_R=v2h
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SYMBOLS

outside radius of the tyre
width of the tyre

height of tyre above the ground
height of lowest point of tyre

depth of water on runway
non-dimensional forms of h, ho, h1

mesn curvature of tyre surface

lift force on tyre

moment of forces on tyre about wheel centre

12 or 24 according as wheel is at rest or rotating
n/u Y
R\U; ,

number of intervals in finite difference mesh
pressure

tyre pressure

given by p = ¥p U? Q

Ua/v

tension per unit length in tyre
velocity of aeroplane

defined by P = ép Uf

velocity components of water

Cartesian coordinates, x forwards, y sideways, z upwards
non-dimensional forms of x, y

coefficient of viscosity

kinematic viscosity

density

principal radii of curvature of tyre
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Three - dimensional  flow

Fig. 3 View of water flow from the front
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Fig. 4 Footprint from above
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Fig. 8 Shape of the tyre
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Fig. 10 "Squeeze’ films
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Fig Il Situation in'partial’ aquaplaning
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5.001.57
Cooke, J.C.
A MODEL FOR THE AQUAPLANING OF TYRES ON WET RUNWAYS

Al attempt is made to estimste pressure distribution, tyre deflection
~nd 11ft on a "ully rquaplaning, smeoth tyre assuming an idealized
cn-viscous flow 1n front of T.e tyre folloved by Stokes flow under the
tyre The probler 15 reduced to solving two coupled partial differential
equations, narely Raylelgn's lubrication equation for the water and the
tembrane equation for tue tyre., It appears That viscosity 1s not
important except for the no-slip condition it fmplies. The concluslion
18 reached that it will be essential to solve a three-dimensional free
strean surface problem in order to make further progress,
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