C.P. No. 1046

1046

>

C.P. No.

MINISTRY OF TECHNOLOGY

AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

Methods of Solving the Flutter
Equations in use at R.A.E.
by
, L. T. Niblett

Structures Dept., R.A.E., Farnborough

' LONDON. HER MAJESTY'S STATIONERY OFFICE
1969
PRICE 5s 6d NET

>

U.D.C. 533.6.013.422 : 532,511 : 512.831 : 518.5

C-P. N0.10}.+6*
February 1968

METHODS OF SOLVING THE FLUTTER EQUATIONS IN USE AT R.A.E.
by

Ll, T. Nibdlett

SUMMARY

Details are given of some of the methods of solving the flutter
equations which have been programmed in Mercury Autocode at the R.A.E.
Included is a method of following the variation of criticel speed with a

linear variation of the structursl inertia, damping or stiffness.

*Replaces R.A.E. Technical Report 68025 - A.R.C. 30502,

CONTENTS

INTRODUCTION
2 PROGRAMME R.A.E. 272A -~ SOLUTION OF FLUTTER EQUATIONS
2.1 Basis of solution
2.2 Scaling
2.3 Preliminaries
2.4 Main Programme
2.5 Approximate critical v
2.6 TFurther comments
3 PROGRAMME R.A.E. 306A - CRITICAL VLUTTER CONDITIONS
3.1 Basis of solution
L PROGRAMME R.A,.E. 32L4 ~ FLUTTER SPEED LOCUS
L.1 Desecription of method

)
o
mﬂﬂ\jmknr#’wuw;j(g

-
Q

L.2 ZExperience

Appendix A Specification - R.A.E. 2724 -
Solution of flutter equations

Appendix B Specification - R.A.E. 306A - 1,
Critical flutter conditions

Appendix € Specification - R.A.E. 3244 -~

-
—

-
\v

Flutter speed locus 16
References 18
I1lustrations Figures 1-3

Detachable abstract cards -

1 INTRODUCTION

Flutter calculations involve the solution of & matrix equation which can

be put in the form
2 * 2
(A2 + (c2Bov 4+ D) A+ Cva+E]lq = [0} (1)

where A, D and E are real matrices associated with the structural proper-
ties of the system, B and C are real matrices associated with its aero-
dynamic properties, ¢ 1is the relative air density, -iA 1is a scaled complex
frequency, gq the latent vector and v is a scaled airspeed. The values of
v for which one of the possible N is purely imaginery are of particular
interest as they correspond to the critical flutter speeds. During the past
few years various forms of the solution of these equations have been pro-
grammed in Mercury CHLF3 Autocode, & subset of Extended Mercury Autocode.

This Report records details of a few of the programmes and also gives their

specifications.

For convenience and to reduce the amount of transcription necessary,
data common to all programmes is specified in a common form. For the same
reason it has been arranged that particular rows and columns of the matrices
can be selected so that any set of equations whose coeffiicients are included

in those of the full set can be solved with the minimum of data changes.

2 PROGRAMME R.A.E. 272A - SOLUTION OF FLUTTER EQUATIONS

This programme finds all the roots A of equation (1) for specified
values of v o It can also be used to find a value of v for which the
modulus of the real part of any of the A is smaller than a specified frac-

tion of its imaginary part.

2.7 Basis of solution

The method used is one of quadratic interpolation which Muller1
developed for the solution of polynomial equations but which is equally
applicable to the solution of determinantal equations. The determinant of the
square matrix of equation (1) is evaluated, with v constant, for three com-
plex values of A giving complex Ao’ 61, A, say. A parabolic curve fitted

2
to the three points (lo, AO) etc. will intersect the A-plane at two points

4

and the point of intersection nearer 12 is taken as the nexit approximation,

13, to the solution. A3 is evaluated, the first point (lo, Ao) is dis-
carded and the process is continued until the difference between successive
approximations,]lr - kr_1i/|Rr|, is sufficiently small. Subsequent to the
first solution it is imperative that the solutions already found are sup-

pressed so that they will not be found again and this is done by dividing the
-1 _ -

values of the determinant by T (% - Kj) where the lj are the solutions
J=1

already found. Since the matrices A etc. are real, complex solutions occur

in conjugate pairs and after a complex solution has been found both it and its

conjugate are suppressed. Should the last solution of the equation be real
2n-1 - =
it is found by eveluating AA::'L 351 / (1 - ?Lj) since KZn it is the negetive

of the real part of this function divided by the imaginary part.

2.2 Scaling

Failure will occur if the value of the determinant becomes sc large
that it overflows the accumulator of the computer or so small that it is
insignificant. Calculations can be made satisfactorily for a wide range of
absolute values of A, v and the elements of the matrices but the risk of
failure will be eliminated if the values of these are of the order of unity.
Since the scaling of the coefficient matrices relative to each other depends
on the scaling of N and v, only an overall factor can be applied to them
and one which brings the elements of the leading diagonal of A 1o the order

of unity will be suitable in most cases.

2.3 Preliminaries

The matrices are read into backing stores of the computer and the
selected rows and columns are subsequently copied into further backing stores.
Should o ° be other than unity the B matrix is multiplied by it during
transit,

The time taken to find a root depends, to a large extent, on how closely
it can be estimated. The roots vary continuously with v so that the roots
for one value of v can be used as estimates for the next valve. Initially,
however, estimates have to be provided in some other way. With flutter
ceefficients, the roots of the individusl eguations Arr 12 + Drr M+ Err =0

are generally reasonably good estimates and these equations are solved +to

provide the starting values for the first v. These estimates are sorted
according to whether they are real or complex and then arranged in order of
modulus,

The flutter equations are often such that equation (1) has roots
A =0, Should this be the case, there is a danger that accumwlator overflow
will occur if the methods outlined in section 2.1 are used. This is possible
either in the test for convergence, since thais is based on the absoiute value
of the root, or, in the suppression of the roots if there are multiple roots
A =0 and at least one of these has already been found. The behaviour of the
determinant near zero is therefore examined and the number of zero roots
determined (see section 2.4) before solution by the normal method is attempted.

Multiple non-zero roots are found successfully by the normal method.

If the equation has multiple zero roots when v is not zero it will
almost certainly have at least one zero root when v is zerv and hence E
will be singular. E 1is teken to be singular either if a first estimate of a
root is zero or if the determinant of E is considersbly less than the pro-
duct of the elements of the leading diagonal. Determinants are evaluated by
triangular decomposition with row interchanges2 using single length arithmetic
throughout.

2.4 Main Programme

First the value of v is substituted in (B v + D) and (C 02 +E).
If E has been adjudged singular the determinant is evaluated for a resl A
which is a small fraction of the imaginary part of the estimated complex X
of smallest modulus and also for an argument of twice this. The logarithm to
the base two, if positive, of the ratio of the second determinant to the first
gives an approximation to the multiplicity of gzero roots. This method has
worked well in practice even correctly diviming in one instance that an equa-

tion with 12th-order matrices had 18 zero roots.

The remaining roots are then found using the estimates, complex values
first, in order of increasing modulus. Should the number of zero roots found
be less than the nmuber estimated, zero estimates are replaced by small com-
plex numbers to avoid accumulator overflow. The three values tsken to commence
interpolation are A close to the estimate and on either side and the estimate
itselfs At each iteration the increment in N\ is compared with the increment

at the last iteration and if it is greater than it by a factor which varies

directly as the number of roots already found 1ts size is reduced to that of
the last increment., Also the inerement is reduced by half if the value of the
_determinant for the full increment is not less than ten times the value of the
last determinant accepted., Tteration is terminated either when the difference
between successive approximations is less than a small fraction of the latest
approximation or when the difference betwesen successive approximations
increases after first being reduced to a reasonably small fraction of the
approximation. If iteration is terminated in the latter way the printed rcot

is marked by an asterisk.

Roots are stored for reference and output as they are found. Real roots
will be printed floating point with six decimal places. The imaginary parts of
complex roots will be printed in the same form but the real port will be
printed as -100u |R|—1, (N = p + iv), fixed point with four decimal places
and also as & ifself in floating point with six decimal places if they are
large. Only one of each conjugate complex pair is output and the original
estimates provide a bias in favour of the ones with a positive imaginary part.
Occasionally however ones with negative imaginary parts are found, When all
the roots have been found the sum of their real parts is output to provide a
check on the working of the programme., This sum 1s proportic.aal to the

coefficient of A°"7 in the characteristic polynomial and is linear with v .,

2.5 Approximate critical v

Solutions can be found for a series of v input individually or for v
at regular intervals between two limits. Also the smallest critical v , i.e.
the smallest v at which, p, the real part of one of the A\ changes from
negative to positive, can be found approximately. In this last case three
values of v, s 0y and v, say, are input together wath two further numbers
e and 8. Solutions are obtained for a series of values v = vor Vg + V.,
v, ot 2v1 ete. up to or just beyond v, (actually v < Uy 0.9 91) until,
for one root, both |A| and p/ﬂl! are greater than e. The purpose of the
reference to & 1is to enable one to ignore near-zero spurious roots and roots
with small spurious real parts due to round-off or similar causes. When a
positive real part is found for a v other than v interpolation is commenced
with the object of finding a value of v at which [p/i] < & 1if this has not
been done already. The roots for the previous value of v are always retained
to facilitate this on the assumption that the order in which the roots are

found does not change with v. The next v to be tried is the result of

linear interpolation between the positive p and the pu which has the same
position among the roots found at the previous speed. Subsequent interpola-
tion is by the second-order Newton formula. If no p 1is positive at a
particular v the g in the same position as the last positive p to be
found is used. When a suf'ficiently smell value of has been found the
rest of the range of v is covered in steps of v, recommencing at the v
above the one at which the first positive u was found but no attempt is

made to find further critical speeds.

2.6 Further comments

The use of Muller's method on the determinantal equation itself
involving as it does the repeated evaluation of complex determinants is a
comparatively slow method of solving the equation. However, all roots are
found directly from the original data and single-length arithmetic has been
accurate enough to provide reliable results. PFurther the order of the
equations is not doubled by replacement of the original equations by linear
ones as 1s the case when a library latent root programme is used. The method
becomes even more attractive if the elements of the determinant are higher-

order polynomials in A\.

3 PROGRAMME R.A.E. 306A - CRITICAL FLUTTER CONDITIONS

The vectors associated with the roots of equation (1) are not found in
the course of a solution by Muller's method. Sometimes the vector at the
critical values of v and M 1is of interest however and a programme has
been written which finds it from data in the form specified for R.A.E. 272A.
The critical values of v and A do not have to be known accurately since
an attempt is made to improve the epproximation to the true values whatever

the datum values used.

2.1 Basis of solution

The programme is based on inverse iteration with shift of origin using

the linear equivalent of equation (1)

2

1 -
—A1(0‘2BU+D) -A1(Cv +B) ip| = Mop

I 0 Q q

Iteration according to the equation

, (3)

4
- = - 2 .
where B=o°Bop+D and C=C v +E, results in convergence to the

latent root nearest n. Eguation (3) can be written

- - - {
= q3+1 PS+1 (h ﬂ) q.s \}-{-)
(r2 4 + = B) + 7 C = - (A=m ® A {%)
' Psa Qg1 7 Pg i
Substituting for gq_ , from equation (4) in equation (5)
2 - - -
(x“ A+ =B+ C) P4 < (- =) (C g, = * A Ps) . (6)

The equations used in the programme are (4) and (6). = is the
imaginary number which is the known approximate critical value of A and B
and C are evaluated for v _ the approximate critical value of v,

(ﬂ2 A+7nB+ C) 1s decompos:d with row interchanges to the product of lower
and upper triangular metrices. Equation (6) is solved for Py and (A- =) using
arbitrary vectors P, and q, as data., Bquation (4) is solved for qy and
equation (6) is solved again using p, and q, as data. The process 1is
repeated until the sum of the squares of the differences betwsen the elements
of consecutive {p al is a minimum. (A - ®) wall, in general, be a complex

number.,

(wg A+ nB+C) is evaluated for vy, & value of upsilon near v _,
the iteration is repeated and the value of (n - ﬂ) found. The next value of
v for which (A - %) is found is chosen to be that at which a straight line
passing through the real parts of M\ already found passes through zero.
Subsequently interpolation is by the second=-order Newton formula and is

terminated either when the real part of N is sufficiently close to zero or
ceases to be reduced. The values of v and A are the critical values and

are output together with the vector.

The deflections in the flutter mode (which are complex) can be output if

the deflection matrix for the coordinates is availsble.

The elements of the matrix

1
[A?\2+(0‘2B9+D)7\+CD2+E]'—‘1J = F (sey) (7)

where qu is a diagonal matrix of the elements of the vector can also be

output for the critical values of A, v and q.

F gives the generalised forces in each coordinate due to the displace=-
ments in all the coordinates. The product of F post-multiplied by a column

of ones is & null column.

4 PROGRAMME R.A.E. 324A - FLUTTER SPEED LOCUS

The programme calculates the variation of v with any one of the p

which satisfy the equation

) + -1 -2 _
| (A + My Ap) A+ {o?B+ (D+ My Dh) v }JA +C+ (E+ Hy E“) v =0

veee (8)

where all the matrices and scalars are real apart from A which is purely
imaginary. It will be noticed that N\ is a fregquency parameter rather than

a frequency in this case. The choice of argument of the equation is
influenced largely by the relative likelihood of v tending to zero and to
infinity. In the system principally in mind v is far more likely to tend to
infinity than zero and the frequency-parameter form has been chosen. The

coeff'icient matrices are the same for both forms.

The graph of v_1 against p is followed by assuming its basic form
and extrapolating an estimate for the next point from the positions of previous
points rather than by basing the extrapolation on the derivatives at the last
point. An accurate point on the graph is found by interpolation on the normal

to the assumed curve at the estimated point.

10

4.1 Description of the method

The basic form of the graph of u-] against pu is assumed to be a
circle. Once three points have been found (say A, B, C of Fig.1) a circle
is put through them and the first approximavion (D} to the next point is
the mirror image of the penultimate point (8) in the radius through the
last point (0C). Interpolation to critical values of o1 and A is
similar to that of R.A.E, 305A (see secition 3.1) although not at constani u
but along the radius OD which is a line of constant (u cos © - 0_1 sin 8) ,
where € is the angle from 0D +to the v—1 axis and the increments are in
{1 sin © + 9-1 cos 6) and not 0_1. Tteration is terminated when the differ-
ence between successive approximations to #(A) is either less than a preset
value or not getting smaller., Interpolation along a particular line is
stopped either if the angle between the tongent to the carcle 2t £ and tre
line joining J (see Fig.2) to the current approximstion exceeds & preset
value or if 4(A) differs by more than a preset amount from =, the
approximate value of A at the next point. J is a point on the tangent at
C a short distance (depending on the first estimate of v for the want of
something better) from C and on the same side of € as the penultimate
point. The test of 4(A) - = 1s omitted for the first few iterations to
allow 4{\) a chance to settle. Interpolation is then tried on the line
parallel to OD whach bisects the chord CD. Should this also be unsuccessful
subdivision of the chord is continued. The calculation is abandoned if no
success 1s achieved with an inerement which is 2-9 of the original. The cal-
culation wall also be abandoned if interpolation is still unsuccessful after a
preset limit on the number of points tried at any particular value of

H cos € = v_1 sin & is exceeded.

The size of the increment can also be increased up to a maximum value
specified in the data. After each point on the curve is found the radius of
the latest circle is compared with that immediately previously and if it does
not show a reduction of more than 20% the increment is increased. In Fig.1,
F, the next approximate point,is at the intersection of DE and the circle
and the distance BE is 50% greater than the distance BD. Should the
increment be limited to the maximum it will be modified so that the next
approximate point is on the circle (e.g. G to H). The size of the increment

will not be increased if it was reduced during the finding of the last

point,

!

To begin the calculation an approximate critical v and frequency
parameter = must be known for the first value of the parameter p. The
programme starts by refining these and uzes the more accurate values as first
approximations at the next value of p which is a preset small fraction of
the maximum increment from the initial p. Interpolation at this value of u
is stoppedand the increment halved when the same limits as for a general point
are exceeded, the tangent at the first point bheing taken to be a line parallel

to the p axis.

The interpclation for the third point is started on the assumption that
the curve is a straight line through the first two points. The increment
between the first and second points is doubled to obtain the initisl increment
for finding the third point and similarly the increment between the second and

third points is doubled to give the increment for the fourth point.

After the first two points have been found the pole, =, for the next
point is based on the As at and the relative positions of the last two
points. Referring to Fig.1 the value of = for the approximate point F

chord CF
would be Ao+ (K RB)

chord BC®
quency parameter in the data. Tor the second peint it is the accurate fre-

The = for the initial point is the fre-

quency parameter at the first point.

The calculation is terminated when the value of p is smaller than its
initial value or larger than the nominal maxamum value input as data or when

v 1s larger than the nominal meximum value input as data.

The programme has been developed using cases in which the range of u
wes of the same size as that of v | and it is advisable that the matrices
should be scaled so that the likely (u - 4 .) is of the same order as

max min

D .

the likely (;EEILTT—EEE> so that the limits incorporated in the programme
max min

are applicable.

4.2 Experience

This was the last of the programmes described to be written and little
experience of it in general use has been obtained. However, the test cases
used in its development were picked for their difficulty. One of them is
shown in Fig.3. The presence of a 'knot' in one of the curves was unsuspected

before the programme was used.

12

Appendix A
SPECIFICATION - R.A.E. 272A - SOLUTION OF FLUTTER EQUATIONS

A.1 The programme finds the roots, A, of the equation
i
& A 4 (cZB o+ D) A+ C N E} = ©

where A, B, C, D, E, o, v are real.
A.2 Data

(1) An integer (p') which is limited to up to 15 in *he case of the
Mercury programme and 30 in the case of the Atlas programme e1d is the order

of the metrices A, B etc. input.

(2) The matrices A, B etc. in any order preceded by the appropriate

letter, They are overwritten only when further matrices are input.

(3) The n row - and - column numbers, in the range 1 to p', of the
elements of the matrices input which are the elements of the submatrices om
which the calculataion is to be made, enclosed in brackets, e.g. (1 3 4)

remembering that each number must be terminated.
1
The value of o Z.

(4} An integer t - followed by:-

If t = 0:- Vs Y, etc. terminated by * if the programme is to be

re~entered.

40 g etc. will be calculated.

If t=1:=- Loy Vg5 0

The roots for v = v

The rocts for v = Vos O+ D etc., v < v, * 0.9 vys will be calculated.

Iftt=-1:- Vs Vs U5y € .

The roots are found as for t =1 but if a complex root, * = u + iv,
is found with |A] > e, u/|A] > €, an v will be found at which |u/A| < 6.

If t = -2:- Vs Vys Vs €, 8, i', i' values of vy and -100 u/|7],

2{n - i') values of M.

Appendix A 13

This allows the introduction of estimates of the roots, 1i' of which
are complex, other than those supplied by the programme. The values of
-100 p/‘ll follow their respective v immediately. Estimates that are zero

must be input as the last real roots.

More data may be input starting with any of (1) to (4). If the
character > is input the rest of the characters on its line will be output

as a title and will be followed by a new line.
If the character =~ is input an end instruction will be reached.

A.3 Qutput

(1) D. OF F. followed by the n row - and - column numbers.
1

(2) o2.
(3) v=0v.

(4) The roots of the equation. Complex roots are printed v, floating
point, followed by =100 u/]l], fixed point and, if large, u floating
point. Real roots are printed floating point. If € roots are zero the

non-zero roots are preceded by '¢' ZEROS.

(5) REAL SUM sum of real parts of roots. This should be linear with

upsilen.
A, Data faults

If an illegal spurious character is found in the data an end instruction
is reached. Before this happens TFAULT K is output followed by & integer (k)
and the spurious character except that a letter shif't character is changed

to an erase and a line-feed character will be followed by an erase.

k =1, illegal character is between the main items of section 2 above,
k = 12, character is in data of sub-section 2(4),

k = 13, character is in data of sub-section 2(3),

k = 20, character follows & letter-shift,

k = 21, character is in one of the matrices of 2(2) and the appropriate

letter will be output before the illegal character.

14

Appendix B

SPECIFICATION ~ R.A.E. 306A — CRITICAL FLUTTER CONDITIONS

B.1 Gaven good approximations to an imaginary A and real v for which

1
[A?~2+(62BD+D)?~+002+E]q = 0

L]

where A, B, ¢, D, E, ¢ are real, the programme finds accurate values of A

and v together with the corresponding gq.

Given a matrix Z(p' x s) of the displacements in the generalised
coordinates of a set of s points, it will output the displacements of the

peints in the flutter mede, 2.

It will also find the matrix of generalised forces

2

1
(A2 + (62B v+ D) A+¢C v & Bl'q; = 7 .

B.2 Data

(1) An integer (p') which is limited to up to 15 in the case of the

Mercury programme and 30 in the case of the Atlas programme and is the order
of’ the matrices A, B etc. input.

(2) The matrices A, B, C, D, E, 2 in any order preceded by the appro-
priate letter. They are overwritten only when further matrices are input.
The matrix 2 is a p' x s rectangular matrix and the integer s (p' s < 2,250

Mercury, 4,500 Atlas) must be input immediately af'ter the letter Z.

(3) The n row - and - column numbers, in the range 1 to p', of the
elements of the matrices input which are the elements of the submatrices on
which the calculation is to be made enclosed in brackets, e.g. (1 3 4)

remembering that each number must be terminated.
1
The value of o2,

Appendix B 15

(4) An integer ¢ followed by the approximate critical values of v
and 4(7\).

It £ = -1 only » and 3(1)‘ will be output
£ =0 v, 4(h), q and z will be output
L =1 v, 4(A\), q, z and F will be output

%z will only be output if a Z has been input and can be suppressed
by the subsequent input of p'.

More data may be input starting with any of (1) to (4). If the
cheracter > 1s input the rest of the characters on its line will be output

as a title and followed by a new line.
If the character = is input an end instruction will be reached.

B.3 Qutput

(1) D. OF F. followed by the n row - and -~ column numbers.
1

(2) o=,

(3) CRITICAL SPEED v , FREQUENCY 4(0).

(4) VECTOR
q
(5) DISPLACEMENTS

I \

(6) TFORCES
T

B., Data faults

If an illegal spurious character is found in the data an end instruction
is reached. Before this happens FAULT K is output followed by an integer (k)
and the spurious character except that a letter-shift character is changed fo

an erase and a line-fzed character will be followed by an erase.

k =1, illegal character in between the main items of section 2 ebove,
= 12, illegal character is in the data of sub-section 2(4),

= 13, illegal character is in the data of sub-section 2(3),

20, character follows a letfer shift,

~ R R R
|

21, character is in one of the matrices 2(2) and the appropriate
letter will be output before the illegal character.

16

Appendix €

SPECTFICATION - R.A.E. 324,A - FLUTTER SPEED LOCUS

C.? The flutter equation is taken to be in the form

(A + pa[wA]) 2 . (U%?B o] D+ Hd[¢D]}) A+ C+ (B + ue[¢E]) U“2| = 0.

Given reasonably good approximations to the critical speed v and the fre-
quency parameter A at the initial value of the structural parameter ¢, the
programme enables the variation of v with p +to be traced until either p
exceeds a value input or is less than its initial value or v exceeds & wvalue
input. Only one of My Bgs b, can be used at a time. The programme is
written in Mercury CHLF 3/L Autocode and will be compiled by an EMA compiler.

C.i1.1 Scaling

The speed and frequency-parameter scales should be such that A and v

are of order unity. For safety the structural parameter scale should be such

v - .
max min
thatp - . N — e .
max min P v,
max min

c.2 Data tape

(1) An integer p' < 30 which is the order of the matrices A, B etec.
on the tape.

(2) The matrices A, B, C, D, E, VA (or ¥yD or yE) in any order preceded
by the appropriate letiers. The only characters permitted between the letter
shift (or ¥) character and the letter character are the shift characters and

erase.

(3) The n row - and - column numbers in the range 1 to p' of the
elements of the matrices already read which are the elemenits of the submatrices
on which the calculations are to be made enclosed in brackeis, e.g. (1 3 4)

remembering that all the numbers must be terminated.

-

The value of UE;

{4) An asterisk * followed by the initial value of u, an approximate
value for the initial v, ditto for A, the maximun increment in p desired,

the maximum p of interest and the maximum v of interest.

Appendix C 17

After (4) is read computation is commenced. At its conclusion more data

can be read starting at any of (1) to (4).
C.2.1 Titles

Characters on the date tape which follow the character > are output
immediately up to and including the next carriage-return character and are
followed by a line-feed character. Titles may be put before (1), (3), (&) or
any of (2).

C.2.2 End

If the character =~ is read the caption END is output and an instruc-

tion end is reached.
C.3 Qutput
D. OF F. followed by the n row - and - column nuwbers
3
4 (or D or E) \'i NU
Values of u Values of v Values of #{A)

Lost

IT the programme fails to find the continuation of the cwrve at any

point the caption LOST is output and computation is concluded.
Data faults

If an illegal spurious character is found in the data the caption
FAULT K 1s output together with the value of the index k and the spurious
character except that a letter shift character will be changed to an erase and

a line-feed character will be followed by an erase.

If k

1 , character is before (1), (3), (4) or any of (2),

= 12, character is in the number after the asterisk,

13, character is between the brackets,
= 19, character follows ¥,
20, character follows a letter shift,

18, character is in the ¥ matrix,

AR R AR OR
i

[}

21, character is in one of the matrices of the data (2) apart
from the ¢ and the appropriate letter will be output.

18

‘2
- |o

D-E-

J.H.

Author
Muller

Wilkinson

REFERENCES

Title, ete.
A method for sclving algebraic equations using an
automatic computer.
Math, Tab. 10, 208-215 (1956)

The algebraic eigen value problem.
oxford, Clarendon (1965)

n

Fig.! Construction for first approximation to next point

M

Fig.2 Range within which next point can be found

t 6

i-2

c8

06

04

0e

0-89
/ p
257
085
/se\
.54 \093\ 100
232
154
2:04
202 -89
2:04 148
2:37 219
I-57
.2 S0 /
2-58
l
185
242
The numbers by the curves
are frequency parameters
Stable
| |
0-2 04 06 0-8 1-0

yn

Fig.3 Example of variation of flutter speed
with control stiffness

Printed wn Englond for her Majesty's Stationery Office by
the Royal Asrcraft Establishment, Farmmborough. D1.148815. 4.3.

AdR4Ca C.P. No.10O45

Feb. 8 5520511 .
sbruary 1% 512831 :
Niblett, Li. T. 518.5

YETHODS OF SOLVING THE FLUTTER EQUATIONS IN USE AT R.A.E.

Detalls are given of some of the methods of solving the flutter equations
which have been programmed in Mercury Autocode at the R.A,E. Included is
a method of following the variation of critical speed with a 1linear
variation of the structural inertia, damping or stiffness.

533.6.013.422

AJRJCo CoP. HNe. 1046 233.6.013.422

February 1958 232,511 :
* 512.831 :
Niblett, L1, T, 518.5

METHODS (F SOLVING THE FLUTTER EQUATIONS N USE AT R.A.E,

Details are given of sume of the methods of solving the flutter equations
which have been programmed in Mercury Autocode st the R.A.E., Included is
a method of following the variation of critical speed with a linear
variation of the structural inertia, damping or stiffness.

A.R.C. C.P. No.1046 533.6.013. 422

February 1968 552.511 ¢
512,831 :

Niblett, Ll. T. 518.5

METHODS (F SOLVING THE FLUTTER EQUATIONS IN USE AT R.A.E.

Details are given of sane of the methods of sclving the flutter equations
which have been programmed in Mercury Autocode at the RLAE, Included is
a method of following the variation of critical speed with 2 linear
varijation of the structural Inertia, damping or stiffness.

53-6-013-1122 H
552,511 ¢
512,831 :
Niblett, L1, T, 518.5

A.ReCe CuPe No.1046
February 1968

METHODS F SOLVING THE FLUTTER EQUATIONS IN USE AT R.A.E,

Details are given of some of the methods of solving the flutter equations
which have been programed In Mercury Autocode at the R.,A.E., Included is
a method of following the variatiom of critical speed with a linear
variation of the structural inertia, damping or stiffness,

BMVY JOVHLSEY TIIVHOVLK]

C.P. No. 1046

© Crown copyright 1969

Published by
HER MAJESTY'S STATIONERY OQFFICE

To be purchased from
49 High Holborn, London wc 1
13A Castle Street, Edinburgh 2
109 St Mary Street, Cardiff crl liw
Brazennose Street, Manchester 2
50 Fairfax Street. Bristol BS1 3DE
258 Broad Street, Birmingham 1
7 Linenhall Street, Belfast BT2 8AY
or through any bookseller

C.P. No. 1046
SBN 11 470173 3

.

