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SUMMARY

8ix methods for the approximate solution of the three-dinensional
laminar boundary layer momentum integral equations are presented and
compared with three known exact solutions. These methods all involve the
Pohlhausen technique of specifying veloolty profiles in terms of one or two
unknowna and substituting these expressions for the profiles into the two
momentun integral equations to render them determinate.

Comparison of these methods with the exact solutions shows that the
assunption of small cross-flow velocity in the boundary layer is generally
adequate in cases involving favourable preasure gradisuts but introduces
significant errors in cases involving adverse preassure gradients. In cases
of moderate adverse pressuro gradient the accuracy of the approximate
solution may be improved to some extent by the adoption of an extension of
the Luxton-Young teclmique. However, for large adverse gradients adequate
agouracy mey only be obtained by including the cross-flow terms in the
momentum integral equations, and the method described here is then shown
to lead to very satisfactory results in all the cases examined.

It appears that provided the maximum velue of the angle 8 between
the limiting and external streamlines is lesa than about 10° the small
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cross=-{low assumption is of adequate asccuracy lor most engineering purposes,.

1. INTRODUCTION

It is not intended that this paper should serve as a comprehensive
review of the subject of three~dimensional laminar boundary layer theory, a
full review and associated bibliography will be found in reference 1l.
However, a brief introduction to the subject is first presented as a
preliminary to a discussion of the authors' work on aepproximate methods of
golution to the three-dimensional, laminar, incompressible momentum integral
sguations. The boundary layer equations in curvilineaxr coordinates are
initially presented and these lead to the momentum inteégral equations in
streamline coordinates. The approximations asepcciated with the assumption of
emall cross~flow velocity which lead to what hasbecome known as the "axially
gynmetric analogy"2 are then developed and this leads in turn to a discuseion
of approximate methods of solution of the momentum integral equations. The
Pohlhauaen3 type of approach is considered and a comparison is made between

4 and a method based upon Pohlhausen5 gquartic type

a8 method due to Cooke
velocity profiles devised by Young. The resulis given by both these methods
for three cases involving favourable and unfavourable pressure gradients are
compared with known exact solutions as are the results given by a method

which involves an extension of the Luxton-Ybung5

technique to the three-
dimensional case. Finally, a method is presented which 18 not restricted to
the cape of small cross-flow velocity and includes all the terms in the
momentun integral equations and its results are also compared with the
exact solutions. It is shown that only the last method gives adequate
accuracy for large adverse pressure gradients, but in general where the
pressure gradients are less severe the small cross-flow assumption leads to

resulta that are very satisfactory.

2, THE BOUNPARY LAYER AND MCMENTUM INTEGRAL EQUATICNS

A system of orthogonal curvilinear coordinates (3. 'rl, '.f,) is used. The
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surface on whioh the boundary layer lies is denoted by ¥+0 end ¥ measures
the distance from the surface along a normal. On the surface ¥=0 are two
families of coordinate curves 5 = constant and 1 = constant orthogonal
to one another. In this system an element of length (ds) within the

boundary layer ia given by

ds s h'd§ +hdy’ + d¥
where fh and hl are length parameters which may be taken es functions
of S and ll only, provided that the surface curvature does not change
abruptly and that the boundary layer thickness is small compared with the
prinocipal radii of curvature of the surface. Subject to these provisions
the coordinate system can be taken as triply orthogonal within the boundary
layer although i1t does not necessarily remain eo further away from the
surface,

In this coordinate aystem the boundary layer equations and the

continuity equations are

f'[%; +é%+w%§-—|&w+nv"].-%‘? s5 (1 3) 21
p[% +hlzg-lq+w2—;,--k,uv+lgu=l.-.ﬁ'.;'g%+§?(f%), 22

0. 2% 23
%(ph,_u)+-§-’i (env) + =5 (ehibw) = 0 24

where U, V, w are the velocity components in the direction of the's,q,?
axes respectively. P 1is the pressure, P the density,Ju the viscoaity and
K s Kz are the geodesic curvatures of the curves 5 = constant n - constant

reapeoctively, i.e.

? | ?
kln--‘L-—hL; kzu——......._h' ' 25
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The equations for incompressible flow were first given by Hc:n.m.:r:i‘.h6 who
uged a system of coordinates which were triply orthogonsl everywhere and
hence were convenient for the direct application of vector analyais but
strictly required that the coordinate system on the surface consisted of the
lines of principal curvature. Squlre7 showed, however, that Howarth's
boundary leyer equations apply withthe usual boundary layer approximations for
the coordinate system used here. ‘l‘immane gave & derivetion of the equations
from an argument based upon first principles.

The values ‘aP/a*g,aP/aq are obtained from the flow at the edge of the
boundary layer. Denoting values at the edge by the subscript "e" we find

from 2.1 and 2.2

Ug dUe Ve U 2]..L 2P .
Pe[h. 2% "h wp RN TR ] b o “e
Up 2% Ve W 2 t 2P
e [E‘ -_5;';:- +T\; ;i' “k UeVe + 5 4, J"hz a : 27

The momentum integral equations are obtained by integrating 2.1 and 2.2
term by term across the boundary layer and using 2.4, 2.6 and 2.7 to
eliminate w and P. If we write u: - u: + \@,” and, restricting ourselves
to incompressible flow, define the various momentum and displacement
thicknesses

. [ F%e-v) L [ (de-uu
3 J T d?,é,s[ TR ! df

[}

4 e s e

unere T (f ) e T (43,

the momentum integral equations become

U,

% (W &) + -LF‘ an 7 (02U5) + h,u 3 O

¢

g o & (o o1 8) S ) 8]

2:9
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B THE MOMENTUM INTEGRAL EQUATIONS IN STREAMLINE COORDINATES

If the ourves 'l = constant 3 = constant on the surface ¥»0 are taken
to be the projection of the external streamiines on to the surface and their
orthogonal trajectoriea respectively, we then have V-O and U‘- s » The

momentum and displacement thicknesses are then given by

8, =I(|'i:;)dfﬁ %, --jo—:: dY, 6, Bcfo(l ""?_";) %df

a,,gﬂ -i)ésdf. 6, =-fi'—', des B,y s [% df 3

and the momentum equations become

2 i 2u
oz 5 W) h% "1(9‘ *hn-a_g
' %
hluo arl bz -k (6, - 8y) -k (6 + ) =“'F";;1 32
T‘
u, 33(9 %) hy u"‘aq(eu%”) - 0y =K (6~ 6, b) Io_u:- . 343

If the externzl flow is irrotational a velocity potential exists which may

be put equal to 5 so that h, ct/ue « Then the momentum integral equations

become

28, 1 ] ,

i ) T o (48 5 -4) = o %
'Dau i | U 2 ,.r

% 'R, 7 ~ (8,,) + Uc ,a% s 6, + " ?‘-Z‘i(e,,+on+b,) -k ﬁm‘;%’;s 3§



4. CROSS-FLOWS

The component of the flow in the boundaxy layer which is at right angles
to the direction of the extermal streamlines is defined as a cross flow.
Along a normal to the surface the cross-wise velocity component varies in
magnitude from zero at the surface to some maximum and then to zero at the
edge of the boundary layer. In streamline coordinates the cross-wise
velocity is v,

The physical explanation for the existence of cross-flows is described
in Reference 1. Briefly if the streamlines at the edge of the boundary layer
are curved there must be a cross-wise pressure gradient to balance the
centrifugal force. KNow 2.3 shows that this pressure gradient will not vary
along a normal to the surface sc that in the boundary layer where the fluid
elementa have been retarded by viscosity they must, to provide the same
centrifugal force, follow & more highly curved path than that of the element
at the outer edge of the boundary layer. The resultant direction of the
flow will clearly then be different at different levels in the boundary
layer. The limit of this direction as the surface is approached is lmown
as-the direction of the limiting streamline. The angle p between the

external streamline and the limiting streamline may be defined as

W = mekt -L:E .
fs ¥=>0 u % b

With the sudden imposition of a crogs-wise pressure gradient the cross-
flow will immediately start to grow until the cross-wise viscous forces
balance the cross-wise pressure and centrifugal forces. When the pressure
gradient is removed the croas flow does not immediately disasppear but because
of the cross-wise shear stresses its reduction to zero is gradual.

5. THE AXTALLY SYMMETRIC ANALOGY

It has been long established that if the eross-wise velocitlies and eross-

wise gradients are small the streanwise flow may be calculated independently
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of the cross-flow. Having done this the cross-flow may then be calculated
from a linear first order differential equation. Eichelbrenner and 0udart9
pointed out that this simplification leads for the streamwise flow to an
analogy with axially symmetric flow. This is readily demonstrated for the
equations of motion but we shall confine our attention to ihe momentum
integral equation.
Consider equation 3.2, neglecting the cross-flow terms we have
1 t
h.U ag (91 |ue ;g b -k 6, = (’_“‘:" &l
writing (1/n,)(2/3%) as 2/85 and hy*r so that K =-(1/hh,)(3h,/3%)=-(ifr)or/z)

we find 5.1 hecomea

26 [y uar] Tor
23 *’"{f"“)“a'; EIRCETE "

where Hs 6| /9;1 « This is the momentum integral equation for the boundary
layer flow over an axially symmetric body of cross-sectional radius r. Now
K == (103 "/ 35) is the geodesic curvature of the orthogonal trajectories
of the streamlines. It is thus a measure of the amount these streamlines
diverge or converge. If DT‘/35 is positive the streamlines diverge just as
in axially symmetric flow.

With the assumption of small cross flow velocity the cross-wise

momentum equation 3.3 becomes

29, e LAl Tox

where I 2h, | dUe

k, = =
27 by 2y ur
in irrotational flow if we put h = t/u, .

6. THE DETERMINATION OF r

The parameter r isa function of the geometry of the body and of the
external flow. Coo]e:e2 has shown how r may be determined. If the

equation of the surface in Cartesian coordinate ig Z=z (15,‘1) and if U
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and v are velocity components parallel to the axes X and Yy then » i»

given by

(o Srt) o2l 8

vhere L2 L us Vs [
€ 25 6x 63 6

5 [ 2z 9 . ? 31 ?

Bx T 3z’ By "oy 3y az

g1+ (;;-)11-(-;—;-)1

Ir aszx and leaq are small (1.e. if the surface is nearly flat)

equations 6.1 eimplify to

au 'aV
Uy 55 (109 ugr) = 39 62

2 U3 Ve
Uy — 2 — + —
¥ 33
It should perhaps be mentioned, as ¥ arcse in commection with the axially
symnetric analogy, that ¥ is a function of the body geometry and the
external flow and in no sense i@ small cross flow implied in 6.1 and 6.2

abave,

7. APPROXIMATE SOLUTION OF THE MOMENTUM INTEGRAL EQUATICNS

As argued in reference 1 the choice of a streamline coordinate system
is encouraged by the result obtained from various studies of the velooity
profiles of the known exact solutions for three-dimensional laminar boundary
layers that the streamwise velocity profiles are virtually identical to the
velocity profiles in corresponding two-dimensional boundary layers. Turning
to approximate methods of solution and dealing only with the Pohlhanscn)
type of approach one has two momentum integral equations and hence two

parameters may be introduced into the description of the velooity profiles
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u/ue.'f(Mn N;%n"f"‘y) 71
VIue. * '](HM N, g: VL; ‘3)
where H| and f11 are not independent but are related by the external flow.
It has been found that the streamwise flow cammot be adequately represented
by a singly infinite family of velocity profiles when the streamwise pressure
gradients are large or rapidly changing; a two-dimensional boundary layer
requires a doubly infinite family in corresponding eircumstances. However,
in what follows we shall adopt the usual approach of representing the
streamwise profiles by & single parameter H|
If wo considexr the momentum integral equations in the came of small
cross~flow (5.2 and 5.3) and in the description of the streamwise velocity
profile take ﬂ‘ to be the usual Pohlhausen parameter A =( 37‘0)(3%/95),
the sireamwise equation may be solved in a manner which follows closely the
Pohlhausen3 technique in two dimensions. Here & is a parameter related to
the boundary layer thickness. We then obtain all the unknowns in equation

5.2 as known functions of A, i.e.

Bo 500 Beam % B [s00)]

for then u[ue is expressed as a specified function of ‘3’/6 Plus X\ times

another gpecified function of ‘3/ b, these two functions being determined by
an eppropriate number of boundary conditions and their specified form. If

we now substitute these expressions in 5.2 we get

2(85) a'-——f,:i e

1)
3 r 25 “e 35 b(:f" 1&)

which after a little algebra may be written

(b BV g 0) -2 (BT g () 1 o

'D)u 93 95 ras

and this apart from the last term on the right-hand side is identical with

the equation obtained by Pohlhausen in twe dimensiona,
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For the cross flow momentum integral equation with small cross flow,
5.3, we take M,=- (61//‘)(!/%)(31’/‘1'31). The choice of M; 1n this fomm
arises naturally, as will be shown below, from the boundary condition
imposed upon the cross-flow velocity profile by the second equation of motion
(2.2) at the wall. In the case of irrotational flow it will be seen from
equations 2.7 and 2.5 that Ml becomes n; =(6L/I))(3u‘_/r3r!) but we
retain the more general form here as we wish to consider comparisons with
exact solutions in which the external flow is rotational. If the assumed
veloeity profile for Vlug_ ig algo in the form of a specified function of
:f/b times M; plus another specified function of /6 times N we then
£ind as shown in the example below that 9”/6 = :I;*()\)N-tfs (») M, and
that
T /("‘ez ’17 (¢ M, + GN)
where ;}“_(x), j’s (N  end the constants , and (; are determined by the
specified forms of the functions chosen to describe the cross-flow velooity
profile. Substituting in 3.3 and assuming small cross-flow yields

L P TN e gy P o - (4 +4) —-6[c,r1 + (,N]

Y D TIRCET

but

N (88 - f M) /F,
and thexrefore

BomRaR) R e Glonp (o)) w

or

WL Y ) ) B

P

olet e Sl

Equation T.4 is linear in ﬁu /8  end may be solved by a step by step
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process once we hwe the streamwise solution and hence D(blfﬂ)as and Sfﬁ;

We now give itwo examples of thie type of approximate solution. The

3

first involves the use of Pohlhausen” quartics for the desoription of the

valocity profiles and the second, which ia Cocke's method4, involves profiles
suggeated by Timmanlo.
For the first example the streamwise velocity profile ies represented by

the well-known Pohlhauvsen quartic in 178 i.e.
=F(3/8) ¢ > G (3/8) whare F(5/5) = 23/6-2(3/9)° + (3/8)%

@ s 7 (-5)

hal
Y

And therefore

b 3 A N

e 50 a5 " @S 9072

& 3 A

T hN=5 -
To o X () = o @ Nb) ¢
pug® ~ wd VT b

For the cross flow velocity profile we assume

'-u: > a-;'? + ba.&z + C,_is + d,j'# 1-5

wheTe ‘} - ?/5

The boundary conditions for V'/ue are

g1, F:-O Mdf‘:f(-i)so

From the second equation of motion (2.2) at the wall

A

and hence from 7.5

2 2P
o L M 16

Yt hoog T2

M Ye 1b i aP
3 g =7 - » therefore b, =
5 hy 97 *
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From the boundary conditions

a3.+ b1+ ci + d’_ ] 0; a,_‘l' lbz'f 30&* tj-d;a 0, ta: -H;/Z
hence

. SO SR N .
Pl Ty

ﬂ

i.e.

(e P e 2§ P

&<

= H;Fi(?)*' 1 & (%) Say
or writing d; 2 N

%: M R (3) + NG (3) - b
Hence
L -!(F.ucr.)(ﬂlﬁ #NG)d¥ == [M 1+ 2L, +N(T +AL) ]

where

I f 43 =302y, T, = fcrpar-nlwaz, I; » fcn:a?

i 50&-0
I,f:j' G G, dF = 5/6048
i1.e °
6y 263 5 3 (
"f:’f»”*fs”z'”('s-o'ra'zars*)*“:('m“sz*)
Also
Y %% UM N v2vy %/ N
(a?)\g,o' & 6 (4 +1.)MUG a\')s_o 6u,_(4 "1)
i.e.
T v M, N _
F:fi 3::8-(CI”"+C"N) au.(_h*.-z) * 78

The second method uses the profiles suggested by T:lm::na.r.tl5
ufu, = § () - g (2)
v/u, * NK(3) - Mgq(2)

wvhere K(z) = z¢
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-t 2
V- f(2) = lq(z) + e = Ve Zze +--:-‘r- er dt 79
T

z = $/8¢

Here A, M, and N are formally as defined previously, but with &7
replacing 6 , and it should be noted that now &p 1is a sealing length,
related to the boundary layer thickness, but not to be confused with thed
of the Pohlhausen method. Thus the upper limit of z is o0 and not one as
previously. Timman shows that for these profiles

6,/6: » §(N = 289430 + -007335% - 0003798N

&/br = 5, (N = 752253 - 0066957 X

[fs(»] U, 6 3f- (7- + ) * %6 0 376127 (2 + %) 110

T

M

Blor SN + KM, - N(-o2qb28 - o-azzawx) + M, (-0:029826 - 00037975))

T v \7
T . 2 (eM, o+ N ( M, + N) :
fu.t “ez’T( M+ GN) - 3%
Cooke4 simplified the solution by making the approximations 9" /br = 0-293
and “ & b & x
— L3 ea) —ax = D 0436 - 2(0-293) X - Tl
7 ARl o v

14415

These approximations were based on Zaat's work
Cooke then obtained the streamwise momentum integrasl equation in the

form

T2

b[riueb(?irl/v)] . 5081 uS

or .a{,rlucs 9{11)
29

= 0436rtuSy 7-13

and the cross-flow momentum integral equation as

(riul 8,) - Yy

e =[N e M ooTa - 0-469) ] - 14
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The method involving Pohlhausen quartic velocity profiles may be similarly

simplified by a simple extension of a two-dimensional method due to Youngn.

Taking the streamwise momentum integral equation for small cross-flow

L
?5

T-
+ G (vt :t)-—:"-Es i %uto%- 52

and using the expression for T, / fqo" given by the assumption of the

Pohlhausen quartic velocity profile, viz

¥/ )
2L =2
i LD
we find that 5.2 becomes, if we write §/8,3f

28 6 v 1 e ﬂ. 29
_u. — 2 9 .
+9(+1) 95*1- B U 9 b ;fau

or
¢ 1 'auc . .
G ?sq"q‘ 5 O [‘f/b (“”)] EATRE TS 15

This can be written

262 1 ow, Far &Y

-,5-5—-+:;-5-;- .q + 9“7;?:}’;
wvhere
g= 2 [(nen) -£/6]

According to the Pohlhausen method the extremes of A are about +7 and
=12 for which the corresponding values of H are 2.31 and 2.74 and the
correaponding values of 8/9" range from about 7 to 9.5. Thus § varies
little over the range of interest and if we assume 94 to be constant we

obtain

2(r* 8 uT) %0 g
L u .
=5 n > T-16

If we then assume the flat plate values of fx9Q0T1L and H = 2,59 so that

q = 6.16 and assume § also to be & constant we have

646
2(r*8,*ul™) clb
( = 0-uk vty 711




which is very similar to the form (7.13) due to Cooke above., Similarly the
assumption of H constantly equal to 2.59 and 8/9” = 9,072 simplifies the
crosa-flow momentum integral equation for the Pohlhausen quartic type method
to the form

26 TA) PR
?5 * &

[O5N - 0-145TM, ] 118
In both 7.18 above and 7.14 N is related to 911/6 {or 91,/61-) by an
equation of the form
I 9‘.! I 63_|
N oo (2 gM) o (2 - &M, 14
§ 00 :‘4 &t )
where '14- and j-s are functions of A only.

8. SOME COMPARISONS WITH EXACT SOLUTIONS

The four methods so far described based on the small cross~flow
assumption (i.e. that using Pohlhausen guartic velocity profiles, its
aggociated approximate method due to Young, that using Timman's profiles and
Cooke's approximation thereof) have been programmed in Mercury Autocode for
use on the University of London Atlas Computer and have been compared with
three known exact solutions used as tests by Cooke4. These called Examples

1, 2 and 3 respectively in Figures 1 to 12 have velocity components
u| - ul/ueo =
2 3
- X X X
V. = Vi [uo AT+ J.(?) "‘As("E)

respectively where X,Y are cartesian coordinates and u, s V, are velocities
in the directions X increasing and Y increasing, ¢ is a representative

length and

Al 2
A= 1 EXAMPLE 1
45
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A - 4
&, = 4 ¢ EXAMPLE 2
15--—4)
o= 4
A, = -4 { EXAMPLE 3
A, = 4

Cooke shows that for these cazes for which the streamlines are translates we

may take
» -
2,12, M2 .2
rE u ﬂ'? w 2 3 v,
where -1 -2

@ e e

These three examples all have streamlines with a point of inflexion at
3‘[0 = 0,5, For Examples 1 and 2 the pressure gradient is initially
favourable and changes to unfavourable at the point of inflexion. For
Example 3 the reverse is the case, the pressure gradient is originally
unfavourable and changes to favourable at the point of inflexion.

The computer programme tabulated the solution of the two simultaneous
differential equations 7.2 and 7.4, the integration being performed by means
of & library routine employing a Runga-Kutta~Merson technique,

Study of Figures 1 to 12, in which the results are presented reveals
that, although there is little to choose between the four methods for the
prediction of streamwise momentuwn thicknesa, Cooke's approximation of the
Timman profiles method produces slightly more accurate answers for the
streemwige gkin friction than doeg the Young type epproximation of the
Pohlhausen quartic protiles method. Thie is, perhaps, to be expected as the
Timman profiles satisfy all the boundary conditions at the outer edge of the
boundary layer automatically. The predictions for tan /9 2 ‘T;,JT;. are good
apart from the adverse pressure gradient for xlc < 05 in Example 3,

Figure 12, The predictiona for 5}‘ are not so good in the cases involving
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stronger adverse pressure gradients and larger orosa-flows (Examples 2 and
3, Plgures 5 and 9) but note should be taken of the falgpe zeros of all the
diagrams. The approximations made by Cocke appear to lead to the smallest
errors for the cases examined, and Cooke's method seems therefore the best

12,13 upon Cooke's method

of the four tested. The only experimental checks
known to the present authors show comparisons of predictions for tanid by
Cooke'a method with values obtained from flow visualisation testa. These
have confirmed that uMlp is well predicted by Cooke's method.

9., TWO OTHER METHODS

It will be seen that in all cases and in particular in Example 3
aignificant errors in the streamwise momentum thickness predictions ocour
in the presence of adverse pressure gradients. In an attempt to improve the
predictions for adverse pressure gradients the technique devised by Iuxton
and Young5 for the case of the two-dimensional laminar compressible
boundary layer with heat transfer has been adapted to the three-~dimensional
laninar boundary layer with small croas-flow.

The starting peint for this method is equation 7.16

(r*G ud)  rriud
23 f

9.1

5

From an snalysis of exact solutions Iuxton and Young” derive expressions
for the dependence of § and 9 upon A which in the simple incompressible
cage with zero heat transfer oonsidered here may be reduced to

/6 = ¥ = 10721 + D)
end H o= 254 + D A 92

vith 9 = 2[mer) - #)

and I} = -0,0198, T& = =0,0742 for favourable pressure gradients and

D, = -0.0246, D, = -0.106 for adverse pressure gradients. We have also

N e B e Fon

YY) 7 M Tas T3



The calculation proceeds in a series of small eteps in §,q and § are held
constant during each step but vary from step to step. The procedure may be
sunmarised as follows:

(1) Find the values of H and { at S =.0 from equations 942, In
most cases )\5-0 = O but if this is not so then AS_D must be
calculated from a known value of q, at $*0 by an iterative
process through equations 9.3 and 9.2.

(11) Integrate equation 9.1 over a small step in S to obtain a value
of & at S .

{1ii) Using the value of 5'5- o 1n equation 9.3 find an approximate
value of )g|.

(iv) Using the approximate value of )\sl find fs‘ .

(v) Use this value of {'S| in equation 9.3 to find a more acourate

value of Mg, .

(vi) Substitute this more accurate value of Mg, into equations 9.2 to
find values of j-sl ’ HS| and hence 951 +» The equation 9.1 may
then be reintegrated over the step from $ = 0 to 3=3; using the
mean values of f and q over that step. Thie procedure (11) to
(vi) may be repeated until the value of }Ngl converges to a given
tolerance.

(vii) Using the values of ﬂk’ end g repeat the procedure to find the
solution at S; .

This method has been applied to the three examples mentioned previously
and as will be seen from Figures 1, 5 and 9 a definite improvement in the
form of the distribution of ), is obtained, but the overall improvement
for the larger adverse gradients is somewhat disappointing in the light of
the results obtained in two dimensions (see Ref. 5).

For these large pressure gradients the question then arises as to the
magnitude of the errors introduced by the assumption of small cross-flows,

and we are led to consider the development of a method which does not



involve this assumption. Here a difficulty is encountered since the
momentun integral equations contain terms such as (|[1-)(3 6’,1/ 9;1) and
(|]r)(39u_/a)-l) + In the general case these must be accounted for by a
calculation procedure which first ignores these terma and solves the
momentum integral equations along several streamlines and then repeats the
process accounting for the derivatives with respect to " by means of the
differences in 611 and 911 found upon neighbouring streamlines by the
initial caslculation. The whole calculation thus proceeds as an iterative
process. For the particular cases considered here the process is however
somewhat simpler since we may account for the derivatives in the bl direotion
by the relation given above viz

2

l ?
?avl ax

ax

sl Ixt

The method devised is as follows and as will be seen it includes all the
terms in the momentum integral equations., Timman has shown for his profiles
that

o /67 = - 2053AN + -0Bi6l M, - 0-0228U4 AN - 0-003798N\M,

O /Bp = — 156664NY ~ 044633 M;N ~ -003798 M2

6,/ 6r = —*SN - -06698T M, .
Substituting the Timman profile expressions for

o, u s b B Iy T T

8 o7 by b1 & b1 pu> ’put

into the momentum equationz 3,2 and 3.3 and using

A 2 1 2P ¥ (] - D
M, » -—) K’.u LI el 4 Hlue)——: i —
1 7 ° f’ha ) 61. r 3 23

glves two simultaneous differential equations involving 815' /‘V, '3(8-,-: /‘IJ) /35,
N, 3N/35) A= (&r"/v)(a%/%) and functions of the external flow. These two
equations were then rearranged by much lengthy but straightforward algebra

into the form
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a /v)

=4 (82/v, N, s)

2(n)

9% . j'a_ (bT:l/v' N, S)

which could be asolved by means of the library routine mentioned above.
The method was then programmed and the resulis are presented in Figures 1
to 12 in which it is termed Method 3.

It will be meen that the inclusion of the cross-flow terms in the
momentum integral equations results in & marked improvement in the acouracy
of the resulis particularly in ths presence of strong adverse pressure
gradients. The remaining relatively small discrepancies between the
results glven by Method 3 and the exact results can be ascribed to errors
ariasing from the velocity profiles chosen.

10, CORCLUDING REMARKS

For the three-dimensional laminar boundary layer the use of the small
cross-flow assumption together with & Pohlhausen type approximate solution
of the momentum integral equations results in good agreement with exact
solutions for cases involving favourable pressure gradients, Of the two
types of velocity profiles, Pohlhausen quartics and Timmgn's profiles,
tested in approximate solutions here, Cocke's approximation of the method
invelving the latier profiles yielded results which were marginally
superior to those obtained by a Young type approximation of the method
involving the former profiles. The results produced by these methods for
the streanwise momentum thickness in adverse pressure gradients are by no
means as good, however, This ias thought to be due to the nature of the
streanmwise momentum integral equation which, with the assumption of amall

oross=-flow velocity, we may rewrite as

28 T 1 au,[
KD a‘ou‘ —-l:l: 2.6“1-5,] v 95 | o4
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For adverse pressure gradients -(l/uc)(?%]‘és) is positive so that if at
any stage the value of ﬂ, predicted by the approximate solution is too
large compared with the exact solution the value of aBu /'as over the next
step will in consequence alsc tend to be too large and the approximate
golution will tend to daiverge from the exact solution. Similarly, should
the value of §;, be too small ?9"/35 will be too small and once more the
approximate solution will diverge from the exact solution. For favourable
pressure gradients (- (i ql)(autlas) negative ) this does not occur as a too
large value of & produces a too small value of 39"/ 23 and vice versa.
The last texrm in the above equation -(9" /1')(31‘/35) tends to act in the
opposite sense but it is generally dominated by the second term aa far as
the net effect of exrrars in 9" are concerned. For the adverse pressure
gradient case, Example 3, shown in Figure 9, neglect of the cross-flow terms
in the streamwise momentum integral equation and the assumption that ql/6
ia a constant both have the effect of producing a value of 9,, which is too
laxge when compared with the exact solution. This results in the
divergence mentioned above and the consequent inaccuracy of this type of
approximate method. The assumption that 0, /8 1s a constant may be
removed by the adoption of the extension of the Iuxton-Young technique
presented here and results in some improvement of accuracy for favourable
and small adverse gradients. However for large adverse gradients the
assumption of small cross-flows leads to significant errors and must be
discarded to achieve adequate accuracy.

The approximate method involving the full momentum integral equations
developed here produces for the cases considered very satisfactory results
but at the expense of greater computational complexity which would be even
more marked in the general case where an iterative procedure would be
required.

As a rough tentative guide as to when the pressure gradients and the
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crogs={lows are such as to call for the inclusion of the crosa-flow terms
we may note that for Examples ) and 2 where the small creoss-flow methods
are for most purposes of acceptable accuracy the maximum value of P was of

the order of 10° whilst for Example 3 the maximum value of p wag sbout 20°



l.

2.

3-

4.

9.

6.

Te

a.

9.

10,

il.

12,

Cooke J.C.
Hall M.J.

Cooke J.C.

Pohlhausen K.

Cooke J.C.

Iaxton R.E.
Young A.D.

Howarth L.

Squire L.C.

Timman R.

Eichelbrenmner E.A,
Cudart A.

Timman R.

Dunecan W.T.
Thom A.S.

Young A.D.
Crabbe R.S.

REFERENCES

Boundary layers in Three Dimensions.
Progress in Aercnautical Sciences, Vol., 2,
Pergamon Press. 1962,

An Axially Symmetric Analogue for General
Three-Dimensional Boundary Layers.
A.R.C. R. and M. 3200. 1959.

Zur Noherungsweisen Intergragtion der
Differential-gleichung der Laminaren
Reibungsschacht.

ZAMM 1,252, 1921.

Approximate Calculation of Three-Dimensional
Laminar Boundary lLayers.
A.R.C, R. and M, 3201. 1959.

Generalised Methods for the Calculation of the
Laminar Compressible Boundary Layer
Characteristics with Heat Transfer and Non-
Uniform Pressure Distribution.

A.R.C. R. and M. No. 3233. 1963.

The Boundary Layer in Three-Dimensional Flow.
Part I - Derivation of the Equations for Flow
Alcng a General Curved Surface.

Phil. Mag. (7) 42, 239. 1951.

The Three-Dimensional Boundary Layer Equations
and Some Power Series Solutions.
A.R.C. R. and M. 3006. 1956.

The Theory of Three-Dimensional Leminar
Boundary Layers.
Proc. Symp. Boundary Layer LEffects in
Aerodynamies, N.P.L. 1955,

Méthode de Calcul de la Couche Limite
Tridimensiomnnelle, Application & un Corps
Fuselé Incliné sur le Vent,

0.N.E.R.A. Pub, No. 76. 1955.

A Calculation Method for Three-Dimensional
Boundary Layers.
N.L.L. Report F.66. 1950,

An Elementary Treatise on the Mechanies of
Fluids,
pr. 279-281, Edward Arnold. 1960.

An Application of Cooke's Method to the
Laminar Incompressible Boundary layer on a
Right Circular Cone at Incidence.

N.R.C. Aero Dept- L.R. 591. Dec. 19630



24

13. Peake D.J. The Three~Dimensional Separation of a Flane
Galway R.D. Incompressible Laminar Boundary Layer I'roduced
by a Circular Cylinder liounted Normal to a
Flat Flate.
Agardograph 97, pp. 1057-1080., May 1965.
14, Zaat J,.A,. A Simplified Method for the Calculation of

Three-Dimensional Laminar Boundary lLayerse.
N.L.L. Rep. F.184. 1956

15. Zaat J.A. Nachprufung der Einfachen Rechenmethode fur
Driedimensionale Laminare Junzschichten mit

Hilfe von Exacten Losungen.

N.L.L. Rep. F.262. 1957,



3)4:*

by hy

w v, W

KI

ky

s,n

4

6,: 6).- 9"
eul aﬂ-' Bu
’Ex: 131

H

M, M, N
A

w e Sy

Suffix e

~25=-

NOTATION

Orthogonal curvilinear coordinates with ¥ measured
normal to the surface.

Metrics in the 'g,q,f coordinate system. (h3 al),

Velocities in the E,VL'f directions respectively.

| ?h,
Wy P

geodesic curvature of the curve

g = constant.

| oh,

T E;& geodesic curvature of the curve
T
n - congtant,

Directions slong and normal toc an external streamline
respectively.

Displacement and momentum thicknesses defined by
equation 3.l.

Skin frietion componenta in the 5,1 directions
respectively.

- §, /9,, the streamwise shape parameter.
Parameters used in description of velocity profiles.

- (8*[v)(ou,/ ?s), the Pohlhausen velocity profile
parameter.

The density of the fluid.
The viscosity of the fluid.
jff the kinematic viscosity of the fluid,

The static pressure in the fluid.

External to the boundary layer,
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Compariscn of these methods with the exact solutions
shows that the assumption of small cross~flow velocity in
the boundary layer is generally adequate in cases
involving favourable pressure gradiemts but introduces
significant errors in cases involving adverse pressure
gradients, In cases of moderate adverse pressure
gradient the accuracy of the spproximate solution may be
improved to some extent by the adoption of an extenaion of
the Luxton-Young technique. However, for large adverse
gradients adequate accuracy may oanly be obtained by
including the cross-flow terms in the momentum integral
equations, and the method desocribed here is then shown
to lead to very satisfactory results in all the cases
examined, It appears that provided the maximum value of
the angle g between the limlting and external streamlines
is leas than about 10° the small cross-flow assumption
is of adequate accuracy for most engineering purposes.

Comparison of these methods with the exact solutions
shows that the assumption of small cross~flow velocity in
the boundary layer is generally adequate in cases
involving favourable preasure gradients but introduces
significant errors in cases involving adverse pressure
gradients., In cases of moderate adverae pressure
gradient the accuracy of the approximate solution msy be
improved to some extent by the adoption of an exteunsion of
the Luxton-Young technique. However, for large adverse
gradients adequate accuraocy may only be obtained by
including the cross-flow terms in the momentum integrsl
equations, and the method described here is then shown
to lead to very satisfactory results in all the cases
examined., It appears that provided the maximum velue of
the angle § between the limiting and external streamlines
is less than adbout 10° the small cross~flow assumption
is of adequate accuracy for most enginsering purposes.

Comparison of these methods with the exact solutions
ghows that the assumption of small cross=-flow velocity in
the boundary layer is generally adequate in cases
involving favourable pressure gradients but introduces
significant errors in ceses involving adverse pressure
gradients. In cases of moderate adverse pressure
gradient the acouracy of the approximate solution may be
improved to some extent by the adoption of an extension of
the Luxton-Young technique. Howsver, for large adverse
gradients adequate accuracy may only be obtained dy
including the cross=flow terms in the nomentum integral
squations, and the method described here is then shown
to lead to very satisfactory results in all the cases
examined. It appears that provided the maximum value of
the angle § between the limiting and external streamlines
ia less than about 10° the smsrll cross~flow aasumption
is of adequate acocuracy for most engineering purposes.
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