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This paper investigates the stability of finite-dlfference sohemea, 
including boundary conditions, for solv5ng the time-dependent, Navier-Stokes 
equations'. The different types of boundary condition whioh msy ocour~are 
listed and no-slip conditions are derived for a wall with suction. Stabi3.i~ 
analyses are completed for one-dimensional problems with various types of 
boundary conditions, using schemes suitable for two-dimensional problems. All 
the conditions introduced are shown to be stable if there is no flow across the 
boundary. For suotion at a fixed or moving wdl, it is shown that the mesh 
size must be restricted for both accuracy and stability. 

I. Introduction 

Various proposals have been made for dealing with boundaries in 
finite-difference approximations to the two-dimensional, time-dependent, 
NavierStokes equations. The types of boundary which ocour may be divided 
into three categories, those concerned with 'conditions at infinity', no-slip 
conditions at a fixed wsll and no-s%ip conditions at a moving wsll. The most 
Common method of investigating lnumerioal stability' of the finite-difference 
process is examination of the behaviour of amplitudes of Fourier components, 
assuming that the equations are approximately linear and that the region is 
infinite. This clearly does not take into account the effect of boundary 
oonaitions. In this paper, the method employed is equivalent to oonsidera- 
tion of Fourier oomponents with definite boundary conditions. The results, 
obtained here, are for one-dimensional problems using finite-dif'ferenoe 
sohemes applicable to two dimensions. Of course, in practice, more efficient 
methods could be used to solve one-dimensional flowa. So as to introduce 
linefir parts of non-linear terms a steady 'cross-flow is added. For 
example, for flow along en infinite fixed wall, suotion is included at the 
Well. The boundary conditions are also extended to allow such such 'cross-fla'. 

2./ 
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2. lVumerioa1 Method 

The two-dimensional, timdependent, Xavier-Stokes equations may be 
written in terms of the stream function ~(w,t) -avo*oikf z(w,t) 
as 

and 

at; 
- = vvng + J(r*r;) 
at 

**- (2.1) . 

VP* = -g l * *  (2.2) . 

where v Ls the viscosity, 
w aZ: at ag 

Jbst;) E - - - - - t 
ax a9 a7 ax 

and ap aa 
V’ *-+-. 

a2 ayp 

The velocity af the fluid at any point is given by 

snd 

at 
u = - 

as 
--- (2.3) 

a* p = -- , 
ax 

l -- (2Jt) I 

where u curd v am the velocity components 5.n the I and y directions. 

The numerical mthods used by l?r~nun~'~'~ and those concerned with 
weather prediction, e.g. LCLy7, replace these equations by suitable finite- 
difference equations. 
tion) . 

(The viscosiQ y is taken as sero in weather ~edio- 
Vortici~ values are first advanced over a tire step using a difference 

approximation to (2.1). The vorticity values so obtainedare used in a differ- 
ence approximation to (2.2) and the resulting l&mar equations are solved to 
find values for the stream function. Various difference sohems have been 
tried and particular attention has been directed to finding satisfaotorJr 
difference analogues of the non-linear term J(S,Z:) - We zhdl. assume that the 
operator V' in both equation (2.1) and (2.2) is replaced by the usual five- 
point difference formula so that (2.2) becomes 

I i-**j + $i+,,j + b-l + *,, j+i - %, j = -ha%, j ’ -*- (2.5) . 

where I,, j ad gi, j are the velue5 of the stream function and votiicity in 

the differenoe scheme at the point xi=xo+ib , yj=yo+jh . Thus the points 

included in the scheme are on a square grid of mesh size h . 

34 
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3. Boundary conditions 

3.1 We shall now considsr numerical approrimations to conditions on a 
boundsryalongtheline y=yo. 

*d %,o ) 
We write 4, and & (instead of I, o 

for the values of the stresm function and vorticity at an arbitrary 
mesh uoint on this‘boundsry, 1-i and c-r for values one step outside the 

and $1 and Zi for velues one step inside the boundary (see Fig. 1). boundary 

3.2 Conditions at iufillit~ 

interest 
boundary 

fmotion 

We consider first some types of conditions used away from the region of 
when the flow is assumed to take some steady form. The following 
conditions may be used in the finite-difference equations: 

(i) Type 
of X. 

go = 0 and to = $b , where Sb is a given linear 

The condition is used to obtain a steady flow across the boundary with 
zero vorkicity at the boundary. As qb is a Near function of I, the flow 

is independent of distance along the boundary. 
boundary is a streamline. 

If $b Is a constant the 

One important use of the condition is at sn upstream boundary at whioh 
there is * steady inflow with zero vortioity. It also applies along a line 
about which the flow is symmetric. 

The condition may be used when the fluid has 8 specified velocity U 
along the boundary. The condition on the stream funotion comes from the simple 
difference form of equation (2.3). 

ryPe Go-G-;Zi’Go f&l go = $, , where qb is a given 
lhear function of x . 

The vortidty is 'ertrapola$eted' using a condition equivalent to taking 
a'@$ =o . 

This gives extrapolate& vortici~ and specified velocity U along the 
boundary, 

Both fields sre extrapolated. This was used by Fromm' as a downstream 
boundary condition. 

We note that Types (ii), (iv) and (v) do not exclude the possibility 
of flow aoross the boundary. Usually the opposite boundary condition would 
cause suoh a flow. For example, Ty-pe (i) could be used upstream and Type (v) 
downstream. 

3.3 No-slip condition at a stationary wall 

At a stationan wsll or obstacle the velocity of the fluid is eero and 
the stream function is given. Vortioity is generated at such a boundary and 
this must be incorporated in the numerical method. 
used by Frown 3~~ 

The process, proposed and 
is to first advance vorticity values at interior points Using 

a finite-difference form of (2.1). Values of $ at interior points may now be 

found/ 
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found using equations-(2.5), as these involve the vorticity at only interior 
points and $ is known on the boundary. Using the condition of zero velocity 
thong the wall, it is possible to obtain 'hypothetIcal' v&l,u,es for $ at points 
just outside the boundmy. The values of Jr thus found may now be inserted in 
equations (2.5) for boundary points, to obtain the vorticity at these points. 
In the methods described below, the stream function at the w&,1 is a linear 
function of x and therefore there is a suction velocity, whxh is constant 
along the wall. Frommhas used the first two of these methods. 

function ,"P; (vi) Jr, - Jr-% = 0 and llro = $, , where Jr, is a given linear 

Values of $ at interior points ape found using (2.5) nth 

at the boundary. 
$, = qb 

vorticity 
Reversing equation (2.5), we obtain for the boundary 

t;, = - ($, - q. + rjr-a)/ha 

and thus, as Jr-, = q, = f b' we obtain 

go = - b, - $,)/ha a*- (3.1) 

ThLs condition may be derived by defining velocities at points, 

yj+ = JT, + (j-i)h , us% 

a difference anelogue of (2.3). At the boundary we choose q-I so that 

ud = 0 (see Fig. 2(a)). Froma has shown that the condition is a more accurate 

approximation to flow with a wall along y = yo-4h than with .a wall along 
Y'Y - 

0 

function &k; (vii1 $I - $-,= 0 and $, = Jr, , where qb is a given linear 
. 

The roethod due to Thom"is similar to Type (vi) and the boundary 
vorticity is found using 

go = - ai - $bMp - *-a (3.3) 

We choose Jr_, so that u , , as defined by (3.2), satufies 
-2 

"-4 = -u' 5 

snd, if we define u. by 

u. =;b~+u~) 3 

we obtain (see Fig. 2(b)) 
u, = 0 . 

Type (viii)/ 
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and 
!lhe (vii- 3 $. = $b I where Jr, is a given linear finction af x 

!chis method, due to woods 12, uses an approximation to equation (2.2) 
Of higher degree than (2.5) when findFng the boundary porticiQ values. It 
has been employed successfully in several calculations of steady state solutions, 
e.g. Bussel.l.9. 

If the flow is dependent only on time and dxAx.nce normal to the wall, 
the method may be obtained by considering the relation between the vorticity 
and the velocity af the fluid. From (2.2) and (2.3) we have 

+". --- (3.5) 
ay 

We approximate to (3.5) at y = y. by replacing du/dy by the derivative, at 

Y=Yo, of the parabola through the points (y,,u,), (y;,u+) and (y,,uI) 

where u. = 0 and uI. = ~(u~+u~) . (See Fig. 2(c)). 
I, 

We obtain 

ROW 

--% 

4. 

on combining (3.7) and (3.6), we obtain (jJ+). 

Moving wsu 

4.1 Moving: Wall. without suction 

--* (3.7) 

Another type of boundary condition is that of a KU (wxthout3suction) 
moving with constant velocity in its own plane. It was shown by Fromm that, 
if there are no other factors influencing the flow, vorticity is 'conserved for 
such a bounw, in the sense that the integral of the vorticity, over the 
region of the flow, is constant. In the discr te case, the integral is repkced 
by a summation. The methods used by Fromm3~ % involve advancing vorticlty 
values at both interior and boundary points using a difference form of equation 
(2.1) and boundary conditions consistent with conservation of vorticity. 
Stream iTunction values are nom obtained usmg equation (2.5) and a suitable 
velocity condition at the wall. However, it is necessary to ensure that the 
wall is a stream-line by making $ constant along it and Fromm uses sn averaging 
technique to obtain this. Equations (2.5) are solved iteratively and during 
each iteration the average of the $ values on the mill is calculated. All 
V&ASS of' 1 on the wall are replaced by this average before the next itera- 
tion is commenoed. the find stream function values are used in equatzons (2-5)s 

along/ 
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along the boundary, to obtain new vorticity values. This last step Is 
necessary if other faotors influencing the flow are to be accounted for. 
Other factors, e.g. an obstacle, modify the stream function and lead to the 
generation of vorticity at the wall. 
and (vii) have been used by Fromn. 

'Iho methods corresponding to Types (vi) 

velocity. 
Type(h) c.,,=c, and (to-i-,)/h=U where U iat~~~ 

Dutig the calculation of the stream function from equations (2.5), 
the averaging technique described above is used on the boundary. 
vortiolty on the wall is finslly recalculated using ths reverse of ($), 

i.e. 

As in Type (vi) the wall is effectively one half-cell outside y = y. . 

Zei = Z, and (*, - $,r,)/(N = U - Tme (xZ 

The condition is otherwise the s- as Type (ix) except that the 
final boundary vorticity is calculated from 

The wall is effectively along y = y, . 

4.2 Moving wall with suction 

Ip there is suction at * moving wall, conditions of Type (ix) and (x) 
are no longer valid, as they would yield some transport of vorticity Into the 
WEiLl. Howe&, vorticity is stU.l conserved for such a well when no other 
faotors influence the flow, as is now shown. 

We oonsideraflow dependent ohly on time and distance from an 
infinite wall, across whioh there is a constant suction velociy -V. If the 
wallis y=y,* with fluid in the region y > y, , equation (2.4) becomes 

a* 
v=-- 

dX 

sndhenoe (2.1) reduces to 

a-z aa,% at: 
-=v --v- . 
at aYe a7 

The Naviezdtokes equation for the velooitg u becomes 

and 

au a% au 
-=Y --V- 
at ap a9 

au 
z=-- . 

ay 

l -m (4.1) 

l -• (4.2) 
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Integrating (4.1) and assuming that the vortioity becomes zero away from the 
wall, we obtain 

; jl.,. c-,;+vq 
90 Y=Y, 

c 

a% au 
= v--v- 

aYp aY 1 
Y=Yo 

a-- (4.3) 

au 
= - r_ 1 at ’ 

from (4.2) ) 

Y=Yo 

= 0, as tha wall move8 with constant velocity. 

To derive conservative boundary oonditlons we replace the space 
derivatives of g in (4.1) by finite-differences and obtain 

where gj(t) is the vortioity at yJ at time t . In one aimsion, any of 

the methds discussea by Lilly' for replacing J(JI,Z) reduce to the transport 
term in (4.4). We shall not be concerned with time integration here but the 
method usea for this should be conservative. If non-conservative time 
difference methods are used, extra errors 

Y 
be introduced although these may 

not be serious, as has been shown by Fromm39 for the method devised by Dufort 
and Frankel2 . 

We now sum equations (4.4) over all points to obtain the rate of 
change of total vortioity. This summation may be considered a numerical 
integration of (4.1) with respect to y. There are two results corresponding 
to boundary conditions of Types (ix) and (x). 

4.3 Bound-~along P = y, =j& 

of we perform simple summation of ewations (4.4) we obtain 

assuming gj = 0 for j 7 N . 



Thus 

-a- 

-f-@ fLj) =--v (“;“~)+v(“~~-i) *.* (4.5) 

j=o 
and this finite-difference analogy of (4.3). By equating the right-hand aide 
of (4.5) to eero, me obtain the following conservative bom&.r;y oon&ti.on. 

l *- (4.6) *  

and 

‘0 - L = u 

9 

h 

where U is the velocity of the wall. In two-dimensional. flow, the stream 
function must also be restricted so that it is linear along the w&U, usiag s 
technique s.lmilar to that for Type (ix). The vorticity along the wall is 
then recalculatea using 

~o=-($,-*o)~n+u~. l ** (4.7) 

when v=o, the method reduces to Type (ix). For non-eero V, we shall show 
that the method 0811 only be auocessful. if h is sufficiently smdl. The 
method gives a boundary effectively one half-cell below y = y. and thus, when 
performing numerical integration of the vorticity by summation, we assume each 
vorticity value, including boundary values, is constant over one cell. 

4.4 Boundary alon~ Y = so 

In this ease, in the integration of the vortloity, the boundary V~~IEIS 

extend over only a half-oell in the interior Of the region. We consider 
therefore the quantityr 

-%(6,-L) 
from (4.4). 

Thus 

which is a finite-difference analogy of (4.3). On equating the right-hand 
side to zero we obtain the following boundary conditions. 
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Again the stream function must be restricted so that it is Linear along the 
wsll and the vorticity finsJ.ly corrected using 

a* in Type (x). The condition reduces to Type (x) when V = 0. 

4.5 Iomilsive start 

If the wall starts impulsively from rest, with the fluid at rest, 
ini'kM.&'both the stream functzcn and vorticity are zero everywhere, except 
the vorticity at the wall, which is determined by (4.7) or (&.lO), 

i.e. 
U 

r,(o) = - for Type (xi) *-* (4.11) 
h 

and 

q)(o) = ; forType (xii). 0-s (4.12) 

At any time the vorticity satisfies the one-dimensional form of (2.5) nameb 

$. J+i - sj + 'tjei = -hpcj a*- (4.13) 

and either (4.7) or (4.10) at the boundary. 

lass-g $ becomes eero awsy from the wall we obtain at all. times for 
m= (4 N 

> 

u 
3Lj=; l *- (4.14) 

j=c 

and for Q-pe (xii) 

This shows that both conditions are v&Id even initially for such flow. 
This result was obtained by Frouun5 for Type (xi). 

5./ 
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5. lkmerical Stabutg 

5.1 We consider the stability af finite-difference methods of solving 
equations (2.1) and (2.2) when applied to the one-dimensional equation (4.1), 
with various types of boun&ry con&itA.ons. Thus we shall assume that vorticity 
values are advanced using a complete difference form of equations (4.4), and 
that stream function values are subsequently found, for each time step, using 
equations (4.13). 

The ordinsxy differential ewtions (4.4) may be written in the form 

a -=!dg+i 
at l ** (5.1) 

where t; is a vector with components gj , M Isa square matrirsnd a Isa 
vector whose elements depend on the boundary conditions, We absJlnow 
consider the stability of equation (5.1). 12 Xr, for r = 1,2.. 11, are the 

eigenvaluea of Y, we shall sag that equation (5.1) is 

unstable if Msx RL(A,) > 0 
r 

neutral&v stable if bkx rnG(A,) = 0 
r 

stable ip ku~PG(X,)<O . 

In generd, a single perturbation in the solution af equation (5.1) causes an 
error whose magnitude increases with time for the first case, becomes constant 
for the second ad decreases for the third. Clearly we cannot expect to obtain 
meaningful numerical results for sn unstable equation. Even if (5.1) is 
stable in the sense given here, it does not follow that finite-&fference solu- 
tions will necessarily converge to the solution of the d3fferential equations as 
mesh aises are decreased. Parterahas shown t& for a first-order equation. 

For a steady flow equation (5.1) beoones 

an& this equation may be solved iteratively as is usual for two-dimensional 
problems, see e.g. Russell9 - Most af the comnon iterative methods will not 
converge unless Max m&J -c 0 . 

r 

5.2 Eigenvalues of M 

Xf 5 is an eigeuvector of M, conEspondingto aueigenvalue ?br, 

the oomponents XJ of & satisfy the diPTerenoe equations 

(a + fl)~~-~ - (2n + x2x3 + (a - dxj+l = O l ** (5.2) 

where/ 
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where a = u/p and 6 = V/@) . Homogeneous boundary conditions on the 
xj are derived from those applied to zj . 

given by 
The general solution af equation (5.2) (for Or+ 0 or x) is 

xj = aj(A co8 jer + B sin je,) , --* (5.3) 
l 

where 
cos e 

hr = 2a I 
-1 , 

> 
l * *  (5.4) 

ch b 

--• (5.5) 

and 

b=lna. -*a (5.6) 

We seek values of Br , A and B which give non-zero eigenvectors. 
If a solution is given by, Or = 0 or K, the general solution (5.3) is no 

longer valid and we seek a solution containing terms of the form j(%)j . 
The following cases regarding a 
u = 219 

and B KU. be considered. (The oases 
are ignored 88 for these (5.2) reduces to a first-order equation). 

(5.6)s 8 

Case A a>O, p=O 

This 00rresp0na.s to v = 0 . We obtain from equations (5.5) snd 
=I and b=O. 

Case B a> IBI >O 
-2U 2u 

This corresponds to 
--<Vxh - 

Boti a and b arereal.. 
h 

We have 

%%(A,) = 2a 
W(COS er) 

-1 . 
ch b > 

--- (5.7) 

Case C O< a<B 

This oorresponas to v > E3,/h . We let a= -ik where k>i , _.  ̂
when ch b = 4 sh c , where c = UI JS > u , 

Prom (5.4) we find 

Xr = 2a 
i ~08 er 

-1 
sh c > 

and 
2C(AJ = -2a 

~~(COS e,) 
+I . 

> 
l *- (5.8) 

sh o Case/ 
____________________-------------------- 

l 
The hyperbolic functions cash and sinh are written as ch and sh for brevity. 
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Case D a=o, /9>0 

This ooITesponds to v = 0 and v > 0 , 
%(AJ = -z/3 .Im(cos er) . 

We obtain a = -1 and 
-a- (5.9) 

case E p<-a<o 

This oorresponas to V< -2u/h . 
when chb = 4 sh c Rmere c = -ink> 0. 

Welet a=ik where O<k< 1 

From (5.4) we find 

hr = 2a 
I 008 er 

-1 
sh o > 

24(A,) = 4% 
Im(cos er) 

+I . 
sh o > 

l -• (5.10) 

Case F a=0 8x0 

Thisoorresponasto v=o and. V<O. 
J&G(AJ = -28.zn(coa er) . 

We obtain a = 1 and 

6. Particular Boundary Conditions 

6.j We now consider the effects of particular boundsry conditions on the 
eigenvalues of M . Two conditions sre reequired, om at each boundary. It 
should be remembered that if It is speciried at both boundaries a fixed msss 
flaw must occur aoross any line joining them. In the cases discussedbelow, 
V Is positive in the direction frbmthe first to second boundary. Table I 
shows values of hlax seC(Ar) for numerical cases iuvolving most af the differ- 

ent boundary conditions &cussed and Table 2 a sumary of the results of the 
stability investigations made in this Section. 

6.2 Type (i) and Type (ij, 

This is the simplest combiuation. The boundary oonditions on tha 
eigenvector are 

and the solution is given by 

rx 
A=0 and er=--, r = 1,2, ..a. 

II+1 

Thus Z&(X,) < 0 for all r and equation (5.1) is stable. 

6.3/ 
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6.3 rype (iii), (Iv) or (VI and TY-Pe (iii). (iv) or (v) 

we require 

x0=2x --I i P 

X n+1 =2x -x n n-1 

Using (5.3) we obtain 

rap 00s 28 - 2a ~08 e + 1j.A + [a* sin 26 - 2s sin e]B = 0 

[a* cos(n+1)e - 2a cos ne + 00s(n-l)e]A + [sbap sin(n+i)e - 2a sin ne + sb&-l)e]B 

=o 

ei the e are values of 8 for which these equations yield non--zmo A ad 
B. The &terminant of the matrix of ooefficients of A and B is zero when 

[2aP 008 28 - l+a.(l+a*) cos e + I + 4a4 + a'] sin(n-I)8 = 0 . 

This has (n-2) roots 

l-x 
er = - r = 1,2, . . . (n-2) 

n-l 
and 2 roots rrhen 

I 1 
cos er = - a + - 

( 1 
=ohb,r=n-1,n. 

2 a 

For the first (n-2) roots we have R4(Lr) < 0 , for the last tn0 %(A,) = 0 

and therefore equation (5.1) is neutrally stable. 

6.4 ‘hue (i) or (ii) and Tgp& (iii), (iv) or (~1 

We require 

x0 = 0 

x n+a 
- 2x, + xn-* = 0 . 

Thus A= 0 and the Br a-e roots of 

Let 

a n+l sin(n+l)e - 2C 6j.n ne + an-' sin(n-l)e = 0 . 

f(e) fi &sin(n+l)0 - 2a sin ne + sin(n-I)0 , l ** (6.1) 

den the Or are roots of f(e) = 0 . 

Case A 

The roots are 0r = I+, fore r = I, . . . (n-l) together with 
en=o, with corresponding eigenveotor components x 

Li 
= ,j . 

B/ case 



Case B 

Firstnutethat 

f(0) =o 

P(O) = (a-l)[(n+l)a - (n-l)] v 0, for a v I, i.e. V > 0 

n-l 
< 0, for -< a< I 

n+l 
i.e. 

n-1 
v 0, for Ox a< - 

n+l I 

v< 0. 

f " = (8*-1)(-1)r si,~ 
( > n n 

which oscillates in sign for r = I,2 . . . 

b-2) 

(n-l), therefme there are at least 
real. roots. 

AlSO 

f " <o 
( > 

, if avl, 
n 

so, Fp a<l. 

We therefore have a further real root for a v (n-l)/(n+l) in the interval 
own> l 

We can similarly show that for a v I there is a root in the 
interval ([n-l lx/n,x> . 

For a-c 1 i.e. V< 0 we oan show that there is at least one root 
of the form Br = izr where er is real. Let 

F(E) = -if(ie) = as sh(n+l)s - 2a sh ns + sh(n-1)s . 

Now, b=loga(O, as a<l,and 

F(b) = 3an-1(aa -1)" v 0 . 
2 

Also 
a* -(n+i)e a8 

F(s) w -; e z-b -" 

<o. 

Thus there is-a root z in the region (-r,b) when 
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oh s 
hr = 2a ‘-1 >o, 

ch b > 

as oh sr > ch b . 

For a < (n-l) 
if a = (n-l) / 

(x1+1) , 
(n+l) , 

there is a further root of the form er = izr and, 
there is a root Br = 0 . 

We therefore deduce that, for this case, equation (5.1) is unstable 
for V < 0 and stable for V > 0 . 

Case C 

We show that S&(X,) < 0, for sJl r, and therefore that equation 
(5.1) Is stable. Tne roots are complex and we let Br = p, + i”, when 

Rb(oos t$) = 00s p, ch ur , 

Xa(cos Or) = - sin P, sh ur . 
l a* (6.2) 

%WS b(Ar) = 2c? J%(COS Br)/sh c and complex eigenvalues occur in conjugate 

p&s, if P, is a root then so is z-p, . Xe can also assume ur a 0 , 

without restriction. 

From (6.1), using a = - ik, we have 

*((f(e)) = -kg sin(n+l)p ch(n+l)u - 2k COB np sh nu + sin(n-1)p ch(n-1)u , 

l ** (6.3) 

Im(f(8)) = -k* cos(nii)p sh(n+l)u+ 2k sin np oh nu + cos(n-1)p sh(n-1)u , 

-** (6.4) 

where e = p + ti . 

We suppose that there Is a root p, + i”= , with 0 < p,6 x ad 

a-=%0. We can also ~S~LUIB, without loss,that 0 < p, 6 z/2 as x-p, is 

also a rod. 

We find, therefore, from (6.3), that %(f(O,)) 6 0 WI+& *0~~ty for Oa 

trivial/ 
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trivial cases, w= 8-a-b obtain, %(f(er)) z 0 , for npr in the 

third quadrant. For np, in the second or fomth quadrants, we csn show 

using (6.4) that Im(f(8)) is non-zero. We conclude that there is no 
root with 0 s pr ( x . Thus, using equation (6.2), we deduce that 
ti(OoS er> 2 0 and, from equation (5.8), that %4(X,) < 0 . 

Case D 

We Can show that this is stable by extending the method for 
Case C. 

Case E 

As for Case B with V < 0 , the problem is unstable for Case E. 
It is not sufficient, as in Case C, to only consider the sign of Im(oos or) , 

as my be seen from (5.10), and therefore a different method must be adopted. 
For odd values of n, Case E may be shown unstable using a method similar to 
that of Case C for boundary conditions of Types (i) and (vi) (Section 6.7). 
This restriction to odd values of n is justified in Section 6.7. 

case F 

This may be shown to be unstable using a method siailsr to that of 
Case C above. 

6.5 Conclusions on extrapolation boundary condition 

It has been shown that for outflow, e.g. as a downstream 'infinity' 
condition, the use of extrapolation boundary conditzons (Types (iii), (iv) 
and (v)) may yield numerzzall,y stable equations. For inflow, e.g. as an 
upstream 'infinity' condition they yield unstable equations, except possibly, 
when a similar condition is used for the corresponding outflow. Srnce in 
any two-dimensional. flow there will be other boundaries it is highly probable 
that extrapolation will always give unstable equations when used at an inflow 
boundary. 

6.6 Type (vi) andTme (vi1 

a boundary conditions for the vorticity involve stream function 
values and these must first be related to the vorticity. Equations (4.13) 
may be written in the form 

where the components of k and 2 are the values of the stream function 
and vorticity respectively at interior grid points, H is the nxn 
tridiagonal matrix 

Ii = r 
-2 1 0 

I -2 
* . 1. 

. . . 

- 1 '-2 'I 

1 0 1 -2 
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$0 ana *xl+1 are the specified boundary values of the stream function. 

Now K' has i,j th element, 

(n+i -j)i 
for jzi, 

Xl+1 

and therefore, 

and 

(n+i-i)j 
for j<i, 

n+l 

li = hs 2 (z) gj + n’on;,tn+’ 
j=1 

**a (6.6) 

j=i 

!Che boundary condition given by equation (3.1) becomes, for the lower 
bo-y, 

and, for the upper boundary, 

j=l 

b.e. 

and. 

The bounm conditions for the eigenvectors of hi are, therefore 

a=- f(Y)Xj and xn+l=- f(s)xj# 

j=1 j=i 

n 

c 
b+l-3) j x =o 

j=o n+l c jxj =o. 

j=l 



- 18 - 

If we substitu-ti the general solution (5.3) in these equations 
and seek values of e for whzch A and B are non-zero, we can show, after 
some considerable dpulation using the identities (A.3) - (A.6) of 
Appendix A, that Br are roots of 

lsin 0 [oh(n+2)b - cos(n+2)8] - (n+2)[ch b - cos 0]sin(n+2)Cij/(ch b - cos 8)s = 0. 

We shall only consider in detail cases when cz = 0 or B = 0 , since 
for these the roots of (6.10) my easily be shown to be real. For other cases 
the roots are complex and no method has been found af determining the 
sign of the corresponding 

Case A 

As b = 0 equation (6.10) becomes 

f(e)/(7-00s e)* = 0 , 

where 

NOW 

f(e) E sin 8 [i--oo~(n+2)81 - (n+2).[i-008 e].sin(n+2)8 . 

f( 2 ) = &(LJ. [?-(-I)=] for r = I,2 ..a+l , 

and 

= 0 for even r , 

> 0 for odd r , 
I 

f(0) = f(x) = 0 . 
l-36 

Also we have f1 - 
( > 

so* for even r, and f'(x)<O,fmeven n. 
n+2 

If n is even, there am, therefore, n/2 roots 

er = m/(11+2) for r = 2,4, . ..n. 

together with n/2 roots satisfying 

(r-1 1% (-I>% 
-< er< - 

n+2 xl+2 
for r = 3,5 . . . n+l . 

If n is odd, there are (n+i)/2 roots, 

er = m&+2) for r = 2,4, . ..(“+I). 

together with (n-l)/2 roots, 

(r-l )x b+l)% 
-< er< - for r = 3,5, . ..n. 

n+2 n+2 

Thus there are n real roots and equation (5.1) is stable. 

D/ Case 



- 19 - 

Case D 

a = -i and equation (6.10) becomss 

f(e)/(cos e)g = 0 , l -* (6.11) 
where 

1 

-sin e[l + cos(n+2)el + (~+~)cos e .3io(n+2)8, for n I 0 (mod 4) 

f(e) E -sin 8 cos(n+2) 8 + (n+2)cos e sin(n+2)e, for IL e I 0r 3 (mod 4) 

sin eGi-c0s(n+2)el + (~+~)cos 8 sin(n+2)8, for n e 2 (mod 4). 

By examining the behaviour f(e) and f'(e) at points m/(n+2) 
for r = O,i, . . . 
n real roots of I 

n+2), it can be seen that for all values of n there are 
6.11). Care needs to be taken over zeros of f(e) at x/2 

88 the denominator is also zero at this point. 

Using equation (5.9) we deduce that for all eigenvalues hr 

R4((hr) = 0 

and equation (5.1) is neutrally stable. 

This case is clearly not practicable in any physical problem, as a 
no-slip condition will not occur for v = 0 , however it should provide some 
insight into the behaviour of the n&hod as @/a is increased. 

Case F 

Due to the symmetry of the boundary conditions this is the same as 
Case D. 

Cases B, C andi 

As mentioned earlier the roots of equation (6.10) are complex for 
these cases. However, we might expect, on the evidence of Cases A, D and F, 
that equation (5.1) is at worst netitrally stable. This has been found true 
for all of several numerical cases, some of which are given in Table 1. 

6.7 TyDe (i) and Type (vi> 

Since the matrix H of (6.5) is unchanged, the second boundary 
condition is again (6.9) and we have boundary conditions 

n+i 
x0 = 0 

1 
jxj = 0 . 

j=i 

The first gives A = 0 and using the identity (A.3), we deduce that we require 
the 8, to be roots of 

ia(l-2)sin 0 - (n+2)a n+4~h ne + [2(n+2) + (n+l)a* lan+3sin(n+l)e 

- {2(n+l)2+ (11+2)]a~+~sin(n+2)e + (n+l)anfSsMn+3)el/ 

(I+2 - 2a 008 e)' = 0 . 

a-0 (6.12) 

Case a/ 
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Case A 

Putting a = I we obtain for equation (6.12) 

rhl+i)sin(n+2)e - (n+2)sin(n+l)e]/(l-cos e) = 0 . 

The numerator alternates in sign for points m/b+ 

r = I,2 . ..(n+i). snd thus there are n real roots Br and equation 
(5.1) is stable. 

Case C 

This case corresponds to flow towards a fjxed wall at Pmich there 
is suction. If n is odd, there must be a red. eigenvalue of M as 
complex eigenvalues occur in conjugate pairs. We shall examine the sign of 
this real eigenvalue and show that, if @/a is sufficiently large, the method 
is unstable. This restriction to odd values of n is justified, in that 
we are concerned&with seeking indications of the stability of the method in 
two dimensions. 

SfA is real, me deduce from (5.8), that cos er is purely 
imaginazy end ,' therefore let 

x 
or=-+iqir, 

2 

when (5.8) becomes 

Q$a(sh$/shc-1) . 

Wehave 84(Ar)>0 if tir ismaland B,> o>O. 

putthg e=E 2 + 19 i.n (6.12), we deduce (remembering n is Odd) that $Sr 

are the roots of 
I 

F($)/(sh c - sh $5)' = 0 , l -* (6.13) 

where 

p(4) = k(l+ks)ch # - (n+2)knt4ch n$ + G2(n+2) - (n+l)kglkn+3sh(n+l)# 

+ [2(n+l)ks- (n+2)]kn+soh(n+2)# - (n+l)kn+%hb+3)# s 

a=-ik and c=lnk. 

Notice first, that F(C) = F'(C) = 0 8 but this does not give a root 
+ = o of equation (6.13) as the denotiator also has a double zero at this 

point. 

since 
Ip F"(o) is positive, F($) has a minima at # = c and, 

F(4)/ 
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there will be a real root $r with Br > c . 

Now 

F"(c) = $(n+l)(n+2)+ks (II' + 3n+J)+$k'(n+l)(n+2)-(n+2)kP" +r-(n+l)~"*e 

and F"(c)>O, if k<kc,where kc isthecnlyrootof 

~(n+l)(n+2)+k*(nP+3n+3)+&k'(n+1)(n+2)-(n+2)ks n*r --(z~+l)k~~*~ = 0 

with ko > 1 . 

Thus if n is odd and k < kc , the method is unstable. 

Since 
a+@ 

kg=-- 
a-8 

the condition, k < ko , is equivalent to 

&‘a > (kca+l)/(kcp-l) = @/cdc (say) --a (6.15) 

i.e. 

vh 
- ' (kc*+l)/(kc=1) - 
2u 

A graph of (j3/a)c against n, for odd. n, is shown in Fig. 3. 

By computing the eigenvalues of M it has been found, in all of several 
numerical oases with n odd, that the real eigenvalue derived from (6.13) is 
the eigenvalue with largest real part (e.g. Table 3 gives eigenvalues of M 
for n = 15,a = I, ~9 = 11). Thus, for odd n , equation (5.1) has been 
proved unstable for &/a) > @/a), and on the basis of numerical results it 
is probably stable for (a/a) < (P/K), . If n is even, direct cslculaticn 

of the eigenvalues of M suggests that equation (5.1) becomes unstable, as 
is increased 

t?L-itical values' 
just above a smooth curve (Fig. 3) joining 

for odd n . Critical values af @/a) are 

shcm in Fig. 3 for n = 16,30. Approximately therefore, the region above 
the curve represents unstable ratios /3/a ad the region below the c-e, 
stable ratios. 

Case D. 

By putting k = 1 in Case C, this case is proved unstable for odd 
n . Numerical evidence suggests it is also unstable for even n . 

B/ Case 
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Case B 

Numerical evidence suggests that Case B is always stable. Table 1 
gives some results. 

Cases E sndF 

These cases are of IAttle interest since they represent flow out, of 
a fixedwall. Numerxal evdence suggests that equation (5.1) is stable for 
all values of o and fi for both cases. 

6.8 Type ( ii and Type vi ) 

The use of the boundary condition of Type (i) with Type (vi) implied 
a fixed mass flow across the region between the boundaries as Jr is specified 
at each. The boundary conaitlon of Type (ii) fures only the velocity along 
the boundary and allows the stream Function to adjust according to this and 
other factors influencing the flow. For the condition of Type (vi) we again 
need to determine the stream function in terns of the vorticity. We express 
equation (4.13) as 

L$=-h'z +d , - - 

where the components of $ and t; are the stream function and vorticity 
at interior grid points, I is tT;e nxn tridiagonal matrix, 

L= 

U is the velocity at the first boundary ani 
function at the second boundary. 

-1 1 0 
1 -2 1 

I 
. . . 

, . 
. 

. . 
. 

I -2 1 
0 

1 -2 

uh 

0 

0 

%+1 

I. tf Cl+¶. the specified 

The last row of Lmi has -1 for each element, as may be verified by 
premultiplying L by such a row vector. Thus 

and, on using equation (3.1) modified for an upper boundary, we obtain 

--- (6.17) 
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The boundary cqnditions on the eigenvalues of M are thus 

x0 = 0 

=jzo ’ 
j -J. 

i 
The first condition implies A = 0 and from the second, on using the identity 
(A.l), we deduce that the 0 

r must be roots of 

n+s 
Gsin 0 = a sin(n+l)e - ~+isin(n+2)e]/(ch b - cos 0) = 0 . l *a (6.18) 

Cases A and B 

As we are only interested in suction at the wall, w3 assume V is 
non-negative and thus a b 1 , for these cases. It is easily seen that the 

numerator in (6.18) alternates in sign for points rx/(n + ;I andtherefm-e 

there are n real roots and equation (5.1) is stable. 

Case C 

As with Types (i) and (vi) we consider the red root which must exist 

when n is odd. We again put er =R+ i# 
2 

r and seek a root tir with 

tir > c when the method is unstable. Equation (6.18) becomes 

F(gb)/(sh c - sh $) = 0 -*a (6.19) 

where 

F(#) = ch (b + kn+s sh(n+l)$ - k*'ch(n+2)$ . 

F(c) = 0 , but # = c is not a root of (6.19), as the denominator also 
vanishes. 

Now 

F'(o) = $[n+l) i + (n+2)k- kPn+s ] 

and 
p(9)- -k"*ie("+P) as $5 *W 

<o. 

Therefore there is at least one mot 6, , with $r > c if F'(c) > 0 , 

whioh will be true if k < kc , where kc is the root of 

b+l I/ 
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(&) 1 + (n+2)k - kp"*a = 0 
k 

l ** (6.20) 
with k, > I . 

A graph of the critical ratio 

is shown in Fig. 3. Numericel evidence again suggests that, for odd n, 
the real eigenvalueislarger than the red parts ofothereigenvdues and 
that, for even II, the critical values are just above a smooth curve through 
the points given by (6.21). Apprmimatelytherefore the curve divides the 
region into at bl a e and unstable cases. 

Case D 

By putting k = 1 in Case C this case is proved unstable for odd n . 
Numerical evidence suggests it is also unstable for even n . 

C&es E and F 

Thei3e cases are of little 
they would be stable. 

6.9 Conclusions on Type (vi) 

For one-dimensional flow, 

interest. Numerical evidence suggests 

equation (5.1) is stable if this condition 
If !l&m (i) or (ii) is used with Type (vi) a res- 

be observed. In any two-d;imensionsJ. flow, with a 
boundary of Type (vi), there must be other types of boundary and it is 
therefore probable that if the ratio (Vh/u) is too large, the finite- 
difference method will be unstable. It is interesting that equation (5.1) 
should only be conditionally stable for suction, with a restriction on the 
magnitude of the suction velocity (for a given mesh length), whereas for 
fluid flow out of the wall equation (5.1) is always stable. This of comsl3 
does not reflect the physical behaviour of flow at a wall with suction and 
emphasises the difficulty of comparing stability of the numerical method with 
stability of the actual flow. 

We shall see in Section 7.3 that this restriction on Vh/v , for 
stability, is not as severe as that required to obtsin an accurate numerical 
solution. 

6.10 Type (vii) and Type (vii1 

The stream function values one grid point inside 'the bodaries are 
again given by (6.6) and (6.7) and thus we obtain, using (3.3), the boundary 
oonditions 

The/ 
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The boundary conditions for the components of elgenvectors of the 
matrix M are therefore, 

and 

z *( J n+l-j)x. - 4(n+l)xo = 0 

j =o 

xl +z 17 z 3x5 
-+(n+l)x,,, = 0 . 

j.r 

after some considerable manlpul.atlon using the ikntities (A.3) to (A-6), 
it csn be shown that the Br are roots of 

&ch b sin 6 lch(n+l)b - cos( n+l)0] + (n+i)sin(n+l)~[cos 213 - ch zb]v 

(ch b - cos 8)' = 0 . us- (6.22) 

Again we only consider in detail the cases when a=0 or /9=0. 

Case A 

As b=O, (6.22) becomes 

sin e/2 - 2 cos(n+i)e - (n+l)sin(n+l)e sin e]/(i-~~~ e)l= 0 . 

By considering the behaviour of the numerator at points rx/(n+l) , it can 
be shown that there &pe 'n real roots in the range 0 d e s x . xc 
n is odd, one root is e = a , the eigenvalue is -l+ and the correspond- 
mg eigenvector has components xJ = (-l)J . Equatzon (5.1) is therefore 
stable. 

Cases D and F 

a= *i ana (6.22) has n roots 

er = m&+1), r = 1,2, . ..n. 

and therefore, as %&((xr) = 0 for all r, equation (5.1) is neutrally 
stable. 

Case's B and E 
_ ‘, 

The roots dfz.6.22) are cdtiplex. 
t 

Numerical evidence (see Table I) 
suggests that equation. 5.1) is-at &%St neutrally stable for sll a and 8, 
as might be expected from the resultsdfor Cases A, D and F. 

r--- 

c. "3 -SK+* = 0 

j-1 
from,/ 
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from which we dedqce using the identity (A.3) that the Br must be roots of 

124%a9)sin 8 - (n+l)k+a sin(n-I)8 + 2(n+l-a*)Ep+asin n0 

+ G(n+l)(a' -I)&? 3. eP+"sin(n+l)f3 - 2[1+(n+?)a* &P+ssin(n+2)8 

+ (n+l)an+' sin(n+3)'3]/(oh b-cos8)s = 0 . 
**a (6.23) 

Case A 

a = 1 and consideration of the numerator in (6.23) for points 
shomthatthere are n real roots in (o,?t) . 

Cases C andD 

Assuming n is odd, analysis similar to that for Case C of 
l'ypes (i) and (vi) (Section 6.7) may be m~d.e. 
that (6.14) is replaced by 

!l!he result is the S- except 

(n+l)l?"" + 2kan+' - (n-l)kan** - (n+l)sk'- 2(n'+ 21~2)~ - (n+l)* 

=o. 

Nunerical results are similar to those for Types (i) and (vi). 
values of @/a)c 

critical 
are shown in Fig. 3. 

Cases B, E an&F 

Numerical evidence (Table I) suggests these are stable cases. 
I 

6.12 rype (ii)and~ype (vii1 

(3.3) 
The stream function value Sn is given by (6.16) and on using 

we obtain conditions 

II+?. 
x0 = 0 

c xj 
-$x,+, = 0 . 

j =i 

Using the identity (A.l), we deduce that the t3= are roots of 

[2sin e + (a'- ?)a" sin(n+l)e - 2an"sin 0 cos(n+l)e]/(ch b-cos 0) = 0 . 

Cases A and B 

We are only interested in 'f 3 0 for which we have a & I . 
By examining the behaviour of the numerator in (6.24) for points m/(n+l) , 
it can be seen that then? are n real roots in (0,x) . 

c/ Cases 
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Cases C and D 

Asflld.ng 11 is odd, analysis similar to that for Case C of Types (il) 
and (vi) (Section 6.8) may be made. 
is rephoed by 

The result is the same except that (6.20) 

P n+r - kg"+' - (2n+3)ka - (2n+l) = 0 . 

Numerical results are similar to those for Types (i) and (vl) and 
a graph of the critical values @/a), is show in Fig. 3. 

Cases E and F 

Numerical evidence (Table I) suggests these cases are stable. 

6.13 Conclusions on Type (vii). 

The boundary condition of Type (vii) has similar stability properties 
for the one-dimensional problem to those of Type (vi), except that a more severe 
restriction on the ratio Vb/u must be obsemed. 

6.14 TyDe (5.) and (viii) 

The stream function $ , 
equation (6.7) 

one grid point from the wall, is given by 
and using equatiog (3.4) at an upper boundary we obtain as con- 

ditions on components of eigenvectors Of A! 

On using the i&entity (A.3), we deduce that the Or are roots of 

!6a(i-a*) sin 0 + (n+l)an+ssin(n-~)e - 2(n+i)(i+3as)8*1sin(n-l)0 

+ ~(n+l)(l+lti) + 3d(n-l)]a"sin n0 + d2(n+l)(a'-3) - 62(n-l)]a”*‘sin(n+l)e 

+ [3(11-l) - l&'(n+l)]an'Psin(n+2)0 + 2(n+l)a"+ssin(n+J)O]/(oh b-cos 0y = 0 . 

--a (6.25) 

Case A 

a = I and (6.25) reduces to 

f(e)/(i-00s e) = 0 v-0 (6.26) 

where 

f(e) = (n+i)sin(n-I)6 - 6(11+1)~in ne + 3(n-l)sin(n+l)e + 2(n+l)sin(n+2)0 - 

NOW f(0) satisfies: 
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lx 
f- 
( > >o r even 

n4J 

1 

r = 1,2, . ..n 
<o r odd 

and therefore there are at least (n-l) real roots of (6.26) in (0,x) . 
We show that the remaming root 0n is of the form 

where z * is real. 

From equation (5.4) with b = 0 
A n is given by 

we deduce that the corresponding eigenvalue 

An = -2a(ch zn + 1) . a-- (6.27) 

We let 0 = x + is and obtain 

(-l)%~+ia) = (n+l)sh(n-1)s + 6(n+l)sh ne + 3(n-l)sh(n+l)z 

-2(n+l)sh(n+2)s 

= F(z) bY) * 

F(z) has two zeros apart from z = 0, as 

F(z) * - (n+l)e 
@+a) z 

as z+c 

<O, 

F(0) = 0 , 

F'(O) > 0 , 

showing that there is a zero e n' with z*>o. Since F(e) is an odd 
function there wfl be a corresponw eero -sn . 

The eigenvalue given by (6.27) ri.lI be negative and equation (5.1) is stable. 

Cases C and D 

and (vi) (itzEg6.;) 
is odd, analysis similar to that for Case C of Types(i) 
nay be made. The result is the same except that equa- 

tion (6.14) is replaced by 

2(n+l)kpn+s- 3(n-l)ks*+'- 6(n+l)k'"+" - (n+l)km- 3(n+l)'k'- 6(na+2n+2)ka 

-3(n+l)P = 0 . 

Numerical results are similar to those for Types (i) and (vi) and a graph of 
the oritical values @/a), is shown in Fig. 3. 

BJ Cases 
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Cases B,E.F 

Numerical evidence (Table I) suggests these cases are stable. 

6.15 Type (ii) and Type (viii.1 

Using equation (6.16) for the stream function, we obtain boundary 
conditions 

x0 = 0 

n 
x n+i = -3 -T xj -;xn . 

z 
j,i 

We deduce with the aid of the identity (A.i), that the Br are roots of 

16 sin 0 - a"sin(n-l)e + (1+5a')a"-'sin no + (2a*- 5)a" sin(n+l)e 

- 2P1sin(n+2)8/(ch b- cos e) = 0 . -** (6.28) 

Case A 

a=1 and by examining the behaviour of the numerator of (6.28), it 
can be shown that there are (n-l) real roots. The remaining eigenvdxe 
takes the form of (6.27). 

Cases C and D 

LhNDbg n iS'odd, analysis similar to that for Case C of Types (ii) 
and (vi) (Section 6.8) my be made. The result is the same except that (6.20) 
is replaced by 

2kan +I - 5kPn+* - k'" - 3(3+2n)ks- 3(1+2n) = 0 . 

Numerical results are similar to those for Types(i) and (vi). The critical 
values of @/a), are just below those for Type (i) and Type (vdi) and for 

large n, @/a)o = 2.186 . 

Cases B, E and F 

Numerical. evidence (Table I) suggests that these cases are stable. 

6.16 Conclusions on Type (viii1 

The restictzon on the ratio Vh/V for a stable process, is mO?X 
severe than for either Type (vi) or (vii)- $here vdl also be difflCuJ.tieS 
with choosing s, suitable stable method of replacing time derivatives in 
equation (5.1) even for Case A. &I eigenvalue of the form (6.27) will cause 
severe restriction on the size of the time step 6t in the simple explicit 
method. we require (Vargall, p.265), 

1 
= 

a(ch e + 1) 

This/ 
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This is inore severe than the restriction 

6t .s 1 
2x 

which is requiredif dl Br are real. 

The Dufort-Frsnkel' method is always unstable ~&hen an eigenvslue of 
the form of (6.27) occw8. For (5.1) the method is 

G s+i-,m= 6t [(M+ 2a I)K'- ag+'- ar_"-' +b" 1, 

where hS is the vorticity vector after s time steps and hs is 
determined by the boundary conditions. We can write the method in the trio 
stage form 

where C is the 

c= 
-( 1 + Uht)-'. 6t.(M+2RI) (l+a.6t)-~(l-a.6t)I 

. 
I 0 

l I 

This recurrence relation is unstable if any eigenvalue of C has absolute 
value greater than unity. The hgenvalues of C axe 

(Ar + 2a)6t+ (hr+2a)Y SP+4.(1+ n.8t)(l-aAt) 
for r = I,2 . . . n 

2(1+ a.6t) 

One of these, when Ti I‘ is given by (6.27), is 

-St.a.ch e - 1+u=.6ta sh' e 
r I‘ 

1 + a. 6t 

which is less than -1. 

6.17 rype (i) and Type (xi) 

In one di.meAslon, when usiDg Type (xi) for amovingwdl, there 
is no need to apply the correction (4.7) to the vorticxty after the strefrm 
f?unction has been found, and therefore (4.6) is the actual boundary condltmn. 
For a two-dimens~onsl problem, it will still be important that the contitlon 
given by (4.6) yields a stable method, assuming that no correction of vorticity 
is required. 
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conditions 
Using (4.6) at an upper boundary and (5.5) we obtain the bom&.ry 

where .?&& is the vortioity at the boundary grid point. 

The Br must therefore be roots of 

sin(n+l)t3 -asinne=o . 

Cases A and B 

Ip f(e) = h&+1)8 - a sin ne 

**- (6.29) 

f(e) alternates in sign for points rx/(n+-&-) , r = 1,2, . ..n. and the= 
are at least (n-l) roots in (0,x) . 

x 

( > 

1 
Also we have f - 

n+& 
<o snd,if a<1+--,f'(O)>O, in 

n which case the remains root lies in (0,x/[&]) . 

If a=l+--, 
n 

one root is en = 0 and the corresponding eigen- 

vector has components x 
j, 

= j.aJ . 

For a>l+ - 
d ' 

we show there is a root of the form 0 n = is n' 
where z n is red. Putting e = ia, pie obtain 

if(k) = -sh(n+l)e + a sh ne = F(z) (say) - 

Now, b = In a > 0 and therefore, 

1 1 
2F(b) = - --<o. an+i an 

--* (6.30) 

AlSO, F(O) = 0 and F'(O) > 0 thus there is a sero zn of F(z), with 
O< zn< b , when 

ch s 
In = 2a 2-l <o. 

ch b ) 

Thus equation (5.1) is stable for these cases. 

..+ (6.31) 

c/ Case 
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Case c 

Assuming n is oda, we consd2r the red elgenvdlue rmlch must 

exist. If O=:+i$ , equation (6.29) becomes 
2 

F(#) = sh(n+l)$ - k ch n$ = 0 

and this has a root #r > c = In k , 

as 

F(c) = +(l+k")/kwi < 0 . 

The corresponding eigenvalue, hr = 2a (sh 6&h c-l) , is positive 

and equation (5.1) is unstable. For even n, ire find by direct celculat~on 
of eigenvalues (Tabie I) that the method nay be stable for some values of 
8/a > 1 but as a/a is increased it becomes unstable. 

Cases D, E and F 

Using a method sinular to that used for Cases C and D of Section 6.4 
it can be shown that equation (5.1) is always unstable for Case D and always 
stable for Cases 6: and F. I 

6.18 Type (i) and Type (xii.1 

As with Type (xi) the vorticity is not corrected after the stream 
function has been calculated. Using (4.9) at an upper boundary and (5.5), me 
obtain the boundary conditions 

where 5;n is the vorticity at the boundary grid point. Thus the Or must 

be roots of 

cos ne sin e - sinnf~ shb = 0. --- (6.32) 

Cases A and B 

By considering the behaviour Of 

f(e) = cos ne SD 0 - sin no sh b 

at points xx/n, for r = 0,l . ..n. it can be seen that there sre at least 

(n-2) real roots of (6.32) in (0,~) - Using a method similar to that for 

Case A/ 

r 
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Case A of Types (i) and (xi) 
%l-, and en 

(Section 6.17), we find the remaining roots 
are as folloms: 

if I-nshb>O then 0 < e n-i < x/n 

" I-nshb=O " h-i = 0 and the eigenvectcr components are xj = ~~~ 

*, l-n sh b < 0 * h-i = ien-1 where 0 < sn-1 < b 

+ l+nshb>O * (n-1)&l < en < 7( 

(1 l+nshb=O " en = x and the eigenvector components are xj = j(-a)j 

n l+nshb<O il en=x+izn with s >O 
n 

In all, cases the corresponding eigenvalues are real and negative and equation 
(5.1) is stable. 

cases c, D, E and F 

Method and results are the same as those for Types (i) and (xi). 

6.19 Conclusions on movb wall conditions 

For Cases A and B, both Type (xi) and (xii) make equation (5.1) at 
worst neutrally stable. For Case C, both methods are unstable and thus, if there 
is suction at a moving wall, it is necessary to restrict the mesh size h so 
that we have @/a < 1 . In Section 7.3 ~,e shall show that this restriction 
for a stable method is not,serzous, as accuracy considerations are even more 
limiting. 

7. A Numerical Example 

7.1 Flow along a moving mall mlth suction 

As a test of boundary con&&ions of Type (XI.) snd (xii) rye consider 
'the numerical solution of a problem for whxh the snalyt~c solution may be 
derived. The motion, first introduced in Section 4.2, 1s that of flo7 dong 
a wsll which has started impulsively from rest at time t=o. Vie seek a 
solution u(y,t) of equation (4.2) satisQing the boundary ccnditlons 

u(Y,~) = 0, for Y 2 0, 
*-- (7.1) 

u(o,t) = u, u(*,t) = 0 t for t > 0 . 

The solution, which may be found by integral transfo?mstion, is 

ubit) =~U[erfc(~-f~)+~~y/v~rfc(~+~~)]... (7.2) 

where erfc(x) is the complimentary error function defined by 
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2 - 
erfc(x) = - 

V-T i 
e -xs ct 

and -V is the suction velrxity. 

On substituting (7.2) in 

r,=-" 

we obtain 

3 

v 
- I; exp(Vy/v)erfc 

v t 
+- - $31 2V * 

Y c- 2vm 

*a* (7.3) 

The IUUUeriCal SdUtiOns shown in Fig. 4 were obtained using the 
Crank-Nioholsonl implicit method applied to equation (3.1). This method was 
chosen because it is conservative and is stable df equation (5.1) is stable 
in the sense defined here. 
Varga". 

This latter property is shown, for example, by 
The implicit method would be difficult to apply to a two-dimensional 

problem, but is used to avoid inaccuracies introduced by methods which Bpe not 
conservative, and difficulties with methods whose stability depends on the 
tinm step, 6t . 

The results :novm in Fig. 4 are for v = '13, v =-a75 and 
-1-5 h = *I, 
-7'5). 

n = 15 and 6t = -01 . (Thus a = 15 and B = -975 and 
The calculations were repeated with lower boundary conditions of 

Types (xi) and (xii). For Type (xi), the results were moved by a half-grid 
length as mentioned in Section 3.3. In all cases Type (i) was used for the 
upper 'infinity' boundary. The results appear satisfactory des ite the 
fact that the stability of the boundary conditions depends on p a , though P 
of course the ratio p/a has been chosen so that we have Case B. (For these 
examples, fi is negative as the wall is at the lower and not the upper bound- 
ary, as in Section 6). 

As time increases, c(y,t) in equation (7.3) does not decay to sero 
but approaches the steady state solution 

z(y,.J = - 2 . ,vy/v . 
v 

In equation (5.g) b is a eero vector and, if the finite difference solution 
is not to decay to zero, the equation must be neutrally stable. One eigen- 
value of the matrix M for both TJrpe (xi) and (xii) is in fact nearly zero. 
For Type (xi), F(b) of (6.30) will be nearly zero for large n 'and thus 

"n - b in (6.31). (J.n some oases the root is so near sero that it is 

recorded as such in Table 1). An exact sero does not occur because of the 
effect of Type (i) at the opposite boundary. 

74 
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7.2 Afixedwd.1 

We similarly consider the flow dong a wsll (with suction), which 
has been impulsively brought to rest from moving in its own plane. 
Instead of (7.1) we have boundary conditions: 

u(y,o) = u, for y > 0 , 

49 t> J u, u(o,t) = 0, for t > 0 . 

The snalytic solution u(y,t) will Only differ from that of (7.2) by a 
oonstsnt and a change of sxgn. 
a change of sign. 

Thus the vorticity KU be gwen by (7.3) with 
In the numerical method,Type (vi) may be used for the 

boundary condition at the fixed wsll and Type (ii) at 'infinity'. 
the stream function satisfies 

Init.ully 

sJ+I =Jrj = Uh for all j 

and the vortici% is zero except at the boundary, where equation (3.1) applies, 
i.e. 

co= -bk, - pl’ = -u/h * 

Now for an upper boundary, Type (vi) is equivslent to equation (6.17), which 
for a lower boundary becomes 

-+ 

z 
gJ = -U/h 

j=o 

and this is precisely the equation used for conservation of vorticlty at a 
lower boundary (equation (4.14)). The difference in sign occurs because the 
impulse at the wall is in the opposite dxection. 

Thus for this problem, the numerical method using Types (VI) and (ii) 
will produce the ssme results (apart from negation) as that using Types (XL) 
and (i). We can similarly show that Types (vii) and (i.1 
88 Types (xii) and (i). 1 

give the ssne results 
The vector b in equation (5.1 is non-zero and the 

equation does not need to be neutrslly st?)le. The finite-deference approxima- 
tion to the steady state solution is -M a . 

7.3 Restrictions on p/a 

The formP?f.t.he steady state solution indicates that the grid length 
h must be restricte*d.. If h is +-&large, the vorticity will be concentrated 
into the regibn between,the boundaryksn~ the first interior grid point and the 
finite-difference spproximatik will~~e completely inaccurate. The difference 
approximation 

C(b) - do,-) uv ,v@ - , 
=e- > 

h V h 

to the derivative 



- 36 - 

dZ(&h,=) Wp 2 

a9 =-Fe ' 

w3J.l have relative error E , where 

where - = - . (b Change Of Sign is made because the wall is a lower and 
2v 

not 821 tpper boundary). For example, if $/a = I, E ~1 -18 which represents 
quite a large error whereas for the numerical example of Section 7.4, @/a = 0.25 
and O-5 when E = O-010 and O-0l.g. It is hence necessary for the ratio 
B/a to be restricted and most problems would probably at least require 
This restriction On P/a wFl1 also apply to two-dimensional flows. 

a/a < 1. 
The 

instabilities, found in Section 6 for boundary conbtions of Types (vi), (vii), 
(Viii), (Xi) and (Xii), are not a8 likely to restrict the magnitude of @/a as 
the accuracy considerations presented here. 

8. Conclusions 

As a condition at 'infinity', extrapolation can only be suooessikl 
at an outflow boundarg and will give an unstable process if used at an upstream, 
i.e. sn inflow boundary. The no-slip conditions for a fixed wall, which 
generate vorticity at the boundary by oslculating it from the stream function, 
will be stable if' there is no suction at the wall. If there is a suction 
velocity -V, then the mesh size h must be chosen so that the ratio Vh/v 
(where v is the viscosity) is restricted in magnitude. As ml/u is 
increased the finite difference method becomes firstly inacixrate snd secondly 
unstable. At a moving wall vortioity is conserved and the conditions consistent 
with this will yield stable finite difference methods .if there is no suction. 
If there is suction, then again Vh/v must be restricted for accuracy and 
stability. If pressure calculations are included in the finite-difference 
method, it is possible to determine the vortioity at a fixed wd using pressures. 
A press- term is included in equation (4.2) and using (4.3) we can d&ermine 
the amount ckf vorticity generated. The stability of such a method would be 
the same as that of the corresponding method for a moving wall. For stea& flow 
there al need to be similar restrictions on Vb/v if iterative methods are 
used. 
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Appendix A 

The following identities are required: 

n 

c 
*=sin re = a[sin 8 + ant*sin ne - an sin(n+l)ey(l - 28 00s e + a') (A-1 > 

rzi 

n 

c 
arcos I-e 3 [l-a 008 e + *n*aCOs ne - an*’ COS(n+i)eJ/(i -a COS e + 8") (A.2) 

I-00 

n - 

z 
IX~S~D e3 e [8(1-t?) kin e - (n+l)an+’ sin(n-l)e + [2(n+l)+naP]awpsin n0 

r'=i -[2na*+(n+l)Jan+Zsin(n+l)e + nan+' sin(n+2)0]/(1 - 2a 008 e + a*)' (A-3) 

n 

c 
raroos If) = I-*+a (I+,0 )cos 8 - (n+l)an*300s(n-l)e + [2(n+l) + n2 ]an+‘cos ne 

l-ii - /2d +(n+l) Ja n*iOo~(n+l)e + nan+gcos(n+2)e]/(l - 2a 008 8 + a*)p 

(A-4) 

z 
*(n+l-r)ars5n Al e I[( n+ c?+n)a sine - (n+l)zJpin 2e+a"+'sh ne 2) 

I?=% - 2sn+Ssin(n+l)e+an*nsin(n+2)8j/(l - 2a cos e + a')p (A.5) 

z 4(n+l-r)aroos ti E I(n+l) + 2(Iw2)k - [(3n+4) + (n+2)aa ]a 00s 0 + (n+l)a*cos 28 

r2.0 + an+‘cOs ne - 2a M3008(n+i)e + an+‘cos(n+2)eY(1 - 2a 00s e + 2 y . 

(A.6) 

Table I/ 
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Table 1 

Values of MAX %((h,) 
r 

BOunda~ 
Condition C&?.e B B C E C E 

Types: 
LOWSI- +o-5 -0-5 +5-o -5.0 +15'0 -15.0 

(i) (U -0.31439 +0+03458 -2.087~8 +0.839?1 -2.28262 +5.oj 251 

-0.29253 +@ooO30 -2.02671 +0~48082 -2.08537 +3.64&o 

(vi) (vi> -0.52417 -0.52417 -1.83496 -1*8X36 -1.98636 -1.98636 

-@30225 -@30225 -1-30190 -1-30190 -1.76528 -1.76528 

(i) (vi) -0.35205 -OS49920 -1.16549 -1.98298 +1.22316 -2.08464 

-OS30628 -029196 -1-34923 -1~NW7 +o-66670 -~o&cQ.~ 

w  (vi) -0'35612 -0.30978 -0-95308 -0.38385 +2*41150 -0.53466 

-0.30726 -0.15007 -da20822 -0.17588 +1.62210 -0.23778 

(Vi-Q (vu> -@5?812 -@5?812 -2'00287 -2.00287 -2.00285 -2.00285 

-0.32290 -0'32290 -1.39146 -1.39146 -1.94466 -1.94(66 

w  (Vii) -0.35777 a53267 -0.39633 -1.89068 +4.09456 -2.17906 

-0-30810 -0;3049? -0.75668 -1.38054 +P9??69 -2.07605 

w  (vii) -0*36270 -0.33426 -0.02129 -0.39133 +6.04077 -0.58447 

-0.30926 -0-15829 -0-51676 -0.17651 +I+-45470 -0.21~~2 

0) (viii) -0.36021 a53535 +5*6226y -1.84306 +26.6770 -2.12444 

-0.308al -0.30609 +5'89a42 -1.41286 +27-5973 -2.04952 

(4 (vi.@ -0.36530 -OS34121 +6*50898 -0.43534 +29.6448 -0.75206 

-0~3099~ -0.16032 +6.51039 -0*19156 ~9.6495 -0.24993 

b-1 (xi) -0~00001 -0.32461 -0-31928 -2.03950 +I.98124 -2.12545 

-0-00000 -0.29642 +0*03425 -2.01244 +I*54669 -2.03923 

(i) (xii) -0~0cO2 -0.33106 +@27778 -2.09271 +4'43683 -228853 

-0~0000 -0.29864 +0,143?4 -202781 +3.11547 -2.08654 

In all oases cl = 1 and for each set of boundary conditions and value of 
p the tm entries are for n = 10 and 15 respectively. 

2/ Table 
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Table 2 

A summary of the results of Sectmn 6 

B C D E P 

Conditi&3 xypes 1 -. - 
a > lPl>O a=0 a=0 

G 

p >a>0 
8=Ol T-3 

P< -a< 0 
i3> 0 B >o 

(i>’ 
(U2 

0)’ 
(4 
w 

w 
(4 

(i> 
w 
(i> 

w 
0) 
(i) 

Wwr 

(9’ 
(W2 
(W2 
(4 
(4 
(vi) 

(vii) 

(vfi) 

(4 

(VW 

(vi-u 

(xi) 

kd 

s S 

N N 

S S 

S S3 

S S3 

S S 

S S3 

s S3 

s S 

S S3 

S S3 

S S 

S S 

I 

S S 

N N 

u S 

SJ S3 

S3 c.s 

S3 c.s 

S3 S3 

S3 c.s 

S3 C.S 

S3 c.s 

S3 c.s 

S * 

s 
S 

S 

The entries S, N and U indicate stable, neutrally stable end unstable 
cases respectively. C.S indicates oases which are conditiondly stable, 
i.e. they sre unstable for sufficiently large values of a/a . 

Notes: ' or !l!ype (ii). 

2 or Type (iv) or (v) 
3 result postulated from numerical evidence 
4 except for even values of n , when, for p - a 

sufficiently small, numerical evidence suggests these 
oases are stable. 

3/ Table 



-l&2- 

Table 3 

Eigenvalues of M for a = 1, p = Ii 
and boundary conditions of Types (k) and (vi 

-0.15780 

-0.49459 +- 4' 4029 3i 

-1.17858 +- &16&12i 

-1*42657 +- 11*45&i 

-1-65094 +- 1q36321 

-j=79940 +- 16.7140i 

-1*91326 +_ 18*4651i 

-l*Yi'i'81 +- 19.53731 

BMG 
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(a> (b) 

Fig. 2. Boundary conditions, (a) Type (vi), (b) Type (vix), 

(c) Type (viii). 
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Fig. 3. Crxtical values of (@/a). For odd n, the values 

were obtained analytically, e.g. from equation (6.15) for 

Type (i) and (~1). For n =16,30 the values were obtained 

by calculating eigenvalues of M. 
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Section 7.1. 
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