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Six methods for the approximate aolutfon of the three-dimensional 

laminar boundary layer momentum Integral equations ars presented a& 

oompared with three lcnoson exact solutions. These methods all invalve the 

Pohlhausen teohniqua of speolfying velocity profilea in terms of one or two 

unknowns and substituting these axprassions for the profiles into the twu 

momentum integral equations to render them determinate. 

Comparison of these methods with the exact solutions shows that the 

assumption of small oross-flow valooity in the boundary lwer is generally 

adequate in oases involving favourable pressure gradients but introduces 

aigniflcant errors in oases involving adverse pressure gradiants. In oaaea 

of moderate adverse presauro gradient the aoouraoy of the approximate 

solution may be improved to sane extent by the adoption of an axtension of 

theluxton-Youngteohniqua. However, for large adverse gradients adequate 

anouraoy may only be obtained by including tha oross-flow tents la the 

mamaturn integral equations, and the method described here is than shown 

to lead to very satisfactory results in all the oases axaminad. 

It appears that provided the mazdmum value of the angle p between 

thalimitlw and external streamlinasialass thanaboutiOthe small 

a Beplaoes A.R.C.29 407 

** This ~0x3~ was submitted by the first author in part fulfilment of the 
rsquiremsnts for the degree of Ph.D. to the UniveraiQ of London, 
Navember 1965. 

+ Now at B.A.B. Bedford. 
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cross-flow assumption is of adequate accuracy for most engineering purposes. 

1. INTHODUCTION 

It is not intended that this paper should serve as a comprehensive 

review of the subject of three-dimensional laminar boundary layer theory, a 

full review and associated bibliography will be found in reference 1. 

However, a brief introduction to the subjeot ie first presented as a 

preliminary to a discussion of the authors' work on approximate methods of 

solution to the three-dimensional, leminar, incompressible momentum integral 

equations. The boundary layer equations in curvilinear coordinates are 

initially presented end these lead to the momentum integrel equation8 in 

etreemline coordinates. The approximations associated with the assumption of 

small cross-flow velocity which lead to what hasbecome known as the "axially 

symmetric analogy" 2 are then developed andthis leads in turn to a discussion 

of approximate methods of solution of the momentum integral equations. The 

Pohlhausen3 type of approach is considered and a comparison is made between 

a method due to Cooke4 and a method based upon Pohlhausenj quartic type 

velocity profiles devised by Young. The results given by both these methods 

for three cases involving favourable end unfavourable pressure gradients are 

compared with known exact solutions as are the results given by a method 

which Involves sn extension of the Luxton-Young5 technique to the three- 

dimensional case. Finally, a method is presented which is not restricted to 

the case of small cross-flow velocity and includes all the terms in the 

momentum Integral equations and its results are also compared with the 

exact solutions. It is shown that only the last method gives adequate 

aoouracy for large adverse pressure gradients, but in general where the 

pressure gradients are less severe the small cross-flow assumption leads to 

results that are very satisfactory. 

2. THE BOUNDARY LAYER AND MOMW!AJM INTEGRAL EQUATIONS 

A system of orthogonal curvilinear coardinatea ($T,$) is used. The 

. 
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surface on which the boundary layer lies ie denoted by +O and Lf measurea 

the distance from the eurfaoe along a normal. &l the BUJZfC@O ‘980 aZIB two 

families of ooordinate curvee 3 - constant and 1: - constant orthogonal 

to one another. In this syetem an element of length (de) vithin the 

boundary layer ia given by 

where h, ad b2 are length paremeters which may be taken ae functions 

or 3 and q only, provided that the eurfaoe ourvature doea not ohen@ 

abrupt17 and that the boundary layer thickness is small compared with the 

prinoipal radii of curvature af the surface. Subbjeot to theee provisions 

the ooord5nat.e eyetern can be taken as triply orthogonal vithin the bound- 

layer althou& it does not neceeearily remain eo further away from the 

surf aoe . 

In this coordinate syetem the boundary layer equatlone and the 

oontinuity equationa *x-e 

where u,V, W are the velocity componente in the direction of the $1,' 

axea respectively. P is the pressure, p the deneity, r-the visooaity and 

k,, Kt are the geodesic ourvaturees of the curves 3 - constant 7 - constant 

reepeotively, i.e. 
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The equations for incompressible flow were first given by Pow&h6 who 

used a system of coordinates which were triply orthogonel everywhere end 

henos were convenient for the direct application of vector analysis but 

strictly required that the coordinate system on the surface consisted of the 

lines of principal curvature. Square’ showed, however, that Howarth’s 

boundary layer equations apply withthe usual boundary layer approximations for 

the coordinate system used here. Timman’ gave a derivation of the equations 

from an argument based upon first principles. 

The values W/bj,aP& are obtained from the flow at the ed@ of the 

boundary layer. Denoting values at the edge by the subscript “e” we find 

from 2.1 and 2.2 

2.r 

‘Ihe momentum integral equations are obtained by integrating 2.1 and 2.2 

term by term aoross the boundary layer and using 2.4, 2.6 end 2.7 to 

eliminate w and P. If we write %= = u,^ + vez end, restricting ourselves 

to incompressible flow, define the various momentum and displacement 

thlcknessee 

where 

the momentum integral equations become 

.2-8 
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3. THE MOMENTUM IN'I'EXXAL FQJATIONS IN STFEAMLINE COORDINATES 

If the curves 1 - constant 5 - constant on the surface 3-O are taken 

to be the projeotion of the external streamlines on to the surface and their 

orthogonal trajectories respectively, we tha have VC-O and u,-ue. The 

momentum and displacement thicknesses are then given by 

and the momentum equations become 

If the external flow is irrotational a velocity potential exists which may 

be put equal to 
5 sothat h,=tt+ . / '&en the momentum integral equations 

become 

3.5 
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4. CROSS-FLOWS 

!Che component of the flow in the boundary layer which is at right anglea 

to the direction of the external streamlines is defined as a cross flow. 

Along a normal to the surfaoe the cross-wise velocity component varies in 

magnitude from aero at the surface to some maximum and then to zero at the 

edge of the boundary layer. In streamline ooordinates the cross-wise 

velocity is v. 

!Che physical explanation for the existence of cross-flows is described 

in Reference 1. Briefly if the streamlines at the edge of the boundary layer 

are curved there must be a cross-wise pressure gradient to balance the 

centrifugal force. How 2.3 shows that this pressure gradient will not vary 

along a normal to the surface so that in the boundary layer where the fluid 

elements have been retarded by viscosity they must, to provide the ssme 

centrifugal force, follow a more highly curved path than that of the element 

at the outer edge of the boundary layer. The resultant direction of the 

flow will clearly then be different at different levels in the boundary 

layer. The limit of this direction as the surface is approached is known 

as.the direction of the limiting streamline. The angle e between the 

external streamline and the limiting streamline may be defined as 

With the sudden imposition of a cross-wise pressure gradient the cross- 

flow will immediately start to grow until the cross-wise viscous forces 

balance the oross-wise pressure and centrifugal forces. When the pressure 

gradient is removed the cross flow does not Immediately disappear but because 

of the cross-wise shear stresses its reduction to zero is gradual. 

5. THE AXIALLY SYiQ4ETRIC ANALOCY 

It has been long established that if the cross-wise velooities and cross- 

wise gradients are small the streamvise flow may be calculated independently 
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of the cross-flow. Having done this the cross-flow may then be calculated 

from a linear first order differential equation. Mchelbrenner end Oudart' 

pointed out that this simplification leads for the streamwise flow to an 

analogy with axially symmetrio flow. This is readily demonstrated for the 

equations of motion but we shall confine our attention to the momentum 

integral equation. 

Consider equation 3.2, neglecting the cross-flow terms we have 

Writing (I/h,) @a$> as a/% end h&-V SO that k,~-(l/hlh~))(ah~ay~-(l/~)(arla) 

we find 5.1 becomes 

where H * 6,/q, . This is the momentum integral equation for the boundary 

layer flow over an axially symmetric body of cross-sectional radius r. Bow 

ICI-- (l/?)[ar/aS) is the geodesic curvature of the orthogonal trajeotories 

of the streamlines. It is thus a measure of the amount these streamlines 

diverge or converge. If b&S is positive the streamlines diverge juet as 

in axially symmetric flow. 

With the assumption of small cross flow velocity the cross-wise 

momentum equation 3.3 becomes 

5.3 

where ah I =u, ka’-L -? =-- 
h, ha ay uer al 

in lrrotational flow if we put h, 8 l/U, _ 

6. THJ3 DEl'FXMINATION OF I 

The parameter r isafunction of the geometry of the body and of the 

external flow. Cooke2 has shown how r may be determined. If the 

equation of the surface in Cartesian coordinate is x*x(%Y) and if u 



and V are velocity components parallel to the axea zc and y then r ir 

&- kY 

If b&z and iU!/ay am small (i.e. if the aurfaoe ie nearly flat) 

equation8 6.1 simplify to 

a Ua Va 
%‘z+- * aY 

It should perhaps be mentioned, (LB f arose in ocnneotion with the axially 

aymmetrio analogy, that V I.0 a function of the body geometry and the 

external flow and in no eenee is emall omen flow Implied in 6.1 and 6.2 

above. 

7. APPROXIMATE SOLUTION OF TIB MOMENTUM INTEGRAL EQUATIONS 

AB argued In reference 1 the choice of a streamline coordinate spten 

lo encouraged by the result obtained from various studies of the reloci~ 

profiles of the known exact solutions for three-dimensional lamlnu boundy 

layere that the atreamwise velocity profiles em rirtoally identical to the 

velocity profiles in corresponding two-dimenaicnal boundary layen. Tam* 

to approximate methods of solution and deal- only with the Pohlhaneen3 

type of approach one hae two momentum Integral equations end hence two 

parameters may be intmduced into the deeoription of the relooity profilel 
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where rl, and 5 am not mdependent but are related by the external flow. 

It haa been found that the streamwise flow cannot be adequately represented 

by a singly infinite family of velocity profiles when the streamwise pressure 

gradients are large or rapidly changzng; a two-dimensional boundary layer 

requires a doubly lnfmie family in corresponding circumstances. However, 

in what follows we shall adopt the usual approaah of representing the 

streamwise profiles by a single parameter f'j, . 

If we aonsider the momentum integral equationa in the ease of small 

cross-flow (5.2 and 5.3) and In the desorlption of the streemwise velocity 

profile take fl, to be the usual Pohlhausen parameter A =(%'/'@)(&&, 

the streamwise equation may be solved in a manner which follows olosely the 

Pohlhausen3 technique in two dimensions. Here 6 is a parameter related to 

the boundary layer thickness. We then obtain all the unknowns in equation 

5.2 aa known M&ions of A, i.e. 

for then U/I+ is expressed as a specified function of ;4!a plus X times 

snother specified function of ‘5/b, these two functions being determined by 

an appropriate tlumber of boundary conditions end their specified form. If 

ve now substitute these expressions in 5.2 we get 

which after a little algebra may be w-rltten 

end thus apart from the last term on the right-hand side ia identical with 

the equation obtained by Pohlhausen in two dimensions. 



For the cross flow momentum integral equation with emall Ouse flow, 

5.3, we t&e Ma=- (6a/~)~I/L&P/d$. The ohoioe of tt, In this form 

arises naturally, as will be shown below, from the boundary condition 

imposed upon the oross-flow velocity profile by the second equation of motion 

(2.2) at the wall. In the case of irrotational flow It will be seen from 

equations 2.7 and 2.5 that M, becomes fl,=~6L/v)(W,/r~y~ but v. 

retain the more general form here as we wish to consider comparisons vith 

exact solutions in which the external flow is rotational. If the assumed 

velooity profile for V/t+ is also in the form of a specified function of 

f/6 times $ plus another specified fknotion of 'f/b times N we then 

find as shown in the example below that %/6*$(A)N+fS (X)f$ and 

that 
Ta /pea =g-& k, fl, + cd4 

when, f,(x), j,(h) snd the constants C, and & are detennlned by the 

speoified forms of the functions chosen to describe the oross-flow velooity 

profile. Substituting in 3.3 and assuming small cross-flow yields 

and therefore 

Equation 7.4 is linear in 0,/b and may bs solved by a step by step 
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prooese once we hve the streamwise aolutlon end henoe a(b end &‘/v 

We now give two examples of this type of approximate eolution. The 

firat Involves the uee of Fohlhmsen3 quartice for the desoription of the 

velocity profilea and the second, which ie Cooke’e method4, involvee profiles 
10 euggeeted by Timman . 

For the first example the streamwise velocity profile is repreeented by 

the well-known Fohlhaueen quartic in 3/S i.e. 

' = a,y + b,? t c$ + d,? Y, 
where 9 * y/6. 

The boundary conditions for v/U, are 

From the second equation of motion (2.2) at the wall 

Jqq l( ;I 

and henoe from 7.5 

7.5 



From the boundary conditions 

The second method uses the profiles suggested by Tlmen” 

u/u, = f(4 - xq L4 

v/*c = NKIZ) - $q (2) 

where k (2) 9 ai-’ 
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I = Y/b, . 

Here A,!'& and N are formally as defined previously, but with 6T 

replacing 6 , and it should be noted that now & is a scaling length, 

related to the boundary layer thiakness, but not to be confused with the6 

of the Pohlhausen method. Thus the upper limit of z is o end not one as 

preYloaslp. Timman shows that for these profiles 

e,,/b, * $(A = -2889@0 * * co7335 x - 00037qax’ 

41% * fat>;, = ~152253 - oObbW7X 

e&Jr * f*pJ t @lr * N(-o~141cb38 - o~ou314x) t I$(-Om9826 - 0003i%)$ 

Cooke’ simplified the solution by making the approximations 4,/6, -D*Zq3 

These approximations were based on &at's work 14,15 . 

Cooke then obtained the streamwise momentum integral equation in the 

form 

cp a(r=U,6 e,,*> 
as : 0.436rLycJ 

and the cross-flow momentum integral equation as 

7.12 
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The method involving Pohlhaueen quartio velocity profiles may be similarly 

11 l Impllfied by a simple extension of a two-dimensional method due to Young . 

Takw the streamwiee momentum Integral equation for small cross-flow 

and wing the expression for x,/p~$~ given by the aeeumption of the 

Pohlhaueen quartio velooity profile, viz 

we find that 5.2 becomes, if we write 614, l f, 

This OM be wrItten 

&oord.lng to the Pohlhausen method the extremes of A are about +7 end 

-12 for which the corresponding values of H am 2.31 and 2.74 and the 

oorresponding values of 614, range from about 7 to 9.5. ‘Thus y varies 

little over the range of Interest and if we eeeume y to be constant we 

obtain 
a(T%““q) ++u 9-l 

as = f ua 7.16 

If we then aeaune the flat plate values Oz f=q 012 and H I 2.59 ao that 

9 - 6.16 and assume f also to be a oonstent we have 

7.17 
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which is very similar to the form (7.13) due to Cooke above. Similarly the 

assumptionof H constantly equal to 2.39 and S/8,; - 9.072 simplifies the 

omes-flow momentum integral equation for the Pohlhausen quartio type method 

to the form 

In both 7.10 above and 7.14 N is related to fl,& (or 6,,/&) by en 

equation of the form 

where $4 and & are titions of X only. 

8. SOMJ3 COMPARISONS WITH EXACT SOLUTIONS 

The four methods so far described based on the small oross-flow 

assumption (i.e. that using Pohlhausen quertic velocity profiles, Its 

associated approximate method due to Young, that using Timman'e profiles and 

Cooke's approximation thereof) have been programmed in heroury Autocode for 

use on the University of London Atlas Computer and have been compared with 

three known eract solutions used as tests by Cooke4. These oalled Ebzsmples 

1, 2 and 3 respectively in Figures 1 to 12 have velocity oomponents 

- w.s = 1 

respectively where X,Y are Cartesian coordinates and U,,V, are velocities 

in the direotlons X increasing and Y increasing, C is a representative 

length snd 

%- 2 
A2 - 1 EUMPLEl 
A3 - -1 
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A-l- 4 A2 - 4 FxAMPbg2 

A3 - -4 ) 

I- 4 
A2 - -4 

1 

wm3 
A3 - 4 

Cooke ahovm that for these oases for whioh the streamlines are translatea we 

may take 

These three examples all have streamlines with a point of inflexion at 

J+ - 0.5. For Eremples 1 and 2 the preesure gradient Is initially 

favourable and ohanges to unfavourable at the point of inflexlon. For 

Example 3 the reverse is the oaee, the pressure gradient is originally 

unfavourable and changes to favourable at the point of inflexion. 

The computer programme tabulated the solution of the two eimultaneow 

differential equations 7.2 and 7.4, the integration being performed by means 

of a librwy routine employing a Runga-Xutta-Merson technique. 

Study of Figores 1 to 12, in which the results are presented reveal.8 

that, although there is little to choose betwem the four methods for the 

prediotion of streamwise momentum thlckneea, Cooke’s approrimation of the 

Wmman profiles method produces slightly more aocurate anwere for the 

l treemw-Lse skin friction than doea the Young type approximation of the 

Pohlhauaen quartio profiles method. l’hi~ 16, perhaps, to be expected aa the 

Timman profiles satisfy all the boundary conditions at the outer edge of the 

boundary layer automatioally. The pretiotione for tanp - To,/& are good 

apart from the adverse pressure gradient for X/C 4 CS in gxample 3, 

Figure 12. The predictions for 4, are not 80 good in the oaeee Involving 
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stron@r adverse pressure gradients and larger oross-flow (F&amples 2 and 

3, FIgurea 5 and 9) but note should be taken of the false zero8 of all the 

diagrams. The approximations made by Cooke appear to lead to the smalleat 

en-ore for the 08888 examined, and Cooke’8 method seem8 therefore the best 

of the four tested. The only experimental oheoke 12.13 upon Cooke’s method 

known to the present authors show comparisons of predictions for tanp by 

Cooke’s method with values obtained from flow visualisation teats. These 

have confirmed that tan B is well predicted by Cooke’s method. 

9. TWO OTIER METHODS 

It vi11 be 8een that in all oases and in particular in Example 3 

significant errors in the streamwise momentum thickness predictions ooour 

in the presence of adverse pressure gradienta. In an attempt to improve the 

predictions for adverse pressure gradienta the technique devised by Luxton 

and To w? for the oaae of the two-dimenalonal lamlnar compressible 

boundary layer with heat transfer baa been adapted to the three-dimensional 

lpminar boundary layer with amall oroaa-flow. 

The starting point for thie method is equation 7.16 

From an analysis of exact solutions Luxton and Young5 derive expressiona 

for the dependence of zf and 9 upon x which in the simple inoompreesible 

case with zero heat trenafer considered here may be reduoed to 

and 92 

with 9 = 2 [ (I4 1) - US] + 

and D, - -0.0198. 9 s -0.0742 for favourable pressure grtrdients and 

0, - -0.0246, DL - -0.106 for adverse prewue gradients. We have also 



The calculation proceeds in a series of small step8 in S,q and f are held 

constant during each step but vary from etep to atep. The procedure may be 

q ummarised as follower 

(I) Find the values of H and ) at S -.O fmm equations 9.2. In 

most casea A,,, - 0 but if this is not 80 then ASI,, must be 

calculated from a Imown value of f$, at S-0 by an iterative 

process through equations 9.3 and 9.2. 

(ii) Integrate equation 9.1 over a small step in S to obtain a value 

of eu at f . 

(iii) Using the value of frwO in equation 9.3 find an approximate 

value of AS, . 

(iv) Using the approximate value of AS, find f, . 

(v) Use this value of &, in equation 9.3 to find a more accurate 

value of AS,. 

(vi) Substitute this more accurate value of &,, into equations 9.2 to 

find values of $,, , I-IS, and hence 95, . The equation 9.1 w 

then be reintegrated over the step from 5 - 0 to S-5, using the 

mean values of f and 9 over that step. This procedure (ii) to 

(vi) may be repeated until the value of &, converges to a given 

tolerance. 

(vii) Using the values of $5, and ys, repeat the procedure to find the 

solution at s,. 

This method has been applied to the three examples mentioned previously 

and as will be eeen from Figures 1, 5 and 9 a definite improvement in the 

form of the dietribution of 4, is obtained, but the overall improvement 

for the larger adverse gradients is somewhat disappointing in the light of 

the results obtained in two dimensions (see Ref. 5). 

For these large pressure gradients the question then arises as to the 

magnitude of the error8 introduced by the assumption of small cross-flows, 

and we are led to conalder the development of a method which does not 



involve this assumption. Here a difficulty is encountered since the 

momentum integral equations contain terms such as (I/r)(a8,,/?7) and 

wae,,/aq~ l 
In the general case these must be accounted for by a 

calculation procedure whxch first ignores these tenma and solves the 

momentum integral equations along several streamlines and then repeats the 

process aocounting for the derivatives with respect to '1 by means of the 

differences in qL and @, found upon neighbouring streamlines by the 

initial calculation. The whole calculation thus proceeds a8 an iterative 

process. For the particular casea considered here the prooeas is however 

somewhat simpler since we may account for the derrvatives in the 1 direotion 

by the relation given above viz 

I a .I a 
TF G-22. 

1 

The method devised is as follows and aa will be seen it includes all the 

terms in the momentum integral equations. Timman hae shown for his profiles 

that 

%I+ = - ?.0537ZN I- .Oalbl Mr - O.OiUV&At’J - O.O03748XM, 

e,da, * - .156664@ - *Of&638 MAN - -0037‘?8t$f 

Substituting the Timman profile expressions for 

into the momentum equations 3.2 and 3.3 and using 

gives two simultaneous differential equations involving &,?/I), 2(&;/V)/&, 

Id, all/as, A = b.yv,(a@) s and fun&Ions of the external flow. These two 

equations were then rearranged by much lengthy but straightforward algebra 

into the fomm 
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a(N) 
as * & &vv, N, 5) 

whioh could be solved by means of the library routine mentioned above. 

Ths method was then programmed and the results ara presented in Figures 1 

to 12 in vhioh It Is termed Method 3. 

It will be n een that the inclusion of the omss-flow terms in the 

momentum integral equations results in a marked improvement in the aoouanoy 

of the results partioularly in the presence of strong adverse pressure 

gradients. The remaining relatively amall disorepanoles between the 

results given by Method 3 and the exact results oan be asorlbed to errora 

arising from the velocity profiles chosen. 

10. CONCLUDING REWZiKS 

For the three-dimensional laminar boundary layer the use of the small 

orosa-flow assumption together with a Pohlhausen type approximate solution 

of the momentum integral equations results in good agreement with exaot 

solutions for oases involving favourable pressure gradients. Of the two 

types of velocity profiles, Pohlhausen quartios and Timman's profiles, 

teeted in approximate solutions here, Cooke's approximation of the method 

Involving the latter profiles yielded results which were marginally 

superior to those obtained by a Young type approximation of the method 

involving the former profiles. The results produced by these methoda for 

the l treamwise momentum thickness in adverse pressure gradients are by no 

means as good. hovever. This is thought to be due to the nature of the 

streamwise momentum integral equation which. with the assumption of small 

oroso-flow velocity, we may rewrite as 
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For adverse pressure gradients - (l/U,)(qp) is positive so that if at 

eny stage the value of 4, predlcted by the approximate solution is too 

large compared with the exact solution the value of de,/% over the next 

step will in consequence also tend to be too large and the approximate 

solution will tend to diverge from the exact rrolutlon. Similarly, should 

the value of 4, be too emall at,/% will be too small end once more the 

approximate solution will diverge from the exact solution. For favourable 

pressure gradients (- (i/Ua)(&.4,/?S) negative ) this does not occur as a too 

large value of $ produces a too small value of aq,/aS and vice vema. 

The last term in the above equation -(a),/T)(aV/aS) tenda to act in the 

opposite sense but it Is generally dominated by the second term as far aa 

the net effect of er.rac* in B,, are concerned. For the adverse pressure 

gradient case, Example 3, shown in Figure 9, neglect of the cross-flow terms 

in the streamwise momentum integral equation and the assumption that 4,/6 

Is a constant both have the effect of producing a value of 4, which is too 

large when compared with the exact solution. This results in the 

divergence mentioned above end the consequent inaccuracy of this type of 

approximate method. The assumption that 8,,/6 is a constant may be 

removed by the adoption of the extension of the Luxton-Young technique 

presented here and results in home improvement of accuracy for favourable 

and small adverse gradients. However for large adverse gradients the 

assumption of small cross-flows leads to significant errors and must be 

discarded to achieve adequate accuracy. 

The approximate method involving the full momentum integral equations 

developed here produces for the oases considered very satisfaotory results 

but at the expense of greater computational complexity which would be even 

more marked in the general case where an iterative procedure would be 

required. 

As a rough tentative guide as to when the pressure gradients and the 



cross-flove are such as to call for the inclusion of the croee-flow terme 

we may note that for Remplee 1 and 2 where the small cross-flow methods 

are for meet purposes of aoceptable aoouracy the maximum value of p wae af 

the order of 10' whilst for Example 3 the maximum value of p wae about 20'. 
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NOTATION 

Orthogonal curvilinear ooordlnates with ‘J meaeured 
normal to the surface. 

Metrics in the $,q,f coordinate system. (b3 l 1 ) . 

Velocities xn the g,q,Y directions respectively. 

I 3”; -- 
= -h,h,aS 

geodesic curvature of the curve 

5 
- constant. 

I ah, --- 
= h,h& ay 

geodesic curvature of the ourve 

‘1 - constant. 

Directions along and normal to an external streamline 
respectively. 

- h2 

Displacement and momentum thicknesses defined by 

equation 3.1. 

skin friction components in the 3,~ direotions 
respectively. 

m 6,/#,, the streamwise shape parameter. 

Parameters used in description of velocity profiles. 

;~l)p,/ ad, the Pohlhausen velocity profile 
. 

The density of the fluid. 

The viscosity of the fluid. 

AlO the kinematic viscosity of the fluid. 

The statio pressure in the fluid. 

suffix 0 External to the boundary layer. 
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BOtJRDARY LAYER MOXEXl’Uid ID-i’EGR& EQUATIONS 

Six methods for the approximate solution of the three- 
dimensional laminar boundary layer momentum integral 
equation9 are presented and compared with three known 
exact solutions. These methods all involve the Polhauaen 
technique of specifying velocity profile9 in terms of one 
or tao unknowns and substituting these cxpresaions for 
the profile9 into the too momentum integral equation9 to 
render them determinate. 
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the profiles into the two momentum integral equation5 to 
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Six methods for the approximate solution of the three- 
dimensional laminar boundary layer mcmentum integral 
equations are presented and compared with three known 
exact solutions. These method5 all involve the Polhausen 
teohnrque of specifying velocity profiles in terms of one 
or two unknckns and substituting these expressions for 
the profiles into the two momentum integral equation9 to 
render them determinate. 



Coaparison of these methods rith the exaot solution8 
shows that the assumptfou of snail cross-flow velocity in 
the boundary layer is generally adequate in cases 
involving favourable pressure gradients but introduces 
significant errors in oases involving adverse pressure 
gD3di~ntS. In cases of moderate adverse pressure 
gradient the aocuraoy of the approximate solution nay be 
inproved to acme extent by the adoption of an extension of 
the Luxton-Young teohnique. Hovever, for large adverse 
gradients adequate aocuraoy may only be obtained by 
including the cross-flow terns in the momentum integral 
equations, and the aethod described here is then shown 
to lead to very satisfaotory results in all the case8 
examined. It appears that provided the maximun value of 
the angle g between the limiting and external streanlines 
Is less than about 100 the small cross-flov assumption 
is of adequate l oouracy for nest engineering purposes. 

Ccnparison of these methods with the exaot solutions 
shows that the assunption of small cross-flov velocity in 
the boundary layer is generally adequate in oases 
involving favmable pressure gradients but iatroduoes 
significant errors in cases involving adverse pressure 
gradients. In oases of moderate adverse pressure 
gradlent the accuracy of the apprcaimate solution mey be 
improved to scme extent by the adoption of an extension of 
ttie Luxton-Young technique. However’, for large adverse 
gradients adequate aoourauy laay only be obtained by 
inoluding the oross-flon terns in the nomentun integral 
equations, and the method desodbed here is then shovn 
to lead to very satisfaotosy results in all the aa8ea 
exemined. It appears that provided the maxinun value of 
the angle @ between the limiting and external streanlines 
is less than about IO0 the small cross-flow assumption 
is of adequate accuracy for most engineering purposes. 

Comparison of these methods with the exaot solutions 
shows that the assumption of small cross-flow velooity in 
the boundary layer is generally adequate in case8 
involving favourable pressure gradients but introduoes 
signifloant errors in oase8 involving adverse pressure 
gradients. In cases of noderate adverse pressure 
gradient the acouracy of the approxinate solution nay bs 
improved to sane extent by the adoption of an extension of 
the Luxton-Young technique. However, for large adverse 
gradients adequate acouraoy rnw only be obtained by 
in0lud5ng the cross-flow terms in the momentun integrd 
l quationa, and the method desuribed here ia then sbhom 
to lead to very satisfactory results in all the case8 
examined. It appears that provided the maximum value of 
the angle ,g between the Uniting and external straanlines 
is less than about 100 the smell cross-flow assumption 
is of adequate aoouraoy iOr most engineering pWposSa. 
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