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1 INTRODUCTION 

Flutter calculations involve the solution of a matrix equation which can 

be put in the form 

[A X2 + (qliB " + D) A + C "* + E] q = lOI (1) 

where A, D and E are real matrices associated with the structural proper- 

ties of the system, B and C are real matrices associated with its aero- 

dynamic properties, u is the relative air density, -iA is a scaled complex 

frequency, q the latent vector and u is a scaled airspeed. The values of 

u for which one of the possible h is purely imaginary are of particular 
interest as they correspond to the critical flutter speeds. During the past 

few years various forms of the solution of these equations have been pro- 

grammed in Mercury CHLF3 Autocode, a subset of Extended Mercury Autocode. 

This Report records details of a few of the programmes and also gives their 
specifications. 

For convenience and to reduce the amount of transcription necessary, 

data common to all programmes is specified in a common form. For the same 
reason it has been arranged that particular rows and columns of the matrices 
can be selected so that any set of equations whose coefficients are included 
in those of the full set can be solved with the minimum of data changes. 

2 PROGRAMME R.A.E. 27211 - SOLUTION OF FLUTPER EQUATIONS 

This programme finds all the roots h of equation (1) for specified 

values of u . It can also be used to find a value of u for which the 
modulus of the red part of any of the X is smaller than a specified frao- 

tion of its imaginary part. 

2.1 Basis of solution 

The method used is one of quadratic interpolation which Muller' 
developed for the solution of polynomial equations but which is equally 
applicable to the solution of determinantal equations. The determinant. of the 
square matrix of equation (1) is evaluated, with u constant, for three oom- 

plex values of X giving complex Ao, A,, A2 say. A parabolic curve fittea 
to the three points (ho, Ao) etc. will intersect the h-plane at two points 



and the point of intersection nearer A2 is taken as the next approximation, 

h3 ' 
to the solution. A3 is evaluated, the first point (ho, Ao) is dis- 

carded and the process is continued until the difference between successive 

approximations, ]h - h r =-, I jig) is sufficiently small. Subsequent to the 
first solution it is imperative that the solutions already found are sup- 

pressed so that they will not be found again and this is done by dividing the 
r-1 

values of the determinant by II (h - xj) where the xj are the solutions 
J=l 

already found. Since the matrices A etc. are real, complex solutions occur 
in conjugate pairs and after a oomplex solution has been found both it and its 

conjugate are suppressed. Should the last solution of the equation be real 
2n-1 

it is found by evaluating A,Yi jz, (i - xj) since x,n it is the negative 
I 

of the real part of this function divided by the imaginary part. 

2.2 Scaling 

Failure till occur if the value of the determinant becomes so large 

that it overflows the accumulator of the computer or so small that it is 
insignificant. Calculations can be made satisfactorily for a wide range of 
absolute values of h, u and the elements of the matrices but the risk of 
failure will be eliminated. if the values of these are of the order of unity. 
Since the scaling of the coefficient matrices relative to each other depends 

on the scaling of h and a, only an overall factor can be applied to them 
and one which brings the elements of the leading diagonal of A to the order 
of unity will be suitable in most oases. 

2.3 Preliminaries 

!Che matrices are read into backing stores of the computer end the 
selected 70~s and columns are subsequently copied. into further backing stores. 

Should os be other than unity the B matrix is multiplied by it during 
transit. 

The time taken to find a root depends, to a large extent, on how closely 

it can be estimated. The roots vary continuously with u so that the roots 
for one value of u can be used as estimates for the next value. Initially, 
however, estimates have to be provided in some other way. With flutter 

coefficients, the roots of the individual equations Arr X2 + Dr, h + Err = 0 
are generally reasonably good estimates and these equations are solved to 
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provide the starting values for the first U. These estimates are sorted 

according to whether they are real or complex and then arranged in craer of 
mcaulus , 

The flutter equations are often such that equation (I) has roots 
h = 0. Should this be the case, there is a danger that sccumulotcr overflow 
will occur if the methods outlined. in section 2.1 are used. This is possible 

either in the test for convergence, since thm is based on the absolute value 
of the root, or, in the suppression of the roots if there are multiple roots 
h = 0 and at least one of these has already been found. The behaviour of the 
determinant near zero is therefore examined. and the number of zero roots 

determined (see section 2.4) before solution by the normal method is attempted. 
Multiple non-zero roots are Pound successfully by the normal. method. 

If the equation has multiple zero roots when u is not ecx it will 
almost certainly have at least one zero root when u is sero and hence E 
will be singular. E is taken to be singular either if a first estimate of a 
root is zerc or if the determinant of E is considerably less than the pro- 
duct of the elements of' the leading diagonal. Determinants are evaluated by 

triangular decomposition with row interchanges2 using single length arithmetic 
throughout. 

2.4 Main Programme 

First the value of u is substituted in (B u + D) ana (C u2 + E) . 
If E has been adjudged singular the determinant is evaluated for a real h 
which is a small fraction of the imaginary part of the estimated complex A 
of smallest modulus and also for an argument of ttice this. The logarithm to 
the base two, if positive, of the ratio of the second determinant to the first 
gives an approximation to the multiplicity of zerc roots. This method has 

worked well in practice even correctly divining in one instance that an equa- 
tion with 12th-order matrices had 18 zero roots. 

The remaining roots are then found using the estimates, complex values 
first, in order of increasing modulus. Should the number of zero roots found 
be less than the number estimated, zero estimates are replaced by small com- 

plex numbers to avoid accumulator overflow. The three values taken to commence 
interpolation are h close to the estimate and on either side and the estimate 
itself. At each iteration the increment in h is compared with the increment 
at the last iteration and if it is greater than it by a factor which varies 
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directly as tine number of roots already found Its size is reduced to that of 
the last increment. Also the increment is reduced by half if the value of the 

determinant for the full increment is not less than ten times the value of the 
last determinant acceptes. Iteration is terminated either whell the difference 
between successive approximations is less than a small fraction of the latest 
approximation or when the difference between successive approximations 
increases after first being reduced to a reasonably small fraction of the 
approximation. If item-ation is terminated in the latter way the printed root 
is marked by an asterisk. 

Roots are stored for reference and output as they are found. Real roots 
will be printed floating point with six decimal places. !Che imaginary parts of 
complex roots will be printed in the same form hut the real pert wLl1 be 

printed as -100~ IhI -I, (h = p + iv) , fixed point with four decimal places 
and also as p itself in floating point with six decimal places if' they afle 

large. Only one of each conjugate complex pair 1s output and the original 
estimates provide a bias in favour of the ones with a positive imaginary part. 
Occasionally however ones with negative imaginary parts are found. When all 
the roots have been found the sum of their real parts is output to provide a 
check on the working of the programme. This sum 1s proportio.lal to the 
coefficient of h2n-1 in the characteristic polynomial and is linear with u . 

2.5 &ppToxlmate critical u 

Solutions can be found for a series of u input individually or for u 

at regular intervals between two limits. Also the smallest critical u , i.e. 
the smallest u at which, II, the real part of one of the h changes from 
negative to positive, can be found approximately. In this last case three 
values of U, u 0' u1 

ani3 u 2 say, are input together mth two further numbers 
c and 6. Solutions are obtained for a series of values u = uo, u. + u,, 
u 

0 
+ 2V, etc. up to or just beyond u2 (actually u < u2 + 0.9 u,) until, 

for one root, both Ihl and p 1x1 are greater than E. / The purpose of the 
reference to E is to enable one to ignore near-zero spurious roots and roots 
vJlth small spurious real parts &ue to round-off or similar causes. When a 
positive real part is found for a u other than u interpolation is commenced 
mth the object of finding a value of u at which '/p/Al < S if this has not 
been done already. The roots for the previous value of u are always retained 
to facilitate this on the assumption that the order in which the roots are 

found does not change with u. The next u to be tried is the result of 
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linear interpolation between the positive p and the p which has the same 
position among the roots found at the previous speed. Subsequent interpola- 
tlon is by the second-order Newton formula. If no p is positive at a 

particular u the p in the ssme position as the last positive p to be 

found is used. men a sufficiently small value of p has been found the 
rest of the range of u is covered in steps of U, recommencing at the u 
above the one at which the first positive p was found but no attempt is 
made to find further critical speeds. 

2.6 Further comments 

The use of Muller's method on the determinantal equation itself 
involving as it does the repeated evaluation of complex determinants is a 

comparatively slow method of solving the equation. However, all roots are 
found directly from the original data and single-length arithmetic has been 

accurate enough to provide reliable results. Further the order of the 
equations is not doubled by replacement of the origind equations by linear 

ones as 1s the case when a library latent root programme is used. The method 
becomes even more attractive if the elements of the determinant are higher- 

order polynomiels in h. 

3 PROGRAMME R.A.E. 306A - CRITICAL FLUTPER CONDITIONS 

The vectors associated with the roots of equation (1) are not found in 

the course of a solution by Muller's method. Sometimes the vector at the 
critical values of u an& h is of interest however and a programme has 
been written which finds it from data in the form specified for R.A.E. 272A. 
The critical values of u and X do not have to be known accurately since 

an attempt is maae to improve the approximation to the true values whatever 
the datum values used. 

3.1 Basis of solution 

The programme is based on inverse iteration with shift of origin using 

the linear equivalent of equation (1) 

- A-'(c'B " + D) - 
. (2) 

I 
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Iteration according to the equation 

where Brcr'Bu+ll and F=Cc'+E, results in convergence to the 

latent root nearest 7[. Equation (3) can be written 

71 q,,, = Ps,, - (h - d 9, 

(3) 

!I+) 

b2 A b x ii) P,,, + TT t q,,, = - (A - d x A P, . :>; 

Substituting for qs,, from equation (4) in equation (5) 

(x2 A + x 5 + t) ps,, = (h - x) (? qs - x A ps) . 

The equations used in the programme are (4) and (6). 7~ is the 

imaginary number whxh is the known approximate critical value of h and g 
and E are evaluated for u 

0 
the approximate critical value of U. 

(.x2 A + 7[ g + E) I.S decomposed with row interchanges to the product of lower 
end upper triangular m2trices. Equation (6) is solved for p., and (h-x) using 

arbitrary vectors p, and q, as data. Equation (4) is solved for q, and 

equation (6j is solved again using p, and q, as data. The process 33 

repeated until the sum of the squares of the differences between the elements 
of consecutive lp q] is a minimum. (h - x) will, xn general, be a complex 

nwnber. 

(x2 A + n g + E) is evaluate& for U, , a value of upsilon near u 

the iteration is repeated and the value of (A - x) found. The next valze) of 

" for which (h - n) is found is chosen to he that at which a straight line 
passing through the real parts of A already found passes through zero. 

Subsequently interpolatxon is by the second-order Newton formula and is 



terminated either when the red part of h is sufficiently close to zero or 
ceases to be reduced. The values of u and h are the critical values and 
are output together with the vector. 

The deflections in the flutter mode (wllich are complex) can be output if 
the deflection matrix for the coordinates is available. 

The elements of the matrix 

+ 
[A X2 + (u'B u + D) h + C u2 + E]'q, = F (say) (7) 

where r~ is a diagonal matrix of the elements of the vector can also be 
output for the critical values of A, u and q. 

F gives the generalised forces m each coordinate due to the displace- 
ments in all the coordinates. The product of F post-multiplied by a column 

of ones is a null column. 

4 PROGRAMME R.A.E. 3&l - FLUTTER SPEED LOCUS 

The programme calculates the variation of u with any one of the p 

which satisfy the equation 

I(A+P~AJ~*+[~B+(D+P~D~)u-'~~ +C+(E+I-'~E~)V-'~ = 0 

. . . . (8) 

where all the matrices and scalars are real apart from 'h which is purely 

imaginary. It will be noticed that A is a frequency parameter rather than 
a frequency in this case. The choice of argument of the equation is 

influenced largely by the relative likelihood of u tending to zero and to 
infinity. In the system principally in mind u is far more likely to tend to 
infinity than zerc and the frequency-parameter form has been chosen. The 
coefficient matrices are the same for both forms. 

The graph of u -1 against p is followed by assuming its basic form 
and extrapolating an estimate for the next point from the positions of previous 

points rather than by basing the extrapolation on the derivatives at the last 
point. An accurate point on the graph is found by interpolation on the normal 

tq the assumed curve at the estimated point. 
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4.1 Description of the method 

The basic form of the graph of u -1 against p is assumed to be a 

circle. Once three points have been found (say A, B, C of Fig.1) a circle 
is put through them and the first approxur&zion (Dj to the next point is 
the mirror image of the penultimate point (B) in the radius through the 

last point (OC). Interpolation to critical values of u -1 and h is 

similar to that of R.A.E. 3&A (sea sectIon 3.1) although not at constant p 

but along the radius OD which is a line of constant (p cos 8 - u 
-1 sin 0) , 

where 8 is the angle from OD to the u -1 axis and the increments are in 

(p sin 8 + u -1 -1 
c~s e) ana not u . Iteration is terminated. when the differ- 

ence between successive approxmations to 90) is either less than a preset 
value or not getting smaller. Interpolation along a particular line is 

stopped either if the angle between the tcn[;ent to the CUC~P at C ana t?c 
line Joining J (see Fig.2) to the current approximation exceeds a preset 

value or if 4(k) differs by more than a preset amount from X, the 
approximate value of h at the r&xt point. J is a point on the tangent at 

C a short distance (depending on the first estimate of u for the want of 
something better) from C and on the same side of C as the penultimate 
point. The test of 9(h) - z 1s omitted for the first few iterations to 

allow 9(h) a chance to settle. Interpolation is then tried on the line 
parallel to OD whl>h bisects the chord CD. Should this also be unsuccessful 
subdivisIon of the chord is continued. The calculation is abandoned if no 
success is achieved .tith an increment which is 2 -9 of the original. The cal- 
culation ~~11 also be abandoned if interpolation is still unsuccessful after a 

preset limit on the number of points tried at any particular value cf 

p cos e - u-' sin e is exceeded. 

The size of the increment can also be increased up to a maximum value 
specified in the dats. After each point on the curve is found the radius of 
the latest circle is compared with that immediately previously and if it does 
not show a reduction of more than 2% the increment is increased. In Fig.1, 

F, the next approximate pomt,is at the intersection of DE and the circle 

and the distance BE is 50% greater than the distance BD. Should the 

increment be limited to the maximum it will be modified so that the next 
approximate point is on the circle (e.g. G to H). The size of the Increment 
till not be increased if it was reduced during the finding of the last 
point. 
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To begin the calculation an approximate critical u and frequency 

parameter x must be known for the first value of the parameter p. The 

progrsmme starts by refining these and uses the more accurate values as first 
approximations at the next value of p which is a preset small fraction of 

the maximum increment from the initial p. Interpolation at this value of p 

is stoppedandthe increment halved when the same limits as for a general point 
are exceeded, the tangent at the first point being taken to be a line parallel 

to the p axis. 

The interpolation for the third point is started on the assumption that 
the curve is a straight line through the first two points. The increment 
between the first and second points is doubled to obtain the initial increment 

for finding the third point and similarly the increment between the second and 
third points is doubled to give the inorement for the fourth point. 

After the first two points have been found the pole, X, for the next 
point is based on the hs at and the relative positions of the last two 
points. Referring to Fig.? the value of x for the approximate point F 
would be hC + (XC - b) $~~~ $. The x for the initial point is the fre- 
quency parameter in the data. For the second point it is the accurate fre- 
quency parameter at the first point. 

The calculation is terminated when the value of p is smaller than its 
initial value or larger than the nominal msxlmum value input as data or when 
u is larger than the nominal maximum value input as data. 

The programme has been developed using cases in which the range of p 

was of the same size as that of u -1 and it is advisable that the matrices 
should be scaled so that the likely (cl - p . ) is of the same order as 

the likely cz irnF) max. ,,, 
so that the limits incorporated in the progrsmme 

are applicable. 

4.2 Experience 

This was the last of the programmes described to be written and little 

experience of it in general use has been obtained. However, the test cases 
used in its development were picked for their difficulty. One of them is 
shown in Fig.3. The presence of a 'knot' in one of the curves was unsuspected 
before the progrsmme was used. 
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SPECIFICATION - B.A.E. 272A - SOLUTION OF FLUTTER EQUATIONS 

A.1 The programe finds the roots, h, of the equation 

IA X2 + (c4B u + D) h + C u2 + El = 0 

where A, B, C, D, E, c, u are real. 

A.2 Data 

(1) An integer (p') which is limited to up to 15 in Ihe ~8s~ of the 
Mercury pmgrame and 30 in the case of the Atlas prograrroile ai:< is the order 

of the matrices A, B etc. input. 

(2) The matrices A, B etc. in a~ order preceded by the appropriate 

letter. They are overwrItten only when further matrices are input. 

(3) The n row - and - column numbers, in the range 1 to p', of the 
elements of the matrlces input which are the elements of the submatrices on 

which the calculst~on is to be made, enclosed in brackets, e.g. (1 3 4) 

remembering that each number must be terminated. 

The value of u k . 

(4) An integer t - followed by:- 

Lf t = 0:- u,, u2 etc. terminated by * if the programme is to be 

re-entered. 

The roots for u = u,, u2 etc. will be calculated. 

If t = I:- uo, u,, u2. 

The roots for u = uo, u. + u, etc., u < v2 + 0.9 u,, will be calculate&. 
If t = -I:- Do) ",' u2, c, 6. 

The roots are found as for t = 1 but if a complex root, h = p + iv, 
is found with Ihl > E, p//l?.1 > E, an u will be found at which I@/?.1 Q 6. 

If t = -2:- uo, v,, u2, s, 6, i', i' values of y and -10;) d/lhl, 

2(n - 5.') values of p. 
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This ellows the introduction of estimates of the roots, i' of which 
are complex, other than those supplied by the programme. The values of 
-100 p/(hl follow their respective v imediately. Estimates that are zero 

must be input as the last red roots. 

More data may be input starting with any of (1) to (4). If the 
character > is input the rest of the characters on its line will be output 
as a title and will be followed by a new line. 

If the character fi is input an end instruction will be reached. 

A.3 output 

(1) D. OF F. followed by the n row - and - column numbers. 

(2) 2 . 

(3) v = u * 

(4) The roots of the equation. Complex roots are printed v, floating 
point, followed by -100 d]Al, fixed point and, if large, p floating 

point. Real roots are printed floating point. If 8 roots are zero the 
non-zero roots are preceded by 'C's 

(5) RFAL SUM sum of real parts of roots. This should be linear with 
upsilon. 

A.4 Data faults 

If an illegal spurious character is found. in the data an end instruction 

is reached. Before this happens FAULT K is output followed by a integer (k) 

and the spurious character except that a letter shift character is changed 
to an erase and a line-feed character will be followed by an erase. 

k=l, illegal character is between the main items of section 2 above, 

k = 12, character is in data of sub-section 2(L), 
k = 13, character is in data of sub-section 2(3), 

k = 20, character follows a letter-shift, 

k = 21, character is in one of the matrices of 2(2) and the appropriate 
letter will be output before the illegal character. 
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SPECIFICA!t'ION - R.A.E. 306A - CRITICAT., FLUT!PER CONDITIONS 

B.l Given good approximations to an imaginary h and real u for which 

[Ah2+(bqBu+D)h+Cu2+E]q = 0 , 

where 4, B, C, D, E, c are real, the prograione finds accurate values of X 

and u together with the corresponding q. 

Given a matrix Z(p' x s) of the displacements in the generalised 
coordinates of a set of s points, it will output the displacements of the 

points in the flutter mode, Z. 

It will also find the matrix of generalised forces 

[A X2 + (U ; B u + D) h + C u2 + Elrq, -F s 

B.2 Data 

(1) An integer (p') which is limited to up to 15 in the case of the 
Mercury programme and 30 in the case of the Atlas programme and is the order 
of' the matrices A, B etc. input. 

(2) The matrices A, B, C, D, E, 2 in any order preceded by the appro- 
priate letter. They are overwritten only when further matrices are input. 
The matrix 2 is a p' x s rectangular matrix an& the Integer s (p' s < 2,250 
Mercury, 4,500 Atlas) must be input immediately after the letter Z. 

(3) Th e n row - and - column numbers, in the range 1 to p', of the 
elements of the matrices input which are the elements of the submatrices on 

which the calculation is to be made enclosed in brackets, e.g. (1 3 L+ ) 
remembering that each number must be terminated. 

The value of a'. 
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(4) An integer 8 followed by the approximate critical values of u 

and 9(h). 

If 8=-l only u and 9(h)- will be output 

e=o u, S(h), q and B will be output 
&=I u, s(h), q, s and F will be output 

.z will only be output if a 2 has been input and can be suppressed 

by the subsequent input of p'. 

More data may be input starting with any of (1) to (4). If the 
character > is input the rest of the characters on its line will be output 
as a title ana followed by a new line. 

If the character 5 is input an end instruction will be reached. 

B.3 output 

(1) D. OF F. followed by the n row - and - column numbers. 

(2) 2. 

(3) CRITICAL S??XD u , FREQUENCY 4(h). 

(4) VECTOR 

9 

(5) DISPLACEMENTS 
s 

(6) FORCES 
F 

B.4 Data faults 

If an illegal spurious character is found in the data an end instruction 

is reached. Before this happens FAULT K is output followed by an integer (k) 

and the spurious character except that a letter-shift character is changed to 
an erase and a line-feed character will be followed by an erase. 

k=l, illegal character in between the main items of section 2 above, 

k = 12, illegal character is in the data of sub-section 2(h), 
k = 13, illegal character is'in the data of sub-section 2(j), 
k = 20, character folloti a?ietger shift, 

k = 21, character is in one of the matrices 2(2) and the appropriate 

letter will be output before the illegal character. 



SPECIFICATION - R.A.E. 32411 - FLUTTER SPEED LOCUS 

c.1 The flutter equation is taken to be in the form 

I(A + q[$A]) X2 + (c'B + V-' jD e p&'D]]) h + C + (E + I$'@]) u-*1 = 0. 

Given reasonably good approximations to the critical speed u and the fre- 
quency parameter X at the initial value of the structural parameter p, the 

programme enables the variation of u with 1~ to be traced until. either p 

exceeds a value input or is less than its initial val.ue or f exceeds a value 
input. O~Y one of par Pa9 cI, can be used at a time. The progwmme is 

written in Mercury CHLF 3/4 Autocode and will be compiled by an EMA compiler. 

c.1.1 scaling 

The speed and frequency-parameter scales should be such that h and u 
are of order unity. For safety the structural parameter scale should be such 

” - u 
that p,, - pmin = y min 

max Umin 
c.2 Data tape 

(I) An integer p' c 30 which is the order of the matrices A, B etc. 
on the tape. 

(2) The matrices A, B, C, D, E, *A (or $D or $E) in q order preceded 
by the appropriate letters. The only characters permitted between the letter 

shift (or $) character and the letter character are the shift characters and 

erase. 

(3) The n row - and - column numbers in the range 1 to p' of the 
elements of the matrices already read which are the elements of the submatrices 

on which the calculations are to be made enclosed in brackets, e.g. (1 3 4 ) 
remembering that all the numbers must be terminated. 

The value of c'. 

(4) An asterisk * followed by the initial value of II, an approximate 
value for the initial U, ditto for X, the maximum increment in @ desired., 
the maximum II of interest and the maximum u of interest. 
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After (4) is read computation is commenced. At its conclusion more data 

can be read starting at any of (1) to (4). 

C.2.1 Titles 

Characters on the data tape which follow the character > are output 
immediately up to and including the next carriage-return character and are 
follovd by e line-feed character. Titles may be put before (I), (3), (4) or 

any of (2). 

C.2.2 End - 

If the character fi is read the caption END is output and an instruc- 
tion end is reached. 

c.3 output 

D. OF F. followed by the n row - and - column numbers 

a+ 

A (or D or E) v No 

Values of p Values of u Values of 4(x) 

Lost 

If the programme fails to find the continuation of the Curve at any 
point the caption LOST is output an& computation is concluaea. 

Data faults 

If an illegal spurious character is fowd in the asta the caption 
FAULT K 1s output together mth the value of the index k and the spurious 

character except that a letter shift character will be changed. to an erase and 
a line-feed character will be followed. by an erase. 

If'kzl , character is before (I), (3), (4) or any of (2), 
k= 12, character is in the number after the asterisk, 

k = 13, chsracter is between the brackets, 
k = 19, character follows $, 
k = 20, character follows a letter shift, 

k = 18, character is in the Jr matrix, 
k = 21, character is in one of the matrices of the data (2) apart 

from the Jr and the appropriate letter will be output. 

. 



-cEs 

NO. Author gt1e, etc. - 
1 D.E. Muller A method for solving algebraic equations using en 

automatic computer. 
Math. Tab. IO, 208-215 (1956) 

2 J.H. Wilkinson The algebraic eigen value problem. 
Oxford, Clarendon (196.5) 



Fig.1 Construction for first approximation to next point 

Fig.2 Range withln which next point can be found 
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