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SUMMARY 

An attempt is made to estimate pressure distribution, tyre deflection 
and lift on a fully aquaplaning smooth tyre assuming an idealised non-viscous 
flow in front of the tyre followed by Stokes flow under the tyre. The 
problem is reduced to solving two coupled partial differential equations, 
namely Rayleigh's lubrication equation for the water and the membrane 
equation for the tyre. It appears that viscosity is not important except 
for the no-slip condition it implies. The conclusion is reached that it will 

be essential to solve a three-dimensional free stream surface problem in 
order to make further progress. 

l Replaces R.A.E. Technical Report 67228 - A.R.C. 29884. 
l * Now at University of Bristol. 
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1 INTRODJCTION 

We consider an aeroplane travelling over a smooth runway on which there 
is a thin film of water. Through a combination of inviscid end viscous 
effects there is an upward force on the tyre which may indeed lift it com- 
pletely off the ground leaving a thin film of water underneath. Even if it 
is not completely lifted the area of contact with the ground may be 
significantly reduced, part of the weight being taken by fluid pressure. 
Thus there may be a drastic reduction in the apparent coefficient of frxtion 
and indeed it may be practically zero. In addition the tyre is distorted 
and there may be pressure forces tending to oppose rotation and this may be 
sufficient to bring the wheel to rest even though it is not completely off 
the ground. 

There has been some discussion as to whether viscous or non-viscous 
forces are the more important in this connection. Thus the standard 
criterion' normally in use assumes that aquaplaning begins when the stagna- 
tion pressure of the water becomes equal to the tyre pressure multlplied by 
a factor somewhat greater than unity. Neither viscosity nor the weight of 
the aeroplane nor the depth of the water is taken into account in tbs 
criterion. On the other hand there seems to be no doubt that immediately 
under the tyre the problem is of "squeeze film" type, more of a lubrication 
problem, where viscosity is all importsnt2. 

The explanation one can give for the criterion mentioned above is 
roughly that when the stagnation pressure in front of the tyre reaches tyre 
pressure, the tyre gives and allows water to penetrate underneath so that 
there is now a larger area at stagnation pressure to lift the tyre off the 
ground. This is a great oversimplification since the tyre will begin to 
distort as soon as there is some outside pressure on it, long before this 
pressure has become equal to the tyre pressure. 

An attempt has been made here to provide a model for what happens 
under drastic simplifying assumptions. The first of these is that the tyre 
and ground are smooth. This is indeed drastic though when the tyre is lifted 
completely off the ground, which is the only case we shall consider here, the 
effects of ordinary roughness may only be slight. Let us suppose that the 
aeroplane is at rest and the ground end water are maving under it. In this 
study we shall suppose that the wheel is actually off the ground and that it 
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is either rotating fully or not at all. The water film will be supposed to 
be very thin and the flow lsminar. For thick films vortices seem to appear 
under the wheel and the flow may be turbulentq but we shall not consider 
such cases. The next and possibly the crudest assumption that we shall make 
is that the tyre is completely flexible, rather like a balloon, and yet we 
shall suppose that the tread is flat along its width, so that there must be 
thicker matema on the tread towards the sides than at the middle. Strictly 
one should take stiffness into account and this will be variable, being 
presumably greater towards the sides than in the middle owing to the thicker 
material there. 

The fluid dynamic assumptions we shall make are also crude. If the 
wneel 1s off the ground and rotating at the speed it would have if it were 
in contact one might. expect all the water in front to go under, (Fig.1) 
dragged rn by the moving tyre and moving ground, and as it encounters 
reduced height it will flow out at the sides and the back; there will be no 
stagnation point and the pressure everywhere outside the tyre will be zero. 
(By "pressure" we shall always mean the excess over atmospheric pressure, 
Just as we do when we talk of the pressure inside a tyre as being so - 
pounds per square inch.) This seems to be a problem in which purely viscous 
Stokes flow need only be taken into account, and it is quite straightforward 
to pose and solve under the assumptions made. 

If the wheel is stationary the water is not dragged in by the wheel 
though it is still dragged along by the moving ground. In this case there 
must be a stagnation point on the tyre, not at the surface of the water, but 
at some distance underneath, (see Fig.2). In this case we divide the problem 
into two parts. Wear the stagnation point we assume inviscid flow and 
stagnatlon pressure, dying away quadratically to zero towards the sides and 
the front. From the stagnation point region onwards we assume viscous Stokes 
flow with zero pressure at the sides and back. We find in these circumstances 
that the lift on the wheel is very much greater than when the wheel is 
rotating, since there is stagnation pressure in the front and viscosity does 
not allow the water to get away easily towards the sides and back and so 
relieve this pressure. However, in this case, though viscosity is important 
in that it leads to the no-slip condition its actual magnitude is not very 
important as far as pressure and lift are concerned, though it will affect 
the velocity of the water under the tyre. 
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The problem in either case reduces to the solution of two coupled 
elliptic equations. The first is en equation for the pressure in terms of 
the local height of the tyre above the ground. This is Rayleigh's lubrica- 

tion or squeeze film equation. The second is an equation for the deflection 
of the tyre due to the pressure on it. This is a Poisson equation. The 
equations are solved simultaneously by a Gauss-Seidel iteration and from the 
solution the pressure forces, the lift force and the deflection of the tyre 

are calculated. 

It would seem that the main problem as yet unsolved is to find a 
correct solution to the inviscid part of the calculation. The problem here 
is basically a three-dimensional free stream surface one which seems to be 
extremely difficult to tackle, especially when the boundary represented by 
the tyre is not fixed. It appears that only two-dimensional approaches to 
this problem have been made (e.g. Martin4). In Ref.4 the tyre shape was to 
some extent controlled by the complexities of the problem, in that a certain 
function had to be assumed and the tyre shape came out in the analysis. So 
the approach was to try different functions until a tyre shape turned out to 
be something which looked reasonable. When this was done the "lift" and the 
pressure distribution were reasonably close to those observed. Nevertheless 
one would have thought the fact that the flow is really three-dimensional 
would make an enormous difference, because the water really does escape from 
the sides, which it cannot do in any model which replaces the tyre by en 
infinite cylinder (see Fig.3). 

We must admit, however, that the present study may not be near to 
reality either, since it relies on very much of a guess for the pressure 
distribution of the inviscid part and on perfectly smooth surfaces and a very 
thin film. It is put forward in an attempt to gain further understanding of 
the problem. 

2 RAY-LEIGH'S LURRIGATION FQUATION 

We take as origin 0 the point of the ground immediately below the 
lowest point of the tyre at its centre line. Ox is measured forwards from 
this point, Oy perpendicular to Ox along the ground end Oz vertically upwards, 

u, v and w are the velocity components of the water in the x, y and a 
directions, and h is the height of a point of the tyre above the ground. 
Since the film is thin the value of h at any wetted part of the tyre will 
be small compared to the radius of the tyre. 
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Inside the "squeeze film" we neglect the rates of variation of u, v 
with respect to x and y everywhere in comparison with their rates of 
variation with respect to z. Also, assuming that w = 0 everywhere we have 
ap/dz = 0 that is, p is a function of x and y only. 

We may then w-rite 

P uzz = P, 

P vzz = Py 

(1) 

5 as in Iamb , subscripts denoting partial derivatives. 

If the wheel is rotating at fill speed and the ground is moving then 
both the upper and lower surfaces z = 0 and z = h have speed -U in the 
x-direction, i.e. u = -U at z = 0 and z = h, where U is the speed of the 
aeroplane. 

Hence we have on lntegratlng (1) end (2) and supposing also that 
v=Oatz=Osndz=h 

I u = qix P ~(6 - h) - U , I v = FY P ~(2 - h) , (3) 

and if we take an element of height h on a base 6x, 6y then the amounts of 
fluid flowing into the element In the x and y-direction are 

h 
6x vd!L=- 

s 
0 

and the excess of fluid flowing in over that flowing out is 

and this must be zero by continuity. 
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Hence we have 

& (h3Q + $y (h3py) = -1%~ U 2 . (4) 

If only the bottom surface is moving whilst the wheel is stationary then the 
boundary conditions in u are u = -U for z = 0, u = 0 for s = h and so we 
have 

px 
u = z 

Us z(z - h) + r - U 

end equation (4) becomes 

& (h'p,) + $- (h3py) = -+J U 2 . 

This equation is a special case (V = 0) of an equation given by Lamb4 and 
forms the foundation of the work of Michell on lubrication. 

We define a velocity U, by the relation P = &J 4 where P is the 
tyre pressure and we non-dimensionalize the equations by writing 

h = aH, x = aX, y = aY, p = b’“fQ 9 

where a is the redius of the tyre. We note that p = PQ. 

The equation becomes 

where 

& (Ide,) + & (H$, = -N$j 

R = u!! Y ' 

(6) 

(7) 

end n = 24 when both surfaces are moving or n = 12 when the wheel is at 
rest. 

3 DEFIECIIONOP THE TYRE 

The tyre is assumed to be perfectly flexible and its weight is 
neglected compared to the tension so that its tension per unit length, T, 
will be the same everywhere. Considering a part far from the ground it 
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can be shown that for a surface with curvature l/a in one direction and zero 
in the other 

T = Pa. 

It can also be shows (see Appendix A) that if the water pressure on the 
tyre is p, then for small h 

P-P=?h. 
T 

Hence we have 

G+% = 1-Q . (9) 

We shall assume that the undistorted tyre, lifted off the ground a 
distance ho at its lowest point, has a shape given by 

H = Ho++? (Ho = ho/a) 

which LS sufficiently accurate if h is small. We take h, to be the depth 
of water on the -ay, and H, = h,/a. 

If the wheel is rotating the pressure of the water at all edges must 
be zero and the whole of the footprint is assumed to be a "squeeze film" 
and so the boundary condition for Q is Q = 0 at the edges. That for H 
is not easy to formulate. Originally it was supposed that outside the area 
where there is water the height of the tyre had its undisturbed value, but 
finally it was decided that it is probably more realistic to suppose that 
the slope of the tyre at the boundaries is equal to its undisturbed slope. 
This is probably not quite correct either but may be sufficiently accurate 
for ow purpose. Consequently the boundary condition for H is 

%=O for X=0 , "I = 0 for Y = 0, 

3 = X for X = X, , HY = 0 for Y = Y, , 

where X, is the value of X at C (see Fig.1) and Y, is the non-dimensional 
half width of the tyre. 
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If the tyre is lifted off the ground it always seems to cease to 
rotate unless it is driven, and in this case there will be a stagnation point 
at the front, (see Fig.1). It is difficult to know how to deal with this 
csse and we have assumed that the pressure drops quadratically from stagna- 
tion pressure at B to zero at H end K (see Figs.2 and 4) and also 
drops quadratically from the known value on HBK to zero on LEG. The quad- 
ratic variation in pressure is taken since in non-viscous flow near to a 
stagnation point the velocity varies as the distance end hence the pressure 
vanes as the square of the distance. 

Thus in Fig.4 the pressure is supposed known completely and permanently 
in the rectangle DHKG, being equal to &o 3 at B and dropping off to zero 
as Just described, end being zero everywhere on the boundary of full 
rectangle DEFG. Thus Q is to be determined from equation (6) inside HKFK, 
using calculated values of H in this region, whilst r( or HY are known on 
the boundary DKFG and H is to be determined by equation (9) inside this 
rectangle, using values of Q in this area either known (in DHKG) or 
calculated (in HEFK). H is taken to be Ho at F and q at C. 

In the calculations AC was divided into 20 intervals and B was taken 
at the end of the seventeenth interval from A. ET was also divided into 
20 intervals. Thus the flow is supposed to be a known simplified inviscid 
flow up to the line HBK end to be Stokes flow between HK and EF. There 
cannot of course be such a sudden transition end there should be en inter- 
vening region where viscous end inertia forces are of the same order of 
magnitude - that is, a flow of boundary layer type. 

4 LIFTAKDMOMKNT ONTHE TYRE 

Ignoring squares and products of H, HK and HY, we can write the 
lift L on the wheel es 

taken over the wetted area. This gives 

L = Pa2 
II 

QdKdY . 

To the ssme order of magnitude in H we have for the moment M about 
the centre of the wheel 
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M = Pa3 
II 

Q(X - 'k, dX dy , 

228 

M being defined to be positive if its direction is such as to oppose 
rotation of the wheel. 

5 SOLUTIOR OF 'PAE BQUATIORS 

Equations (6) and (9) are linear in their own dependent variables 
Q and H respectively, but they are coupled. The method of solution used 
was the Gauss-Seidel with successive over-relaxation. At each point of the 
rectangular 20 X 20 mesh the finite difference form of the equations was 
wrltten down and the solution of both equations was effected in succession, 
using when available the latest computed values end running tbrough all the 

points. The sequence was repeated until the process caused no change, the 
criterion for stopping the iteration was chosen by calculating the root 
mean square of the changes in pressure that have taken place for one complete 
cycle of iteration. When this became less than a pre-arranged small value 
the process was stopped. 

The optimum over-relaxation parameter for (9) is well-known. It is 

for an IV x Nv mesh. In default of finding en optimum one for the more 
complicated equation (6) the same parameter was also used in this equation. 

6 RESUUCS 

6.1 Wheel rotating 

Two calculations were made for this situation. It was found that for 
speeds in the range of interest that the Reynolds number for water was so 
high that the term on the right hand side of (6) was very small indeed. In 
view of the fact that the boundary condition for Q in this problem is Q = 0 
at the edges, this small right hand term means that Q is never very far 
from zero, and indeed the calculated lift did come out negligibly small in 
the first case when we took Ho = 0.000833, H., = 0.00417. It was then 
decided to try Ho = 0.0000833, R, = 0.00417, N = 1d5. As regards actual 
values in terms of physical variables we ten interpret these parameters in 
many ways. Taking Y = i .228 X toe5 ft2/sec for water at 15’C, a = 1 foot, 
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P = 30 lb/sq in we find U, = 66.5 ft/sec, U = 150 ft/sec, ho = 0.001 in, 
hl = 0.05 in; for these figures we found that the lift in the wheel was only 

15 lb wt. This then is the value of the lift even when the wheel is as close 
as 0.001 in off the ground and the depth of the water on the runway is 0.05 in. 
Thus we see that the purely viscous effect is quite small. It is of some 
interest to repeat the calculation for a completely rigid wheel. This is 
simpler to do, since H is known and fixed. It leads to a lift more than 
double. This is to be expected since no "give" in the tyre leads to a 
thinner film of water in places, even though the thickness of the film at the 
lowest point is the same. 

We show in Fig.5 the distribution of & over the footprint. This 
Fig. shows half the footprint area. The other half is the mirror image of 
this in the centre line of the tyre. The horizontal and vertical scales in 
this figure are not the same. For a rlgld wheel the pressure distribution is 
as in Fig.6. It is differently distributed and has much larger values. 

6.2 Wheel not rotating 

In this case it was found from some sample calculations in realistic 
situations that the right hand side of equation (6) was so small that there 
was little change if it was put equal to zero. In other words the only effect 
of viscosity as regards pressure and tyre deflection comes from the no-slip 
condition. Varying viscosity will vary the actual velocity of the water under 
the wheel but not the pressure, which is tied down by the~outside boundary 
conditions. This is analogous to fluid flowing along a straight pipe with 
inlet and outlet pressure Plxed, where viscosity only affects the velocity and 
not the pressure at intermediate points. 

Results found are given in Table 1. 

Table 1 

Case Y1 HO ILI 
(U/U,)2 L/Pa2 

1 0.12 0.0025 0.025 4 0.0430 

2 0.12 0.0025 0.025 2.78 0.0299 
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if we take P = 60 lb/sq in, for which Ul = 94.1 ft/sec = 55.7 knots, 
we have IJ = 188.2 f-t/see = 111.4 knots in the first case and 
IJ = 156.9 ft/sec = 92.9 knots in the next case. This gives the results shown 
in Table 2. 

Table 2 

1 5.76 0.03 0.3 111.4 1486 
2 5.76 0.03 0.3 92.9 1033 

Here b is the total width of the tyre. 
Tyre pressure = 60 lb/sq in; radius = 2 ft, width of tyre = 5.76 in. 

It should be stressed that the value of lift force given represents 
what it is when the wheel is actually off the ground. It bears no relation 
to conditions where there is only partial aquaplaning. This problem will be 
discussed (but not solved) in section 7. 

Isobars and shape of tyre are shown in Figs.7 and 8 for case 2. The 
kinks in the isobars are due to the assumption of purely non-viscous flow to 
the right and purely viscous flow to the left. Presumably these kinks will 
be smoothed out in the boundary layer type of flow in which inertia terms and 
viscous terms are of the same order of magnitude. What is perhaps of greater 
interest is the deflection AH of the tyre from its original circular shape. 
This 1s shown in Fig.9. 

The calculations for a rigid wheel show very little change in lift, as 
was perhaps to be expected here, since the film is thicker and most of the 
lift arlses from the stagnation pressure. 

To show the effect of the Stokes flow in delaying the escape of the 
water let us imagine that the water impinges at the same stagnation point and 
flows away freely to all edges, the pressure dying away quadratically to zero 
at all edges. It is fouud that the lift in cams 1 and 2 would be reduced to 
622 and 431 lb w-t respectively. 
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7 PARIIALAQUAPLANlXG 

The speed at which aquaplaning begins is what is really required for 
practical purposes and the present calculation is unable to determine this. 
A perfectly smooth tyre running along a perfectly smooth road would presumably 
aquaplane immediately if there was any water, since it is known that a smooth 
surface such as a square plate, for instance, pushed down on to a wet surface 

would take in theory an infinite time to reach complete contact. This 
applies even if it is initially at an sngleq see Fig.10. The fact that in 

reality such a plate can be pushed down into "contact" in a finite time is 
due to roughness which allows water to escape, end "contact" here means con- 
tact between the excrescences on the rough surfaces end not complete contact, 
with all the water pushed out. - 

We must therefore make allowance for roughness in all cases where a 
wheel is in so-called contact with wet ground. One mode of attack on the 
problem might be to consider the contact to be made rather as in Fig.11 in 
which the individual roughness elements, thought to be of very fine mesh, are 
supposed to offer no barrier to the flow of water between them. Then as 
regards the calculation of Q, equation (6) would still be used, the h 
between A and B being taken as simply ho or at least never less than ho 
though it might in places (e.g. the point C) be more if Q were large 
enough. The difficulty here is that we do not know in advance what the region 
of contact is; attempts to solve this problem were unsuccessfil. 

a DISCUSSION 

It is not claimed that the numerical results are accurate physically, 
but it is believed that they show the mechanism that is operating. It may be 
helpful to discuss the assumptions that have been made and to speculate on 
their effects. 

(a) Smoothness 

Once the tyre is really off the ground it is not'believed that 
distributed roughness, such as that of a concrete surface,will make a very 
great difference, and may only correspond to small changes in ho. Tyres 
usually have longitudinal grooves and these will obviously make a great 
difference. If the grooves are not too deep one could in theory use the same 
general method that has been used here, but with a great deal of extra com- 
plication. However, the Stokes approximation may not be valid in the grooves, 
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and also the flow in them may well be turbulent, and this would make any 
calculation on the present lines out of the question. 

(b) Stiffness of the tyre 

Presumably the effect of this is to resist changes in h. On the 
limited results so far available this would not appear to make very much 
difference to the lift. It may be possible to incorporate the effects of 
stiffness into the equation for h. 

(c) Ihe hydrodynamical assumptions 

While it is probably true that close under the tyre the assumption of 
Stokes flow is justifiable, that regarding the pressure distribution outside 
this region is far more questionable. The assumed position of the stagnation 
point has been entirely arbitrary and the assumption of quadratic falling off 
in pressure towards the sides and front needs further examination. breover 
there is always the possibility of hydrodynamic jump in front of the tyre as 
suggested by Cadd'. In addition there must be a region where viscous and 
inertia forces are of the same magnitude and this has been omitted from the 
theory. It is difficult to see how to improve the situation here, and there 
is probably not much point in attempting refinements suggested in (b) until 
an improved fluid flow model has been incorporated. 

(d) Inertia of the tyre 

We have assumed that the tyre is weightless, whilst in fact the loss 
in vertical momentum as a tyre is distorted close to the ground can lead to 
a considerable smount. of lift. For instance if a tyre is completely deflated 
it is still possible at high speeds for the "centrifugal force" to hold the 
wheel rim off the ground. An attempt was made in Ref .3 to take account of 
this lift (which smst manifest itself as a pressure between tyre and ground, 
as the rim lifts off) but the details in that work have been criticised; 
though existence of the effect is admitted, some critics believe that it is 
not so great as forecast. An observer looking at such a tyre would be under 
the impression that it. was in fact inflated to some extent and so it is 
possible that allowance could be made for it in a crude way by assuming a 
somewhat greater tyre pressure than is actually the case. 

9 CONCLUSIONS 

If the tyre is off the ground but is still rotating at full speed there 
are only appreciable lift forces on the wheel if the film of water is very 
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thin indeed, so thin in fact that roughness probably cannot be ignored, and 
in these circumstances a rigid wheel instead of a flexible one may increase 
the lift considerably. Jn this situation viscosity is all important, but the 
case can scarcely arise in practice, because of the smoothness it demands. 

If the wheel is at rest there is stagnation pressure at some point on 
the tyre and the lift forces are very much greater. The magnitude of 
viscosity is not important in determining the lift force and the effect of 
viscosity only appears in the no-slip condition. For the circumstances 
considered in this Report there is very little difference in the results for 
the lift whether the tyre is flexible or completely rigid. All the above 
remarks are made on the assumption that the tyre is off the ground and is 
smooth, though ordinary roughness (not grooves) may not make a great 
difference in these circumstances. 

These results have been obtained for an idealized situation in which 
the flow has been divided into two parts - a non-viscous flow in front of the 
tyre and Stokes flow underneath, and the non-viscous part has been "guessed". 
What would seem to be required for a more complete study is a "free 
streamline" calculation in three dimensions so as to ensure that the lnviscid 
part of the calculation is improved, instead of being very much of a guess as 
it is here. Two-dimensional calculations on these lines have been made4 and 
give fair results, which is surprising in view of the fact that the situation 
cannot by any stretch of the imagination be considered as two-dimensional. 

In the case of apartialW aquaplaning, when the wheel receives some 
lift but is not completely off the ground, roughness effects csnnot be 
ignored since a perfectly sloooth tyre would be lifted off the ground at any 
speed. In this case the two-dimensional inviscid calculations would be bound 
to be unrewarding since they would imply that all of the water in front of the - 
tyre would be pushed forward and none would escape at the sides or underneath 
(Fig.3). 
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Appendix A 

TJ[RE DEFLgCTION 

The fonmla for the deflection of a membrane under a pressure 
difference P is 

P = T(++k) 

where T is the tension par unit length and p, end p2 are the principal 
radii of curvature of the surface. 

We have' for the mesn curvature K 

K=--+L= 1 gll %2 + %2 dll - 2612 92 

Pl p2 g 

where g,, and d,, are the coefficients in the first and second fundamental 
ground forms of the surface and g is the determinant of the g,, 

Hence for a surface with equation z = h(x, y) we find 

K = 
(1 + h2) h, + (1 + h;) h - 2hx h h 

(1 + h: + h;)3'2 

and when hx and hy are small this becomes 

Hence if P is the inflation pressure end p the external pressure we have 

. 

. 
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a 
b 
h 

ho 

hl 

H, Ho, q 

K 
L 
M 
n 

N 

N' 

P 
P 

Q 

R 
T 
u 

UI 

u9 v 
x9 Y, 2 
x, y 
P 
V 

P 

PI' p2 

sYMB0I.s 

outside radius of the tyre 
width of the tyre 
height of tyre above the ground 
height of lowest point of tyre 

depth of water on runwey 

non-dimensional forms of h, ho, h, 

mean curvature of tyre surface 
lift force on tyre 
moment of forces on tyre about wheel centre 
12 or 24 according as wheel is at rest or rotating 

number of intervals in finite difference mesh 
pressure 
tyre pressure 

given by P = +J Lf Q 

Us/v 
tension per unit length in tyre 
velocity of aeroplane 
defined by P = &c $ 

velocity components of water 
Cartesian coordinates, x forwards, y sideways, z upwerds 
non-dimensional forms of x, y 
coefficient of tiscosity 
kineme.tic viscosity 
density 
principal radii of curvature of tyre 
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Fig. I Rotating wheel 
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Fig. 2 Non-rotating wheel 
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Fig. 3 View of water flow from the front 
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Fig. 4 Footprint from above 
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Fig. IO “Squeeze” films 
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Fig I I Situation in “partial” aquaplaning 
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