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This paper investigates the stability of finite-difference schemes,
including boundary conditions, for solving the time-dependent Navier-Stokes
equations’. The different types of boundary condition which may occur-are
listed and no-slip conditlons are derived for a wall with suction. Stability
analyses are completed for one-dimensional problems with various types of
boundary conditions, using schemes suitable for two-dimensional problems. All
the conditions introduced are shown to be stable if there is no flow across the
boundary. For suction at a fixed or moving wall, it is shown that the mesh
size must be restricted for both accuracy and stability.

1. Introduction

Various proposals have been made for dealing with boundaries in
finite-difference approximations to the two-dimensional, time-dependent,
Navier-Stokes equations. The types of boundsry which ocour may be divided
into three categories, those concerned with 'conditions at infinity', no-slip
conditions at a fixed wall and no-slip conditions at a moving wall. The most
common method of investigating "numerical stability' of the finite-difference
process is examination of the behaviour of amplitudes of Fourlier components,
assuming that the equations are approximately linear and that the region is
infinite. This clearly does not take into account the effect of boundary
conditions. In this paper, the method employed is equivalent to considera-
tion of Fourier components with definite boundary conditions. The results,
obtained here, are for one-dimensional problems using finite-difference
schemes applicable to two dimensions. Of course, in practice, more efficient
methods could be used to solve one-dimensional flows. S0 as to introduce
linear parts of non-linear terms a steady 'cross-flow' is added. For
example, for flow along an infinite fixed wall, suction 1s included at the
wall. The boundsry conditions are also extended to allow such such ‘cross-flow'.
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2. Numerical Method

The two-dimensional, time-dependent, Ravier-Stokes equations may be
written in terms of the stream function ¥(x,y,t) and vorticity Z(x,y,t)
as

9z
— = %%+ J(¥,%) ese (2.1)
at
and
V¥ o= % esr (2.2)
where v 18 the viscosity,
oy 0% ¥ 9L
W) 2 — — - — — ,
éx dy dy éx
and a® ag
v. g8 =-— a4 - .
ax* oy?
The velocity of the fluid at any point is given by
oy
u = — sew (2.3)
3y
and 3y
vV = =7 b (2'1")
ox

where u and v are the veloclty components in the x and y directions.

The numericael methods used by Fromm 25,6 and those concerned with
weather prediotion, e.g. Li]_ly7, replace these equations by suitable finite-
difference equations. (The viscosity v is teken as zerc in weather predic-—
tion). Vorticity values are first advanced over & time step using a difference
approximation to {2.1). The vorticity values so obtained are used in a differ-
ence approximation to (2.2) and the resulting linear equations are solved to
find velues for the stream function. Various difference schemes have been
tried and particular attention has been directed to finding satisfactory
difference analogues of the non-linear term J(¥,2) . We shall assume thai the
operator V® in both equation (2.1) and (2.2) is replaced by the usual five-
point difference formula so that (2.2) becomes

= __8 [ 2 N
i‘:'-.--1,.1 + 'l'iﬂ.i + *i,.‘)—s 7{r:i.,.’j-l-‘l - l'*i,j - h&i’:j ’ (2-5)

where 1:1 3 and r":l. 3 are the values of the stream function and vorticity in
3’ »

the difference scheme at the point xi=x°+ih s ¥ j=y°+3h +» Thus the points

included in the scheme are on a square grid of mesh size h .

3./



3. Boundary anditions

3«1 We shall now consider numerical approximations to conditions on a
boundary elong the line y =y, . We write ¥  and %, (instead of 7

and z, 0) for the values of the stream function and vorticity at an arbitrary
[] N

mesh point on this boundary, ¥-a1 and Z%-i for values one step outside the

boundary and ¥4 and %3 for values one step inside the boundary (see Fig. 1).

3.2 Conditions at infinity

We consider first some types of conditions used away from the region of
interest when the flow ias assumed to take some steady form. The following
boundary conditions may be used in the finite-difference equations:

Type g:.z Z’o =0 and 1{:0 = ’{rb s where '{f.b is & given linear
function of x .

The condition is used to obtain a steady flow across the boundary with
gero vorticity at the boundary. As q;b is a linear function of x, the flow

is independent of distance along the boundary. If *b i1s a constant the
boundary is a streamline,

One important use of the condition is at an upstream boundary at which
there is a steady inflow with zero vorticity. It also applies along a line
about which the flow is symmetric.

Type (11) £, =0 and (¥y,-¥,)/h=T.

The condition may be used when the fluld has a specified velocity U
along the boundary. The condition on the stream function comes from the simple
difference form of equation (2.3).

Type (ii1) ZO‘E_:Z-:"Z,O and ¥ =¥, , where ¥, is a given
linear function of x . '

The vorticity is 'extrapolated' using a condition equivalent to taking

Fryt =0 .
e Uv) gz -4, =%,-%, and (y-¥_)/b=0.

This gives extrapolated vorticity and specified veloclty U along the
boundary,

Iype (v) %, -%&_,=%&,-%, amd ¥ -¥_ =V -V,

Both fields are extrapolated. This was used by Fromm}'" a3 a downstream

boundary condition.

We note that Types (ii), (iv) and (v) do not exclude the possibility
of flow across the boundary. Usually the opposite boundary condition would
cause such a flow. For example, Type (i) could be used upstream and Type (v)
downstream.

3.3 No-slip condition at a stationary wall

At a stationary wall or obstacle the velocity of the fluid is zero and
the stream function is given. Vorticity is generated at such a boundary and
this must be incorporated in the numerical method. The process, proposed and

used by Fromm 3,6 "is to first advance vorticity values at interior pointa using
a finite-difference form of (2.1). Values of ¥ at interior points may now be

found/
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found using equations*(2.5), as these involve the vorticity at only interior
points and ¥ is known on the boundary. Using the condition of zero velocity
along the wall, it is possible to obtain 'hypothetacal' values for ¥ at points
Just outside the boundary. The values of ¥  thus found may now be inserted in
equations (2.5) for boundary points, to obtain the vorticity at these points.

In the methods described below, the stream function at the wall is a linear
function of x and therefore there is a suction velocity, which is constant
along the wall. Fromm has used the first two of these methods.

Type gvi) ¥ -¥.,=0 and ¥ =y , where {. is a given linear
o 1 o b b
function of x .,

Values of ¥ at interior points are found using (2.5) with ¥, =¥

b
at the boundary. Reversing equation (2.5), we obtein for the boundary
vorticity

Zo=-~ (b, - 24 +y_)/n?
and thus, as *J;'i V. = q;b s we obtain

&y = - (¥, - ¥ )/h? <es (3.1)

[]

This condition may be derived by defining velocities at points,

¥. 1=y, + (j-%)b, using
77 o
V-V
U..__1_ :.—-J.---.——L— » ses (3.2)
J=zZ A h
e difference analogue of (2.3). At the boundary we choose ¥ _, so that
u,4 =0 (see Fig. 2(a.)). Fromm‘3 has shown that the condition is a more accurate
a.plzaroxima.tion to flow with a wall along y = yo—%h than with a wall along
y=J¥, - :
o

Iype !viiz ¥, ~ V., = 0 and 'q]fo = v{fb s where ‘Fb is a given linear
function of x .

The method due to Thom10

vorticity is found using

is similar to Type (vi) and the boundary

g, == 20, - ¥ )/A%. e (3.3)

e]

We choose ¥_, so that us o, e defined by (3.2), satisfies

and, if we define u, by

we obtain (see Fig. 2(b))

Iype (viii)/



Type (viii) ¢ =1V, where ¥.. is a given linear function of x
and o b b

3
ﬁo*'}(h“"’b) - 3%, - e (3.4)

. 1
. This method, due to Woods 2, uses an approximation to equation (2.2)
of higher degree than (2.5) when finding the boundary vorticity values. It
has been employed successfully in several calculations of steady state solutions
€5, Russell?. ’

If the flow is dependent only on time and dastance normal to the wall,
the method may be obtained by considering the relation between the vorticity
and the velocity of the fluid. From (2.2) and (2.3) we have

du
L==—. s (3.5)
3y

We approximate to (3.5) at y = ¥, by replacing du/dy by the deravative, at
Y =¥, , of the parabola through the points (yb,ub), (y1,w) and (y,.u,)
2z

where u =0 and u, = %(q%+11%) . (Bee Fig. 2(c)).

We obtain
1
& =7 (u, - huy) ver (3.6)
Now 1
z1=-}(¢,-2¢1 +¥,)
1
= == (uy - u) s (3.7)
h =+ 2

and, on combining (3.7) and (3.6), we obtain (3.4).

4. Moving Wall
4.1 Moving Wall without suction

Another type of boundary condition is that of a wall (w1thoutssuction)
moving with constant velocity in its own plane. It was shown by Fromm™ that,
if there are no other factors influencing the flow, vorticity is 'conserved' for
such a boundary, in the sense that the integral of the vorticity, over the
region of the flow, is constant. In the discrete case, the integral is replaced
by a summation. The nethods used by Fromm 3:© involve advancing vorticity
values at both interior and boundary points using a difference form of equation
(2.1) and boundary conditions consistent with conservation of vorticity.
Stream function values are now obtained using equation (2.5) and a suitable
velocity condition at the wall. However, it is necessary to ensure that the
wall is a stream-line by making V¥ constant along it and Fromm uses an averaging
technique to obtain this.  Equations (2.5) are solved iteratively and during
each iteration the average of the ¥ values on the wall is calculated. AlL
values of ¥ on the wall are replaced by this average before the next itera-
tion is commenced. The final stream function values are used in equations (2.5),

along/
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along the boundary, to obtain new vorticity values. This last step is
necessary if other faoctors influencing the flow are to be accounted for.
Other factors, e.g. an obstacle, modify the stream function and lead to the

generation of vorticity at the wall. Two methods corresponding to Types (vi)
and (vii) have been used by Fromm.

Type (ix) %_,= g, and (1;0 -¥_,)/h =T where U is the wall
velocity.

During the calculation of the stream function from equations (2.5),
the averaging technique described above is used on the boundary. The
vorticity on the wall is finally recalculated using the reverse of (2.5) R

i.e. gy ==(¥, =¥ )"+ UA

As in Type (vi) the wall is effectively one half-cell outside y =y, .

Type (x) %_, =%, and (¥, - i;?_i)/(Zh) =T .

The condition is otherwise the same as Type (ix) except that the
final boundary vorticity is calculated from

Ly = -2(¥ - ¥ )%+ 20 .

The wall is effectively along y = ¥, -

4.2 Moving wall with suction

If there is suction at & moving wall, conditions of Type (ix) and (x)
are no longer valid, as they would yield some transport of vorticity into the
wall. However, vorticity is still conserved for such a wall when no other
factors influence the flow, as is now shown.

We consider a flow dependent o;zly on time and distance from an
infinite wall, across which there is a constant suction velocity -V. If the
wall is y =y, , with fluid in the reglon y >y, , equation (2.4) becomes

ay
) ax
and hence (2.1) reducea to

Y4 % 3%
— ey ——-T— . vee (4a1)
ot By' oy

The Navier-Stokes equation for the velocity u becomes

du 3% au
—— y ——— ] — err (4.2)
at ay*? Ay
and Ju
z S T -— .
ey

Integrating/



Integrating (14..1) and assuming that the vorticlty becomes zero away from the
wall, we obtain

a » }4
S— z dy = [_v—.. + vz sase .
dt oy (h 5)
v, y=y,
9% gu
= [v —"'; - § —
9 d
7 Y y=y

s from (4.2) ,

1l
—
=Y o
Fle
-

O, as the wall moves with constant velocity.

To derive conservative boundary conditions we replace the space
derivatives of % in (4.1) by finite~differences and obtain

. v v

_—J- — u— - — —— - LR X ]
it  n® (‘:5“ %yt ;j'--‘-> 2h (;.i# ;- 1) ’ (ede)

where & j(1:) is the vorticity at ¥ at time t . In one dimension, any of

the methods discussed by Lmy7 for replacing J(¥,%) reduce to the transport

term in (4.4). We shall not be concerned with time integration here but the
method used for this should be conservative. If non-conservative time
difference methods are used, extra errors will be introduced although these may
not be serious, as has been shown by Fromm3>® for the method devised by Dufort
and FrankelZ,

We now sum equations (k4.L4) over all points to obtain the rate of
change of total vorticily. This summation may be considered a numerical
integration of (4.1) with respect to y. There are two results corresponding
to boundary conditions of Types (ix) and (x).

4.3 Boundary-along ¥ =Yg = %h

If we perform simple summation of equations {4.4) we obtain

d N v 1 Y
S (Fe)-hlan)Le e

jo

aasuming zj=0 for J> N .

‘l‘hus/



Thus
N
a %, ~ %y %, + %
R0 2E) (B (BE) e
J=0

and this finite-difference analogy of (4.3). By equating the right-hand side
of (4.5) to zero, we obtain the following conservative boundary condition.

Zype (x1) v_v
h
;_1'; (ﬁ) 'go *en (l‘_.G)
rRt*t2
and
Yo - V. =0,
h

where U is the velocity of the wall. In two-dimensional flow, the stream
function must also be restricted so that it is linear along the wall, using a
technique similar to that for Type (ix). The vorticity along the wall is
then recalculated using

%, = =(¥, - ¥ )/ + U/ . vor (3.7)

When V = O, the method reduces to Type (ix). For non-zero ¥V, we shall show
that the method can only be successful if h is sufficiently small. The
method gives a boundary effectively one half-cell below y = ¥, and thus, when
performing numerical integration of the vorticity by summation, we assume each
vorticity value, including boundary values, is constant over one cell.

4ol Boundary along v = 7,

In this case, in the integration of the vorticity, the boundary values
extend over only a half-cell in the interior of the region. We consider
therefore the quantity:

d —l-!-\ v v v
2L ra)ed (eos) g lar) e nee)
J=1

Y
ey

from (4.4).
Thus

RN
d T ‘:-z- z“‘z";*‘:-
RGBSR
at J ° 2h L

J=1

which is & finite-difference analogy of (4.3). On equating the right-hand
side to zerc we obtain the following boundary conditions.



Type (xii

e [F 5D e

¥y - ¥y
Zh

LAY
n

and

'IU'

Again the stream function must be restricted so that it is linear slong the
wall and the vortiecity finally corrected using

Ly = 204~ ¥ )P+ 20/ =+ (4.10)
as in Type (x). The condition reduces to Type {x) when V = 0.

4.5 Impulsive start

If the wall starts impulsively from rest, with the fluid at rest,
initially both the stream function and vorticity are zero everywhere, except
the vorticity at the wall, which is determined by (4.7) or (4.10),

i.e.
U
%,(0) =; for Type (xi) cee (4.11)
and U
z,(0) = —h- for Type (xii) . ser (4.12)

At any time the vorticity satisfies the one-dimensional form of (2.5) namely
2
- i sy = 7 A .1
¥ipe = 2y + ¥y = -B°2, (4+13)
end either (%4.7) or (4.10) at the boundary.

Assuming ¥ becomes zero away from the wall we obtain at all times for
Type (xi) N

- U
> g, = - cor (ha14)
[, 9 n
J=0
and for Type (xii) N
u
1 = -, ses |
Z};j-l-"g&o " (4.15)
=1

This showa that both conditions are valid even initially for such flow.
This result was obtained by Fromn? for Type (xi).

5./
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5+ Numerical Stability

5.1 We consider the stability of finite-difference methods of solving
equations (2.1) and (2.2) when applied Yo the one-dimensionsl equation (4.1),
with various types of boundary conditions. Thus we shall assume that vorticity
values are advanced using a complete difference form of equations (4.4), and
that stream function values are subsequently found, for each time step, using
equations (4.13).

The ordinary differential equations (4.4) may be written in the form

ax b
—— = MZ + Y R
= xg (5.1

where ¢ 18 a vector with components Z,J > M is a square matrix and b 1is a

vector whose elements depend on the boundary conditions. We shall now
consider the stability of equation (5.1). If A, for r=1,2..n, are the

eigenvalues of M, we shall say that eguation {5.1) is

yngtable if Max Rﬂ(lr) >0
r

neutrally steble if Max 26(r)) = O
r

stable if Max RC(A ) <O .

In general, & single perturbation in the solution of equation (5.1) causes an
error whose magnitude increases with time for the first case, becomes constant
for the second and decreases for the third. Clearly we cannot expect to obtain
meaningful numerical results for an unstable eguation.  Even if (5.1) is
stable in the sense given here, it does not follow that finite-difference solu-
tions will necessarily converge to the solution of the differentisl equations as
mesh siges are decreased. Pa.rtere has shown this for a first-order equation.

Far a steady flow equation (5.1) becomes
Mg = b
and this equation may be solved iteratively as is usual for two-dimensional
problems, see e.g. Russell? . Most of the common iterative methods will not
converge unless  Max £&(’Ar) < 0.

r

5.2 Eigenvalues of M

If x is an eigenvector of M, corresponding to an eigenvalus ‘Lr »
the components x;j of x satiafy the difference equationa

(x + ﬂ)xj_l - (2a + 7;1,)::.1 + (a - B)xjﬂ =0 sev (5.2)

where/
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where « = y/M® and F = V/(2h) . Homogeneous boundary conditions on the
x J are derived from those applied to & j*

The generasl solution of equation (5.2) (for 6.0 or x) is

given by
Xy = a.‘j(A cos jer + B sin jﬂr) R eee (5.3)
where'
cos er
kr.-:za( —1) ’ e (5-&-)
ch b
1
2
a = La—-.-g).r sea (5.5)
(a - B)?
and
b=1na . 2ee (5.6)

We seek values of Br s A and B which give non-zero eigenvectors.
If a solutlion is given by, Br =0 or m, the gemeral solution (5.3) is no

longer valid and we seek a solution contalning terms of the form ;j(-ta)“j .
The {ollowing cases regarding a and A will be considered. (The cases
a = =8 are ignored as for these (5.2) reduces to a first-order equation).

Case A a>0, =0

This corresponds to V = O . We obtain from equations (5.5) and
(5.6), a=1 and b=0.

Case B a> 181 >0

-2v &
This corresponds to — < V< —h- . Both a and b are real.
h
We have
®¢(cos 6_)
ze(h ) = 2a<——-——~£—- 1) . eee (5.7)
ch b

Case C Q< ax< p

This corresponds to V> 2v/h . We let a = -ik where k> 1,
when chb=-ishc, where ¢c=1lnk> 0.,

From (5.4) we £ind

1 cos @
M. = 2a ( —_— --1)
r sh ¢
and In{cos 6_)
R&(’hr) = —-2a (_-"""—“r— + 1) . es (5.8)
sh o Case/

- A G e e mer wm W MW M EE we P ww e W ML e e = e e M W oam T

*The hyperbolic functions cosh and sinh are written as ch and sh for brevity.
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Case D a =0, >0

This corresponds to ¥ =0 and V> 0. We obtain & = -4 and
M(lr) "2ﬁ .Im(COB r) a es e (5.9)

Case E B<~-a< 0

This corresponds to V< -2v/h . We let a = 1k where O < k < 4
when chb=-1s8hoc where c=-Ink>» O .

From (5.4) we find

icoser
'Ar=2a< -1)

sh ¢

e Tleon &), - e (5.10)

sh ¢

2 (\)

Cage F a=0 <9

This corresponds to v =0 and V<O, We obtain a=1 and
xc.(xr) = -28. In(cos r) .

6. Particular Boundary Conditions

6.1 We now consider the effects of particular boundary conditions on the
elgenvalues of M . Two conditions are required, ome at each boumdary. It
should be remembered that if ¥ is specified at both boundaries a fixed mass
flow must occur across any line ,]o.’ming them. In the cases discussed below,
V is positive in the direction from the first to second boundary. Table 1
shows values of Max R%(\ ) for numerical cases involving most of the differ-

b o
ent boundary condltlions discussed and Table 2 a summary of the results of the
stabllity investigations made in this Section.

6.2 Type (i) and Type (i)

This is the simplest combination. The boundary conditions on the
eigenvector are

and the solution is given by

rx
A:‘o and. er=—-’r=1’2' sesll o
n+ 1

Thus m(‘ur) < 0 for all r and equation (5.1) is stable.

6.3/
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6.3 Type (iii), (dv) or (v) and Type (iii), (iv) or (v)

We require

nd¥l - T n n-1

Using (5.3) we obtain
[a® cos 20 - 2a cos 9 + 1]A + [2® sin 26 - 25 sin 6]B

[a® cos(n+1)0 = 25 cos b + cos(n-1)6]A + [a? sin(n+1)6 - 2a sin nb

+

=

0

sin(n-1)6]138
0

and the Br are velues of 6 for which these equations yield non-zero A and
B . The determinant of the matrix of coefficients of A and B 1is zero when

[2a® cos 20 ~ ha.(14+8®) cos3 6 + 1 + 4a® + a*] sin(n-1)e =0 .

This has (n-2) roots

1,2, ..s (n=2)

<
[}
o
i

and 2 roots when

1 1
cos er .—.—(e.-t-—) =¢chb ,r =n-1,n.
2 a

For the first (n-2) roots we have ﬂ&(lr) < 0, for the last two R&(lr) =0

end therefore equation (5.1) is neutrally stable.

6., Type (i) or (ii) and Type (iii), (iv) or (v)

We require
xO =0

x -2 +x =0.
N+l n n-3

Thus A =0 and the Br are roots of

2™ gin(n+1)6 - 22" sin no + 2”1 sin(n-1)8 = 0 .

Let
£(8) = a® sin(n+1)0 ~ 2a sin nd + sin(n-1)0 ,

when the O, are roots of £(6) =0 .

Case A

see (6.1)

The roots are 0. = /n, for T =1, ... (0-1) together with

en = 0 , with corresponding eigenvector components x 3= J e

Case B/
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Case B
First note that

£(0) =0

£'(0) = (a-1)[(n+1)a ~ (n=1)] > 0, for a> 1, 1.e. V3 O

n-1
< 0, for —< a<1
n+i
i.e,
n-1 ¥<O.
>0, for Q< g ¢ =

n+?
Now

f(:x-) = {a%-1) (-1)F sin z

n n

which oscillates in sign for r = 1,2 ... (n-1), therefore there are at least

(n~2) real roots.
x
f(—)<0, if a>» 1,
n

>0, if a< 1.

Also

We therefore have a further real root for =& > (n-1)/(n+1) in the interval

(0,x/n) .

We can similarly show that for a » 1 there is a root in the
in.terva]. ([n".t JK/D,‘K) (]

For < 41 1.e. V< 0O we can show that there 1z at least one root
of the form Br = :'Lzr where zr is resl. Let

F(z) = -if(is) = a® sh(n+1)z - 2a sh nz + sh(n-1)z .

Now, b=1loga< 0, as a< 1, and

1
Fb) = —a™Ya®-1)%* > 0,
2

Alzo a® _(ne1)z
F(z) ~-=— e B8 Z > —w
< 0.

Thus there is-a root z in the region (~e,b) when
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chzr
ch b

as chzr>chb .

For a < (n-1)/(n+1), there is a further root of the form 6, =1z  and,
if a = (n-1)/(n+1) , there is a root 6.=0.

We therefore deduce that, for this case, equation (5.1) is unstable
for V< O and stable for V> 0 .

GCase C

We show that RE(\ ) < 0, for all r, and therefore that equation
(5.1) is stable. The roots are complex and we let 6 = Pp + io' when

% (cos er)

cos p_cho, ,
r r sae (6.2)

In{cos er) -sinp sho, .

Since Im(‘.\r) = 2a R (cos Br)/sh ¢ and complex eigenvalues occur in conjugate
pairs, if P is a root then sc¢ is AP, - We can also assume oL 2 0,

without restriction.

From (6.1), using a = -ik, we have

#(£(8)) = -k *® sin(n+1)p ch(ne1)o - 2k cos np sh no + sin(n-1)p chn-1)o ,
e (6.3)

In(£(8)) = -k® cos(n+1)p sh(n+i)o + 2k sin np oh no + cos(n~1)p sh(n-1)o ,
e (60)

wvhere 0 =p & 100 .

We suppose that there is a root p_ + 10, , with 0¢ p, €% and

o,% 0. We can also assume, without loss,that 0 ¢ p_ ¢ %/2 a8 %-p_ 1ia
also a roat.

If we fu_r:thar_ suppose  Dp_, is in the first quadrant, i.e.

for some integer m, the:n we ha

Ta

, eo8, np;, 3 @;*!%x-éin(m-‘!)p* 3 ﬁgo and sin{net)p, > s:l.n(n-1)p
together with, - = .
k> 1 and ch(n+1 Jo . » ch(n-1)o,, .
We find, therefore, from (6.3}, that R6(£(6.)) € 0 with equality for only

trivial/
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trivial cases, We similarly obtain, ﬂ&(f(er)) > 0, for np_ in the
third quadrant. For np_, in the second or fourth quadrants, we can show

using (6.4) that In(f(8)) is non-zero. We conclude that there is no
root with O < p_ & % . Thus, using equation (6.2), we deduce that
Im(cos er) 2 0 and, from equation (5.8), that ﬁ&(lr) <0,

Case D

We can show that this is stable by extending the method for
Case C.

Case E

As for Case B with V < O, +the problem is unstable for Case E.
It is not sufficient, as in Case C, to only consider the sign of Im{cos Br) »

a8 may be seen from (5.10), and therefore a different method must be adopted.
For odd values of n, Case E may be shown unstable using a method similar to
that of Case ¢ for boundary conditions of Types (i) and (vi) (Section 6.7).
This restriction to odd values of n is justified in Section 6.7.

Case F

This may be shown to be unstable using a method similar to that of
Case C above.

6.5 Conclusions on extrapolation boundary condition

It has been shown that for outflow, e.g. as a downstream 'infinity'
condition, the use of extrapolation boundary conditions (Types (iii), (iv)
and (v)) may yield numerically stable equations. For inflow, e.g. as an
upstream 'infinity' condition they yield unstable equations, except possibly,
when & similar condition is used for the corresponding outflow. Sance in
any two-dimensional flow there will be other boundaries it is highly probable
that extrapolation will always give unstable equations when used at an inflow
boundary.

6.6 Type (vi) and Type (vi)

The boundary conditions for the vorticity involve stream function
values and these must first be related to the vorticity. BEquations (4.13)
may be written in the form
X (6.5)

Hy=-b2"2~c ,

where the components of ¥ and Z are the values of the stream function

and vorticity respectively at interior grid points, H is the nxn
tridiagonal metrix

i - ~ 1
H= |-2 1 0 and o= |¥,
1 -2 1 0
* * . . - -
- 1 -2 L] 1 é
O 1 -2 ¥
L. Wt
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1]10 and irm_ , are the specified boundary values of the stream function.
Now H* has 4,jth element,
(n+1-3)1
-—— for j21i,
n+1
(ne1-1)J
-~ = for j<1i,
n+1
end therefore,
n
nt+i-j ny + ¥
.&1 = h' Z( ) zj +* -——o.._i}. LN (6.6)
n+1 n+1
J=1
and
= J ¥, + 0y
L]
*n - ha L( ) z + —9—-——!.1:_1. . see (6.7)
n+1 n+1

The boundary condition given by equation (5.1) becomes, for the lower
boundary,

% = - Z(“’”) oo " Ynyy
° n+4 (n+1)h’

and, for the upper boundary,
n
L -- Z ( _-’__> g yJun Yo
+1 net J (n+1)n®
J=1

The boundary conditions for the eigenvectors of M are, therefore
n

nel=J J
d x = - — X, »
z< n+1 ) = D+ Z(nﬂ) J
=1 J=1
i.e. n
chn-a) x, = 0 -es (6.8)
and n+j,
ZE: jx, = 0. ere (6.9)
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If we substitute the general solution (5.3) in these equations
and seek values of & for which A and B are non-zero, we can show, after
some considerable manipulation using the identities (4.3) - (&.6) of
Appendix A, that Br are roaots of

{sin 8 [ch(n+2)b - cos(n+2)}8] - (n+2)[ch b - cos 0 Jsin(n +2)6}/(ch b - cos 8)® = 0.

ses (6.10)

We shall only consider in detail cases when a =0 or g =0 , since
for these the roots of (6.10) may easily be shown to be real. For other cases
the roots are complex and no simple method has been found of determining the
sign of the corresponding ﬁ&(‘hj

Case A
As b = 0 equation (6.10) becomes

£(0)/(1-cos 8)® = 0,

where
£(0) = sin 8 [1~cos(n+2)8] -~ (n+2).[1-cos 8].sin(n+2)6 .
Now rx ru
b o
f(—-—- ) = sin(—-). [1=(-1)Y'] for r =1,2 ..a+1,
n+2 n+2
= 0 for even r ,
> o forodd r,
and '

£(0) = £(x) = 0 .

rx
Also we have f’(——)<0, for even v, and f'(x) < O, for even n .
n+2

If n is even, there are, therefare, n/2 roots
8, =rx /(p+2) for r = 2,4k, ...n,
together with n/2 roots satisfying
(=)= (ret)x

< Br <
n42 ne2

fOI‘ r=3’5 ase n+1.

If n is odd, there are (n+1)/2 roots,
0r=r1t/(n+2) for © = 2,4, ...(n+1), .
together with (n-1)/2 roots,
(x~1)x (re1)m

< Br <
n+2 n+2

for r = 3,5’ eoell o

Thus there are n real roots and equetion (5.1) is stable.

Case D/
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Case D

a = -1 and equation (6.10) becomes

£(6)/(cos 8)® =0, eer (6.11)
where
~sin 6[1 + cos(n+2)0] + (n+2)cos 6 sin(n+2)8, for n = O (mod %)
£(8) = -sin 6 cos(n+2) 6 + (n+2)cos 0 sin(n+2)8, for n=1 or 3 (mod 4)

sin 6[1-cos(n+2)6] + (n+2)cos 6 sin(n+2)0, for n = 2 (mod L4).

By examining the behaviour f£(8) and f'(8) at points rx/(ne2)
for r = 0,1, ...En+2), it can be seen that for all values of n there are
n reel roots of (6.11). Care needs to be taken over zeros of f(8) at =x/2
as the denominator is also zerc at this point.

Using equation (5.9) we deduce that for all eigenvalues AL
() =0
and equation (5.1) is neutrally stable.
This case 1is clearly not practicable in any physical problem, as a
no-slip condition will not occur for v = 0 , however it should provide some
insight into the behaviour of the method as S/a is increased.

Case F

Due to the symmetry of the boundary conditions this is the same as
Case D.

!
Cases B, C and E

As mentioned earlier the roots of equation (6.10) are complex for
these cases. However, we might expect, on the evidence of Cases A, D and F,
that equation (5.1) is at worst neutrally stable. This has been found true
for all of several numerical cases, some of which are given in Table 1.

6.7 Type (i) snd Type (vi)

Since the matrix H of (6.5) is unchanged, the second boundary
condition is again (6.9) and we have boundary conditions

x =0
n+4 o
ey

ix, =0 .
),
=t

The first gives A = O and using the identity (4.3), we deduce that we require
the er to be roots of

fa(1-a" )sin 8 - (n+2)a™**sin n8 + [2(n+2) + (ned)d 1a® *3 sin(n+1)e
- {2(ne1)f+ (n42) a2 *T sin(n+2)8 + (n+1)a®**sin(ne3)0]/
(1+6® - 2a cos 8)* =0 .
see (6.12)

Case é/



Lase A

Putting a = 1 we obtain for equation (6.12)
[{n+1)sin(n+2)0 - (n+2)sin(n+1)01/(1-cos 8) = 0 .

The numerator alternates in sign for points rx/(n+ 2) ,

r=1,2 ...(n+1), and thus there are n real roots 6. and equation
(5.1) is stable.

GCase G

This case corresponds to flow towards a fixed wall at which there
is suction. If n is odd, there must be a real eigenvalue of M as
complex eigenvalues occur in conjugate pairs. We shall examine the sign of
this real eigenvalue and show that, if B/a is sufficiently large, the method
is unstable. This restriction to odd values of n is justified, in that
we are concernedéwith seeking indications of the stability of the method in
two dimensions.

If M. is real, we deduce from (5.8), that cos 6. is purely
inmaginary and we therefore let

x
0 =—+1i¢ _ ,
2 r

when (5.8) becomes

AL ga(shgsr/shc-‘l) .
We have sw(xr)>o if ¢ 4is real and 4_> c> 0.

Putting 6 = 52‘ + i¢ in (6.12), we deduce (remembering n is 0dd) that ¢r

are the roots of :

F(¢)/{(shc - sh ¢)®* =0, sse (6.13)
where
F(¢) = k(141®)ch ¢ - (ne2)™* “ch np + [2(ne2) - (041 Ne® Jie *sh(net) ¢

+ [2(041)k® - (0+2) 1k ™% ch(ne2) ¢ - (n+1)k "t 5h(ne3) ¢
a=-1k and ¢ =1nk .

Notice first, that F(e) = F'(c) = 0, but this does not give a root
¢ = o of equation (6.13) as the denominator also has a double zero at this
point.

I F''(c) 4is poaitive, F(¢) has a minimum at ¢ =c and,
since

F(s)/
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(n+1) nsa (nea) ¢
k e

2
< 0 ,

F(g) ~ -

as ¢ -+ e ,

there will be a real root ¢r with e&r >C .

Now
Py (c)

1

Z(n41) (042)+k® (0® + 3043)af k* (ne1) (ne2)=(me2)1® ™ *4 ~(n+t) "+ ®

and F''(¢c) >0, if k< kc » Where kc is the only root of

F(n41) (n+2) 4k *(n® + 3n43)45k 4 (0 +1) (ne2)- (ne2)1® P —(n41)k*"*® = O

sew (6-11‘_)
with k > 1.,
c
Thus if n 4is 0dd and k < kc » the method is unstable.
Since
a + 5
k* = -
a -8
the condition, k < kc s is equivalent to
B/a > (x241)/(k2-1) = (8/a), (sey) -es (6.15)

h
— > (&]7+1)/(x?1) .
2y

A graph of (ﬁ/a)c against n, for odd n, 1is shown in Fig. 3.

By computing the eigenvalues of M it has been found, in all of several
numerical cases with n odd, that the real eigenvalue derived from (6.13) is
the eigenvalue with largest real part (e.g. Table 3 gives eigenvalues of N
for n=15,a=1, A= 11). Thus, for odd n , equation (5.1) has been
proved unstable for (8/a) > (ﬁ/a)c and on the basis of numerical results it
is probably stable for (8/a) < (ﬁ/ct)c . If n is even, direct calculation
of the eigenvalues of M suggests that equation (5.1) becomes unstable, as
(8/a) is increased, at points just above a smooth curve (Fig. 3) joining
the critical values (8/a)  for odd n . Criticel values of (B/a) are

shown in Fig. 3 for n = 16,3 0. Approximately therefore, the region above
the curve represents unstable rataios B/x ard the region below the curve,
stable ratios.

Case D.

By putting X = 1 in Case C, this case is proved unstable for odd
n . Numerical evidence suggests it is also unstable for even n.

Case B



- D02 .

Case B

Numerical evidence suggests that Case B is always stable. Table 4
gives some results.

Cases E and F

These cases are of little interest since they represent flow out of
a fixed wall. Numerical evidence suggests that equation (5.1) is stable for
all values of a« and £ for both cases.

6.8 Type (ii) and Type (vi)

The use of the boundary condition of Type (i) with Type (vi)} implied
a fixed mass flow across the region between the boundaries as ¥ is specified
at each. The boundary conditaion of Type (ii) faxes only the velocity along
the boundary and allows the stream function to adjust according to this end
other factors influencing the flow. For the condition of Type (vi) we again
need to determine the stream function in terms of' the vorticity. We express
equation (4.13) as

Ly=-nZ +d ,

where the components of § and Z are the stream function and vorticity
at interior grid points, "L is the nxn tridiagonal matrix,

S P

- 1 o (" tn T
1 -2 1' 0
L= ) - ' . ‘ . and 4 =
) 1 . -2 1

L 1 -2 0

[ﬂ%+1

-

U is the velocity at the first boundary and ¥ ., the specified streanm
function at the second boundary.

The last row of L-* has -1 for each element, as may be verified by
premultiplying L by such a row vector. Thus

n
¢, =h* sz -+, v+ (6.16)
Jz.i

and, on using equation (3.1) modified for an upper boundary, we obtain

cee (6.47)

id‘ﬁ
-
[}
|
Ingl
<
()
+
S

The/
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The boundary conditions on the eigenvalues of M are thus

x =0
o

and n4+4
e

E X,

|
3=

The first condition implies A = O and from the second, on using the identity
(4.1), we deduce that the Br must be roots of

It
o

n+% n+i
sin 0 = & sin(ne1)0 -~ a  sin(n+2)0)/(ch b - cos 8) = O . «ss (6.18)

Cages A and B

As we are only interested in suction at the wall, we assume V is
non-negative and thus a » 41 , for these cases. It is easily seen that the

numerator in (6.18) alternates in sign for points rx/(n + — ) and therefore
2
there are n real roots and equation (5.1) is stable.

Case C

As with Types (i) and (vi) we consider the real root which must exist
=
when n 1is odd. We agein put Br ==+ 1¢ and seck a root ¢, with
2
¢r > ¢ when the method is unstable. Equation (6.18) becomes

F(¢)/(sh ¢ - sh ¢) = O »ev (6.19)

where

F(¢) = ch ¢ + K™? sh(net)g -~ X"t ch(n+2)g .

F(c) =0, but ¢ =c is not a root of (6.19), as the denominator alse
vanishes.

Now )
F'(c) = 3 [ n#t) — + (ne2) k- x¥7*3 ]
k
and
F(g)~ ~X"*2e("*®) 45 ¢ o
<0,

Therefore there is at least one root ¢, with ¢ > c if F'(c) >0,
which will be true if k < kc , Where kc is the root of

(041)/
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1
(p41) — ¢ (me2)k - X"*2 = o
k

eee (6.20)
withk > 1,
[+]
A graph of the critical ratio
- 2 H] ene
Bfa), = (&} + 1)/x2 - 1) (6.21)

is shown in Fig. 3. Numerical evidence again suggests that, for odd n ’
the real eigenvalue is larger than the real parts of other eigenvalues and
that, for even n, the critical values are just above a smooth curve through
the points given by (6.21). Approximately therefore the curve divides the
region into stable and unstable cases.

GCase D

By putting k =1 in Case C this case is proved wnstable for odd n .
Numerical evidence suggests it is also unstable for even n .

Crasea Eand F

These cases are of litile interest. MNumerical evidence suggests
they would be stable.

6.9 Conclusiong on Type (vi)

For one-dimensional flow, equation (5.1) is stable if this condition
is used at each bourndary. If T¥pe (i) or (ii) is used with Type (vi) a res-
triction on (Vh/v) must be observed. In any two-dimensional flow, with a
boundary of Type (vi), there must be other types of boundary and it is
therefore probable that if the ratio (Vh/v) is too large, the finite-
difference method will be unstable. It is interesting that equation {(5.1)
should only be conditionally stable for suction, with a restriction on the
magnitude of the suction velocity (for a given mesh length), whereas for
fluid flow out of the wall equation (5.1) is always stable. This of cowrse
does not reflect the physical behaviour of flow at a wall with suction and
emphasises the diffioculty of comparing stability of the numerical method with
stability of the sactual flow.

We shall see in Section 7.3 that this restriction on Vh/y , for
stability, is not as severe as that required to obtain an accurate numerical
solution.

6.10 Type (vii) end Type (vii)

The stream function values one grld point inside ‘the boundaries are
again given by (6.6) and {6.7) and thus we obtain, using (3.3), the boundary

conditions n
T/ nel=j§ 2(¥o ~¥nes)
ore 3 () g, R
552 o (n+1)n®
y - i\('a—)-’é +2(‘l-‘n+1"‘l’o) ]
n+1 n+1 J (n+1)ns
Jj=1

The/
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The boundary conditions for the components of eigenvectors of the
matrix M are therefore,

R
L (n+1—j)xj - %(n+1)xo =0
and j:O
n+1
)
LJIJ -'12"(1'1+1)Xn’1 =0 .
Jea

After some considerable manipulation using the identities (A4.3) to (4.6),
it can be shown that the er are roots of

fuch b sin 6 [ch(nt1)b ~ cos( n+1)6] + (n+1)sin(ne1)8[cos 26 - ch 2]/

(chb -cos8)! =0. vee (6.22)

Again we only consider in detail the cases when a =0 or g =0 .
Case A

As b =0, (6,22) becomes
sin 8[2 - 2cos(n+1)6 ~ (p+1)sin(n+1)6 sin 6]/(1-cos 8F = 0 .

By considering the behaviour of the numerator at points w=/(n+1) , it can
be shown that there are ‘n real roots in the range 0 8 s =x . If

n is odd, one root is 6 = x , the eigenvalue is -4 and the correspond-
ing eigenvector has components x_= (-1}9 ., Equation (5.1) is therefore
stable. ’

Cases D and F

a = *i and (6.22) has n roots

e
r

ri/(o+1), r=1,2, ...n,

and therefore, as R&(J\r) =0 for all r, equation (5.1) is neutrally
stable. -

Gase’g B and E

The roots of'(6.22) are cdmplex. Numerical evidence (see Table 1)
suggests that equation (5.1) is at worst neutrally stable for all a and S,
as might be expected from the results for Cases A, D and F.

' 6.11 Type (i). Bnd Type (vii) .

F

¥ o

onénta of eigenvectors of M are

. ||‘

=l

J u‘\!;l

TR - U
The conditions on-the com

x==0

N+t -

. _1_ -
ZJXJ T 2dnes T 0
P

~]

from/
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from which we dedyce using the identity (A.3) that the Br mist be roots of

{2a(1-a%)sin 8 ~ (n+1)d™? s5in(n-1 08 + 2(n+1-a® ) *® s4n no
+ [(n41) (&' -1)ehe® . ™ 5in(ne1)8 - 2[14(ne1)a® ]2*F sin(n+2)6

+ (n+1)a™* sin(n+3)6}/(ch b-cos6)® = 0 .,
ses (6.23)

Case A

& =1 and consideration of the numerator in (6.23) for points
rx/(n+1) shows that there are n real roots in (0,x) .

Cases C and D

Assuming n is odd, analysis similar to that for Case C of
Types (i) and (vi) (Section 6.7) may be made. The result is the same except
that (6.14) is replaced by

(a+1)7*8 4 2k®P*4 L (n-1)Kk?D%% - (net) ®k* - 2(n®+ 2n42)K° - (n41)®
- 0 -

Numerical results are similar to those for Types {i) and (vi). Critical
values of (ﬁ/u)c are shown in Fig. 3.

Cases B, E and F

Numerical evidence (Table 1) suggests these are stable cases.
’

6.12 Type (ii) and Type (vii)

The stream function value ¥  is given by (6.16) and on using
(3.3) we obtain conditions

x, = Q
n+1

1 -
ij = Z2Xnsy o .
Jesz

Using the identity (A.1), we deduce that the O, are roots of

{28in 0 + (a®=1)a" sin(n+1)6 - 2a** sin 6 cos(n+1)8}/(ch b-cos 8) = 0 .

'y (6.2}‘_)
Cases A and B

Ve are only interested in V 2 O for which we have'z az 1.
By examining the behaviour of the numerator in (6.24) for points rx/ (n+1) ,
1%t can be seen that there are n real roots in (0,x) .

Cases G/



- 27 -

Cases C and D

Assuming 1 is odd, analysis similar to that for Case C of Types (ii)

and (vi) (Section 6.8) may be made. The result is the same except that (6.20)
is replaced by

Fnts _ panen (2043)k® - (2041) = 0 .

Numerical results are similar to those for Types (i) and (vi) end
a graph of the critical values (B/a)c is shown in Fig. 3.

Cases E and F

Numerical evidence (Table 1) suggests these cases are stable.

6.13 Conclusions on Type (vii)

The boundary condition of Type (vii) has similar stability properties
for the one-dimensional problem to those of Type (vi), except that a more severe
restriction on the ratio Vh/v must be observed.

6414 Type (i) and (viii)

The stream function llln , one grid point from the wall, is given by
equation (6.7) and using equation (3.4) at an upper boundary we obtain as con—
ditions on components of eigenvectors of M

X = 0
o]

3 X
R Rt

n+1

On using the identity (A.3), we deduce that the 6. are roots of

{6a(1-a®) sin 8 + (n+1)a®*® sin(n-2)8 - 2(n+1)(1432®) £* *sin(n-1)0
+ [(a+1)(14+126% ) + 3a* (n=1) Ja"sin n6 + [2(n+1)(a*=3) - 62® (n-1) Je** * sin(n+1)0

+ [3(n-1) - 4&® (n+1) Ja™ "sin(n+2)6 + 2(n+1)a"* sin(ne3)0]/(ch b - cos 8 =0 .

s+ (6.25)
Case 4
e =1 and (6,25) reduces to
£f(6)/(1-cos 8) = 0 eee (6.26)

where

£(6) = (n+1)sin{n~-1)6 - 6{n+1)sin nod + 3(n-1)sin(n+1)e + 2(ne1)sin(n+2)0 .

Now f£(8) satisfies:

£/
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X
f(—>>0 r even
n+}

< 0 r odd

r=1,2, ...n

and therefore there are at least (n-1) real roots of (6.26) in (O,x) .
We show that the remaining root Bn is of the form

n n

From equation (5.4) with b = O we deduce that the corresponding eigenvalue

ln is given by

A, = -2a(ch 3 + 1) . eee (6.27)

We let @ =% + iz and obtain

(~1)"if(neiz) = (nel)sh(n-1)z + 6(n+1)sh nz + 3(n-1 )ash(n+1)z

-2(n+1)sh{n+2) z

F(z) (say).

F(z) has two zeros apart from z = 0, as

n+a)z

F(z) ~ - (tw1)e as z > e
<0,
F(O) =0 ,

F'{(0) » 0,

showing that there is a zero Z, s with Z, > 0 . Since F(z) is an odd
function there will be a corresponding zero -z,

The eigenvalue given by (6.27) will be negative and equation (5.1) is stable.

Cases C and D

Assuming n is odd, analysis similar to that for Case ¢ of Types(i)
and (vi) (Section 6.7) may be made. The result is the same except that equa-
tion (6.14) is replaced by
2(n+1)k"P *8 - 3(n-1)Kk*P* 4 - 6(net)k?P*? - (2+1)k* - 3(0+1) Pk - 6(n®+ 242)K"

~3(n+1)® = 0 .

Numerical results are similar to those for Types (i) and (vi) and a graph of
the critical values (ﬁ/a)c is shown in Fig. 3.

Cases B,/
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Cases B,E, F

Numerical evidence (Table 1) suggests these cases are stable.

6.15 Type (ii) and Type (viii)

Using equation (6.16) for the stream function, we obtain boundary
conditions

x =0
o]
n
N 1
e = =3 L xj"ixn .
.j-_-i

We deduce with the aid of the identity (A.‘i), that the er are roots of
f6 sin 8 - a”sin(n~1)6 + (1456% )aP~%5in nd + (24~ 5)a"” sin(n+1)0

- 2a™** 5in(n+2)8/(¢h b-cos 6) = 0 . cee (6.28)

Case 4

a = 1 and by examining the behaviour of the numerator of (6.28), it
can be shown that there are (n-1) real roots. The remaining eigenvalue
tekes the form of (6.27).

Cases C and D

Assuming n 1is’0odd, analysis similar to that for Case G of Types (ii)
and (vi) (Section 6.8) may be made. The result is the same except that (6.20)
is replaced by

2k *4 - GPBE L kAN 3(342n)k % - 3(1e2m) = 0 .

Numerical results are similar to those for Types(i) end (vi). The critical
values of (ﬂ/a)c are just below those for Type (i) and Type (viii) and for

large n, (;Sii/c:c)c = 20186 .

Cases B, E and F

Numerical evidence (Table 1) suggests that these cases are stable.

6.16 Conclusions on Type (viii)

The restriction on the ratio Vh/v , for a stable process, is more
severe than for either Type (vi) or (vii). There will also be difficulties
with choosing a suitable stable method of replacing tine derivatives.in
equation (5.1) even for Case A. An eigenvalue of the form (6.27) will cause
gevere restriction on the size of the time step 0% in the simple explicit

method. We require (Vargall, p.265),

~2 m(xr)
0t ¢ min { }
1er<n Il e

1
alch z + 1)

This/
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This is more severe than the restriction
1
5t g —
iind

which is required if all Br are real.

The Dufor‘c—Franke.‘L2 method is always unstable when an eigenvalue of
the form of (6.27) occurs. For (5.1) the method is

éS'l'l._éS‘i:Bt [(M + 2« I)g_s—a St4 _ gys-i +Es]’

where ;S is the vorticity vector after s <time steps and p_s is

determined by the boundary conditions. We can write the method in the two
stage form

=2
7]

és zs-i

io

where C is the 2n x 2n natrix

(1 + a8t) "% 8t.(M42aI) (142 .8t)"* (1-a.5t)I

I 0

This recurrence relation is unst’a.ble if any eigenvalue of C has absolute
value greater than unity., The eigenvalues of C are

L+ 2a) bt i/(xra, 2a)?. 8+%+ 4 {1+ . 8t)(1 - @.5t)

for r=1,2 «v.n
2(1+ a. 6t)

One of these, when A is given by (6.27), is

2 R ., 3
-6t.x.ch zr-/1+a Ot * sh z.

1+a.0t

which is less than -1.

6.17 Type (i) and Type (xi)

In one dimedsion, when using Type (xi) for a moving wall, there
is no need %o apply the correction (4.7) to the vorticity after the strea?.m
function has been found, end therefore (4.6) is the actual boundary condition.
For & two-dimensional problem, it will still be important that ?he cond_lta.?n.
given by (l;..6) yields a stable method, assuming that no correction of vorticity

is required.

Using/



-3 -

Using (4.6) at an upper boundary and (5.5) we cbtain the boundary
conditiong

‘:0=0J

)
;n‘,i azn >

where ;n is the vorticity at the boundary grid peint.
The Or mast therefore be roots of
sin(n+1)8 - a sin n® = 0 , vee (6.29)

Cases A and B

If £(8) = sin(n+1)® - 2 sin nd

£(8) alternates in sign for points m/(n+x) , r=1,2, ...n, and thexe
are at least (n-1) roots in (O,x) .

b 1
Also we have f(-—-—-—-><0 and, if a<1+—-, £'(0)> 0, in

1
n+s n
which case the remaining root lies in (O,x/[n+3]) .
1
If a=1+=—, oneroot is Bn = 0 and the corresponding eigen-
n .
vector has components xj = j.a.‘] .

1
For a> 1+ 7 Ve show there is a root of the form o =iz ,

where z, is real. Putting 9 = iz, we obtain

if(12z) = ~-sh(n+1)z + a sh nz = F(z) (say).

Now, b =1Ina > 0 and therefore,

1 1
2F(bv) = -—< 0. «ee (6.30)
anu. an

Also, F(0) =0 and F'(0) > O thus there is a zero 3z of F(z), with
0« Z, < b, when

ch 2
).=2a< “—1)-:0. cee {6.31)
n ch b

Thus equation (5.1) is stable for these cases.

Case &/
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Case C

Assuming n is odd, we consider the real eigenvalue which must
3

exist, If © =—~+ i¢ , equation {6.29) beconmes
2

F(g) = sh(ns1)¢ ~k ch ng = O
and this has a root ¢r >c=1Ink,

as
F(g) ~ 2e@*V% 45 $ow
> 0
and

¥(c)

<(14k*) /™ < 0 .

The corresponding eigenvalue, M\ = 2a (sh ¢ /sh c-1) , is positive

and equation (5.1) is unstable. TFor even n , ve find by direct calculation
of eigenvalues (Tabie 1) that the method may be stable for some values of
B/a > 41 but as B/a is increased it becomes unstable.

Cases D, E and F

Using a method similar to that used for Cases C and D of Seciion 6.4
it can be shown that equation (5.1) is always unstable for Case D and always
stable for Cases B and F. /

6.18 Type (i) and Type (xii)

As with Type (xi) the vorticity is not corrected after the streanm
function has been calculated. Using (%.9) at an upper boundary and (5.5), we
obtain the boundary conditions

&, =0

(o]
Zh-ri

where ;n is the vorticity at the boundary grid point. Thus the Br must
be roots of

(a®-Ng a2,y

cos nB sin 6 -~ sinn® sh b =0 . eee (6.32)

Cases A and B

By considering the bshaviour of
£(8) = cos nd sin & - sin nd sh b

at points 1rx/n, for r =0,1 ...n, it can be seen that there are ot least
(n-2) real roots of (6.32) in (0,x) . TUsang 2 method similar to that for

Case 4/
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Case A of Types (i) and (xi) (Section 6.17), we find the remaining roots
Opn-1 and 8, are as follows:

if 4nshb> 0 then 0< Bnpn-1 < x/n

" 4-nshb =20 " th-1 = 0 and the eigenvector components are xj = Jaj
" 1-nshb< 0 " bn-s = izn.y where O < zp-4 <D
+« 4nshb> 0 " (n-1)n/n < 6 <m
" 14nshb=20 " 8 =% and the eigenvector components are x, = j(-a)j
n J
" 14n shb< O " 8 =m+ iz with z_> O
n n n

In all cases the corresponding eigenvalues are real and negative and equation
(5.1) is stable.

Cases G, D, BE and F

Kethod and results are the same as those for Types (i) and (xi).

6.19 Conclusions on moving wall conditions

FPor Cases A and B, both Type (xi) and (xii) make equation (5.1) at
worst neutrally stable. TFor Case C, both methods are unstable and thus, if there
is suction at a moving wall, it is necessary to restrict the nmesh size h so
that we have B/a < 1 . 1In Section 7.3 we shall show that this restriction
for a stable method is not, serious, as accuracy considerations are even more
limiting.

7. A Numerical Example

7.1 Flow along a moving wall with suction

A3 a test of boundary conditions of Type {x1) and (xii) we consider
‘the numerical solution of a problem for whach the analytic solution may be
derived. The motion, first introduced in Section 4.2, as that of flow along
a wall which has started impulsively from rest at time t = O . Ve seek a
solution u(y,t) of equation (4.2) satislying the boundary conditions

u(y,0)

u(oit)

0, for y2 0,

e (7.1)

U, ulw,t) =0, for t>0.

The solution, which may be found by integral transformation, is

ulyyt) = 40 {erfc( 2;% . EJ_;> + evy/verfc< ;ﬁ_ + ZJ—E )} cee (7.2)

where erfc(x) is the complimentary error function defined by

erfe(x)/
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erfe(x) = — /e = ax
K3
X
and -V is the suction velocity.
On substituting (7.2) in
du
& = -—
oy
we obtain
1 y v t. " v
z(y.t)f-Ul: exp[—( - - ’-) }—-‘- J
Y [ .
Vvt vt 24N v 2v A ot

2 e

The numerical solutions shown in Fig. 4 were obtained using the
Crank-Nicholson! implicit method applied to equation (5.1}. This method was
chosen because it is conservative and is stable if equation (5.1) is stable
in the sense defined here. This latter property is shown, for example, by
Varga11. The implicit method would be difficult to apply to a two-dimensional
problem, but is used to aveid inaccuracies introduced by methods which are not
conservative, and difficulties with methods whose stability depends on the
time step, &t .

The results :aown in Fig. 4 are for v = »15, V ==75 and
~1*5,h =21, n=15 and &t =01 . (Thus a« = 15 and B = =375 and
-7*5) . The calculations were repeated with lower boundary conditions of
Types (xi) and (xii). For Type (xi), the results were moved by a half-grid
length as mentioned in Section 3.3. In all cases Type (i) was used for the
upper 'infinity' boundary. The results appear satisfactory despite the
fact that the stability of the boundary conditions depends on g/a , though
of course the ratio B/h has been chosen so that we have Case B. (For these
examples, A 1s negative as the wall is at the lower and not the upper bound-
ary, as in Section 6).

As time increases, Z(y,t) in equation (7.3) does not decay to zero
but approaches the steady state solution

w
Z(ym) = - —+ Y -

v

In equation (5.1) Db is a zero vector and, if the finite difference solution
is not to decay to zero, the equation must be neutrally stable. One eigen-
value of the matrix M for both Type (xi) and (xii) is in fact nearly zero.
For Type (xi), F(b) of (6.30) will be nearly zero for large n ‘and thus

z =b in (6.31). (In some cases the root is so near zero that it is
rgcorded as such in Table 1). An exact zero does not occur because of the
effect of Type (i) at the opposite boundary.

7.2/
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7.2 A fixed wall

We similarly consider the flow along a wall (with suction), which
has been impulsively brought to rest from moving in its own plane.
Instead of (7.1) we have boundary conditions:

u(y,0)

u(w, t)

U, for y>» o0,

i

i

U, u(0,t) =0, for t> 0.

The enalytic solution u(y,t) will only differ from that of (7.2) by a
constant and a change of sign. Thus the vorticity will be gaven by (7.3) with
a change of sign. In the numerical method,Type (vi) may be used for the
boundary condation at the fixed wall and Type (ii) at 'infinity'. Initially
the stream function satisfies

Vs =¥j =Uh for all

and the vorticity is zero except at the boundary, where equation (3.1) applies,
i.e.

— - - ﬂ___ -
Zy= - (¥, - YA = -UA
Now for an upper boundary, Type (vi) is equivalent to equation {6.17), which

for a lower boundary becomes
n
Y
2 % = -U/h
d
j=o

and this is precisely the equation used for conservation of vorticity at =
lower boundary (equation (4.14)}). The difference in sign occurs because the
impulse at the wall is in the opposite darection.

Thus for this problem, the numerical method using Types (vi) and (ii)
will produce the same results (apart from negation) as that using Types (xa)
and (i). We can similerly show that Types (vii) and.(ilg give the same results
as Types (xii) and (i). The vector b in equation (5.1) is non-zero and the
equation does not need to be neutrally stable. The finite-difference approxima-
tion to the steady state solution is -M~'D .

7.3 BRestrictions on B/a

The form of .the steady state solution indicates that the grid length
h mst be restricted. If h is &do,large, the vorticity will be concentrated
into the region between the boundaryrand the first interior grid point and the
finite-difference approximation will be completely inaccurate. The difference
approximation )
Wiy 1

%(h,e) - 2(0,x) __U_:_ <e . ) ,

h

to the derivative



() Wt B

|

oy v

will have relative error E , where

(hym) - 2(0,) 1hye
E = 1-(zh hzo l/{ad;:)>

)
u ——
S lazlE
Vh

. « 8
= 1-—sh<—> s
B x

vl

s
where -~
«

Yh
= -:-2-;- . {The change of sign is made because the wall is & lower and
not an upper boundary). For example, if B/a =1, E= 18 which represents
quite a large error whereas for the numerical example of Section 7.1, f/a = 025
and 0*5 when E = 0°010 and 0°042. It is hence necessary for the ratio
B/o  to be restricted and most problems would probably at least require B/a < 1.
This restriction on B/a will also apply to two-dimensional flows. The
instabilities, found in Section 6 for boundary conditions of Types (vi), (vii),

(viii), (xi) end (xii), are not as likely to restrict the magnitude of S/a as
the accuracy considerations presented here.

8. Conclusions

As a condition at ‘infinity!, extrapolation can only be successful
at an outflow boundary and will give an unstable process if used at an upstream,
i.e. en inflow boundary. The no-slip conditions for a fixed wall, which
generate vorticity at the boundary by calculating it from the stream function,
will be stable if there is no suction at the wall. If there is a suction
velocity -V, then the mesh size h must be chosen so that the ratio Vh/v
(where v is the viscosity) is restricted in magnitude. As Vh/v 1is
increased the finite difference method becomes firstly inaccurate and secondly
unstable. At & moving wall vorticity is conserved and the conditions consistent
with this will yield stable finite difference methods if there is no suction.
If there is suction, then again Vh/v¥ must be restricted for accuracy and
stability. If pressure calculations are included in the finite-difference
method, it is possible to determine the vorticity at a fixed wall using pressures.
A pressure term is included in equation (4.2) and using (4.3) we can determine
the amount of vorticity generated. The stability of such a method would be
the same as that of the corresponding method for a moving wall. For steady flow
there will need to be similar restrictions on Vh/v  if iterative methods are

used.
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Appendix A

The following identities are required:

n
Zarain 0 = afsin 0 + a**sin 06 - & sin(n+1)0}/(1 ~ 2a cos 0 + a?) (a.1)

I'=z1

n
Zarcos 0= {1-a cos 0 + a®*"cos 06 ~ a®**cos(ne1)0}/(1-22 cos 8 + a®) (4.2)

r=0

n
Lrarsin 0 = {a(1-a®) sin 6 = (n+1)a®* 5in(n-1)6 + [2(n+1)+na®]a™? sin nd
T=a ~[2n® +(n+1) JaP** sin{n+1)8 + na®*? sin(n+2)0}/{1 - 2a cos 6 + &*)* (A.3)

zrarcos 10 = {-24+a (14d® Joos 8 - (n+1)a®*®cos(n-1)0 + [2(n+1) + na® Ja"*?cos nb

r=1 - [2nd® +(n+1) Ja P** cos(n+1)8 + na®*?cos(n+2)0}/(1 -~ 2a cos 6 + & )°
(A.)
n
_ﬂ(n+1-r)a gin 10 & {[(n+2)df4nla sin 6 - (ne1)d sin 20+ a”** sin nb
r=1 - 2a2*3 5in(n+1)0 + & **? sin(n+2)6 }/(1 ~ 2a cos 6 + " (a.5)

Z’(m‘l-r)a cos 10 & [(n¢1) + 2(n+2)d® - [(3n#h) + (n+2)d” Ja cos © + (n+1)e" cos 20
aB%4 008 n0 ~ 28 M3cos(n+1)6 + a®*Pcos(n+2)0}/(1 - 22 cos 6 + &)

(A.6)

Table 1/



Values of MAX.R&(Rr)

- L0 -

Table 1

r

Boundary

Condition Case B B C E C E

Egﬁz;: Upper +0°5 -0:5 +5°0 =50 +15-0 ~15+0
(1) (441) | ~0° 31439 [+0-00458 | -2° 08748 |40+83971 | -2 28262 |+5-01251
-0- 29253 [+0+00030 | -2+02671 [+0° 48082 | -2+08537 |+3*6L8L0

(vi) (vi) | -0° 52447 |-0- 52417 | -1+83496 {-1-83496 | -1.98636 |-1+98636
-0+ 30225 |-0°30225 | =1+30190 }-4+30190 | ~1+76528 |-1-76528

(1) (vi) | -0+35205 |-0+49920 | -1-16549 |-1-98298 | +1+22316 |-2+08L64
~0° 30628 |-0°29196 | -1+ 34923 [-1-34037 | +0-66670 |~2-04027

(i) (vi) | -0~35612 |-0°30978 | -0+95308 |-0+38385 | +2-41150 |-0- 53466
-0+ 30726 |-0+15007 | -1-20822 |-0-47588 | +162210 |-0+23778

(vid) (vii) | -0-57812 |-057842 | -2+00287 |-2+ 00287 | -2°00285 |-2-00285
-0+ 32290 |-0+32290 | -1+39146 [-1+39146 | -1°94466 |-1-9LL66

(1) (vii) | -0-35777 |-0-53267 | -0- 39633 [-1-89068 |k 09456 |-2°17906
~0° 30810 | -0530497 | -0-75668 {~1+38054 | +2°97769 |-2-07605

(i1) (vii) | -0° 36270 | -0+ 33426 | -0°02129 |-0°39133 | +6-04077 |-0-58447
-0+ 30926 |-0-15829 | ~0- 51676 [-0° 17651 | +k= 45470 | =0+ 21402

(1) (vidi) | -0°36021 |-0°53535 | +5°62269 |[~1-84306 #26-6770 {-2-12L44
~0* 30881 | -0 30609 | +5°89842 |-1-41286 h27-5973 |-2-04952

(24) (viii) | ~0- 36530 |-0-34121 | +650898 |-0+4353h (29-6448 |-0-75206
-0+30997 |-0216032 | +6°51089 |-0-19156 +29-6495 |-0-24993

(1) (xi) | ~0-00001 | -0*32464 | -0 31928 {-2-03950 | +1*98124 |-2+12545
-0-00000 |-0+29642 | +0+ 03425 |-2°01244 | +1° 54669 | -2:03923

(1) (xii) | -0°0002 |-0-33106 | 40+ 27778 [~2-09271 | +4= 143483 | -2+ 28853
00000 |-0+29864 | +0° 14374 |-2:02781 | +3+11547 | -2+ 08654

In all cases a = 1 and for each set of boundary conditions and value of

8 the two entries are for n = 10 and 15 respectively.

Table 2/
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Table 2

A summary of the results of Section 6

Case | & B c D E F
Boundary a>0| a> |Bl>0 a = 0 «a =0
Condition wypes . B8 >a>0 B < —x< O
Lower | Upper\] #=0|'#>0 5 <0 8> 0 g >0
(1)1 (i)1 | S S S s S S
(131)2 | (111)° N N N N N N N
! | (111)? s S U S S U U
(vi) (vi) S s’ s s N 5 N
(1) (vi) S Y § C.S U g s’
(i1) (vi) 8 S s° c.S U 5’ s
(vii) (vii) ] s’ §° 5 N s N
(1) | (vit) 3 57 g C.5 U s° s
(11) | (vi1) s s s C.S U s s2
(1) |(viid) s s s C.S U 7 s
(11) |(vii1) S g s? c.S U s s
(1) (=) S S S ot U S S
(1) (xii) S S S o U S S

The entries S, N and U indicate stable, neutrally stable and unstable
cases respectively. C.8 1indicates cases which are conditionally stable,
i.e. they are unstable for sufficiently large values of S/a .

Notes: 1

or Type (ii).
2 cr Type (iv) or (v)

3 result postulated from numerical evidence

b except for even values of n , when, for B -«
sufficiently small, numerical evidence suggests these

cases are stable.

Table 3/




Teble 3

Eigenvalues of M for a =1, =11
and boundary conditions of Types (1) and (vi}

-0+45780

—0°49459 I 440293
-1+17858 I 8164121
1242657 ¥ 4145621
46509, *=  44+3632i
-1279940 T 16-71404
-1+94326 % 18.1651i
-1-97781 I 19:53731

BMG
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Fig. 1. Boundary points,
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u0='0 uo=0
T=T 4o = — — cm—p —
2 u_ i’ =0
Vo=V, Y1=¥4
(a) (b) (c)
Fig. 2. Boundary conditions, (a) Type (vi), (b) Type (vii),

(¢} Type (viii).



18 Boundary condition Types
A (1) and (v1g
+ (ii) and (vi
16 b= ¢ (1) and (vii) 0
0 (1i) and (vii)
O (1) and (vaii)
14 b
12 k=
10 P+
8 =
6 k
4 L
2—
o N | 1 1 1 1 | i 1 L -
3 7 11 1516 19 23 27 30 3 n

Fig. 3. Critical values of (B/a). For odd n, the values
were obtained analytically, e.g. from equation (6.15) for
Type (i) and (vi)., For n = 16,30 the values were obtained

by calculating eigenvalues of M.
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Fig. 4. HNumerical and exact solutions for the problem of

Section 7.1.
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