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1 INTRODUCTION

Th13  Report describes  a program in Extended Mercury Autocode  (EMA) for
the finite  element analy313  of plane stress problems in regions of arbitrary
geometry, m media with uniform orthotropic  or isotropic properties; the
adaptation  of the program to include vanable  thickness and vanable  elastic
constants 13 trivial. The displacement' method is employed, and the reglcn
to be analysed  13 &vi&d into triangular elements2 between the vertices of
which the displacements are assumed to vary linearly. Instruction3 are
given for the use of the program, the choice  of grid pattern is discussed and
the method of analysis is summarized. The program is pnmanly intended for
use on Atlas, but it may be used on any other computer mth an EMA compiler
provided that details  such as Job heading are modified appropriately.

2 NOTATION

Underlined symbols are used to denote matrices.

Ne,h
X1’Yi
D
M=
'ii
D
U
R

defined  after equation  (1)
coortinates  of a typlcal  element vertex
elastic  constants, defined after equation (1)
bandwidth  parameter of K

-PP
matrix, defined in section 4

number of drrsplacement  components
number of prescribed zero displacements
number of prescribed  non-zero displacements
number of known non-zero applied forces which do not correspond
to displacement3 that are prescribed  Zero

W-D-U, number of unprescribed displacements
displacement matrix
force matrix
defined in equation (1)

defined in equation (3)
stiffness matrix
denote3 a column matrix

Superscript

t denote3 a matrix transpose

Subscript

8 typical  trlangu1a.r element

bw defined in section 3.
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3 OUTLINE OF METHOD

Thu section gives  a brief account of the method of analysx  for those
users who wish to understand the working of the program. The reader with
no experience of matrix notation is referred to standard texts 384 for an
explanation of the simple matrix operations employed.

The deformatwn  of the finite element idealization is defined by a
column matrix, 5, of the displacement components at the nodes of the grid
formed by the triangular elements; a column matrix ; denotes the ccrres-
pondlng force components. These matrxes  are used to define  the loading, and
are dinded into submatrices as follows:

2P
unprescribed  displacements

%
prescribed non-zero displacements

5 prescribed  zerc dup1acements

&P prescribed  forces corresponding to r-P
%

unprescribed forces corresponding to r
-9

The force components applied at the vertices of a typical element 4 ,
of thu&ness  h, are related to the corresponding  dx,placement  components by
tne follcnnng  6 x 6 stiffness matrix:

where Ne = x,y*  + xp3
1

+ "3Yl - (Y,X2  +  Y2X3  +  Y& ’

'23
0 -x23

0 +23 '23

Y31 O -x31

0
-x31 y31

y12 O -x12

0 -x12 y12

xij  = xi-X J'

, E =

D1 D2 OI ID2 D3 O

0
O D4

and where the coordinates  of the vertices and the force and d;Lsplacament
components are numbered as shown in Fig.1; D,> D2> D3 and D4 represent the
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appropriate elastic constants. The superscript t denotes a matrix
transpose.

The stiffness matrix  & for the assembled idealization is formed by
adding the ooeffioients of the element stiffness  matrloes 5. into the
appropriate rows and columns, thu matrn is dinded into the submatrices,

1 ,
so the displacement components are related to the corresponding applied
forces by the equations'

The unknown displacements are thus given by

(2)

The K
-PP

matrix is banded and symmetric,  and has its largest
coefficients on the 1eadLng  diagonal, it is inverted, in the program, by the
Choleski decomposition method, using a translation  of the algorithm by
Martin and Wilkinson5.

The stresses q in a typical element are given by

(3)

w’nere v-e 1s the column matrn of the displacements of the element vertices,
III the order shown in Flg.1.
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4 GRID PATTERN

The triangular elements used in practxe  are chosen on the basis of past
experience in similar problems and, when necessary, by comparing results
obtained using elements of different sizes. Care should be taken in choosing
a suitable grid to avoid elongated elements, as these give relatively
inaccurate results. Smaller elements are needed in areas where the stress
gradients are expected to be high, but it is worthwhile  choosing a pattern
which is sufficiently regular for the results to be plotted and u&erprreted
wIthout too much difficulty.

In problems where distributed loadings are applied, the equivalent
concentrated forces at the nodes of the grid formed by the elements should
preferably be obtained on EL rigorous virtual work basis6, but simpler techniques
based dzectly  on considerations of equilibrium  are often adequate.

When the idealization  has been selected, thenodal displacement
components are numbered in the following order:

where the submatrices are defined in section 3.

A simple example is now given to illustrate the numbering system.
Consider  the square isotropic plate ABCD, loaded as shown in Flg.2 and
idealized as shown in Fig.3. Reference numbers I-IO, in Fig.3,  correspond
to unprescribed displacements, 11 and 12 to prescribed non-zero displacements
and 13-18  to prescribed  zero displacements.

The maximum size of problem that can be analysed  in a single computation
is dxwussed  in section 6 and depends, among other things, on the bandwidth of
t+le  K the value of this

-PP
matrix, which is defined here by a parameter M;

parameter is calculated by taking  the maximum difference between the reference
numbers of the unprescribed dxplacement  components P

-P
at adJESent  nodes.

Thu parameter 1s of significance  because terms in the stiffness matrix 5
couplzng  non-adJaCent  nodes are zero.

In large problems where the bandwidth is of importance, it IS sometimes
worthwhile to make a diagram of the K matrix showing the position of the non-
zei-cl terms. For xxtance,  the lower half of the K

-PP matrix for the above

.
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example, in whxh the bandrndth parameter 1s 5, may be shown diagrammatxally
a s

m + 1 terms
mcluding
the leading
diagonal

X\.“\x x

x x x\

x x x x

x x x x x

\

o x x x x x

0 x x x x x x

o o o x x x x

\

A\o o o o o x x x x ,

0 0 0 0 0 x x x x

where 0 denotes a zero and X a non-zero term. Such a diagram sometunes
reveals a more efficient numbering system for the displacement oomponents.

5 INPUT DATA

The input data is specified below in the order zn which it must be
read into the computer. The symbols in the left-hand column opposite
certain Items are used in the calculation  of the duectives  at the begInning
of the program (see section 6) and are not punched on the tape. The data
may be presented in either fixed- or floating-point form. TyplOd data for
input is illustrated in Appendix  B.

Data for Chapter 0:

Problem number, to help the user identify the dlfferent  oases
computed.

D,'D2
D3aD4

Components of the elastic matrix !J, defined after equation (1).

Thxkness  of the plate.

W Total  number of dxplacement  components (2 x number of nodes).

, D
I

Number of prescribed zero displacements.
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Bandwidth parameter of K-pp,  defined xn section 4.

Number of different  basic 'types' of elements, where each basic
'type' of element has a different size, shape or orxntation,  two
different orientations of identical elements give two bfferent
basic 'types'.

.

U Number of prescribed  non-zero SiisplaCements.

B Number of prescribed non-zero forces.

4 X,‘Y, Coordumtes  of the vertuxs  of a typu%l  element of a basic  'type',

x2'y2 numbered &s shown in Fig.?.

Number of elements which are identical III sxe, shape and
orxntation  to the above reference element (including  the reference
element).

Reference numbers of the displacement components at the vertxes
of each of these elements in turn, III the order m whloh  the
coordinates are specified.

The data sequence from (a) above is repeated for all the basic
types of element,

Data for Chapter 1:

When II IS zero, hump to (b) below. Prescribed non-zero forces,
preceded by their reference numbers.

b)

0)

When U is zero, hump to (0). Prescribed non-zero displacements
in the numeruxl  order given  by their reference numbers.

The data for Chapter 0, from (a), are now repeated for reasons
given  below.

I The data are ended by the symbols * * * z.

.

The basic  element data are read in a second time for the calculation of
the stresses su~ce  this information  has been overwritten in the execution  of
the earlier  part of the program. The input 1s left in this somewhat
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cumbersome form so that the program can be used on any machine mth an EMA
compiler irrespective of the peripheral facilities.

6 JOB HEADING AND PROGRAM SIZE

The Job heading required for an Atlas tape is illustrated in Appendix B
and dx.cussed  more fully in the appropriate manua17. The method of
calculating the relevent  parameters 1s discussed 1x-1  thx section.

The coding which precedes the title  in the second line of the Job
heading depends on the Atlas installation employed, and the identity of the
user.

Tine  number of blocks of store needed for the execution of the program
1s given  approximately  by

23 + N/512 ,

where N is the total number of main variables which  is calculated as indicated
below. In normal running on the Manchester Atlas, 140 blocks cannot  be
exceeded, although mere may be used by special request.

The costing on Atlas does not depend on the number of instructions
requested, so a generous allowance can be made without affecting the cost,
a more accurate estimate  may then be made if the computations are repeated
for any reason.

The number of lines of output 1s given  by the smallest integer greater
than (or equal to)

20 + w/5 + total number of triangles.

The number of maln  variables used is given by the total of the
numerical values of the directives listed below, plus eight.

The directives are specified in numerical form at the beginning of
Chapter 1, which immediately  follows the title, as shown in Appendix A.
These directives take the numerical values calculated from the following
expressions:

A+2
B -f 2 or U, whxhever  is larger
D-*4
F + (M + 1)C
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G - UC

H + (M + 1)C
X + 21 or C, whichever is larger
Y+2

where G = w - D - U, and where the other symbols after the arrows sre defined
in section 5.

It is difficult to estimate the size of the largest problem that can be
tackled with a single idealization because of the large number of parameters
involved. If we consider, for example, problems in which no non-zero
tisplacements  are specified, i.e. U z 0, and a storage capacity of 14.0  blocks,
then the limiting  size as far as storage is concerned, is given approldmately
by

(1 + 2M)(W  - D) = 60000 .

Hence, by reducing the ban&with parameter M of the K
nodes in the grid may be increased.

'PP
matrix, the number of

If a problem is too large to be analysed  in a single computation, a
coarse grid of elements can be employed 1x1 a preliminary analysis, and then
smaller areas of particular interest can be reanalysed  using the coarse grid
results as boundary conditions. An alternative  and more accurate method is
to subd;Lvide  the idealization  and analyse  each subregion separately. A
relatively simple  additional program 1s then required, however, to complete
the analysx  by reassembling the deformed subregions.

7 OUTPUT

The output 1s printed in floating-point form in the following order:

(a) Problem number.

(b) Non-zero duplacements.

The displacements I+ and f
9

are printed in tabular form, 5 terms to a
row. The fnst  dlsplacement  of each row is preceded by its corresponding
reference number.

(cl Stresses
The results for triangles of the same basic type are presented on

consecutive lues and a space is left between the results for du?ferent
types of element. Each lue begun with the triangle number, followed by

.
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the stresses ox, oy and 'c the columns are headed Sx, Sy and Sxy in the
printout). The form of the output is illustrated in Appendix B.

Consequences 0r data faults

Data faults can obviously give rise to nonsensical results. They can
moreover cause  the program to stop prematurely with the oaption  'FAIL IN
INVEGION'. This implies that a data error has made the K

-pP
matrix  s1rgular.

The captions 'EXCESS BLOCKS' or 'S V OPERAND' can also be produced by thu
kind of fault, although they may also be due to a wrong estimation  of the size
of the problem.

8 ADAPTATIONS TO INCLUDE VARIABLE THICKNESS AND VARIABLE ELASTIC
CONSTANTS

The program may easily be modified to include vanable  thickness
pronded that the thickness of each element may be assumed. uniform. The
program is altered in such a way that the element thicknesses are read in with
the element reference numbers, so that each term of the element stiffness
matru  can be multIplied  by the appropriate thickness  before being added into
the submatrices  of &. The expression at the begInning of Chapter I
oontainng  the thuzkness  h 1s then omitted.

The elastic constants may similarly be varied by readug in the appro-
prlate values with the reference number of the individual elements. I f
elements of the same type have different elastic properties, then it 1s
necessary to calculate the stiffness  matrlces  of the elements individually.
The elastic constants are, of course, requred agan  when the stresses are
c a l c u l a t e d .
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Appendix A

PROGRAM DETAILS

Figs.5 and 6 give flow diagrams illustrating  the organisation  of the

program, which is divvied  into the two chapters described  below; Chapter 0

forms the two submatnces  of the stiffness matrix K that are required in the

calculations, and Chapter 1 calculates the displacements and stresses.

.

Chapter 0

The basic data is firstread  in, followed by the coordinates of a
typical triangle of the first 'type'. The lower half of the element stiff-
ness matrix is calculated and the required matrix  elements are added into
the appropriate positions in the K and K

-PP -Pq
submatrices, for each triangle

of this type; the procedure is then repeated for all other element types.
As can be seen in section 3, K and K

-PP -Pq
are the only submatrices of g

required in the analysis.

KPP
is stored in the variables A1 in the form required for the Martin

and Wilkinson5  program for matrix inversion by the Choieskl  method. The
diagonal terms of the matrix are stored in tix end column of a C by (M + 1)
matrix, whxh  has the follow?ag  form when C is 5 and M is 2:

Stored array Louver zrzangle  of conventional array
X X

91 all

x &21 a22 a2l &22

“31 a32 a33 *31 ‘32 a33

‘42 a43  *44
0

a42 a43  %4

a53 a54 a55
0 0

a53 &54 a55  *

TheK matrix is stored in the variables G
-F-I

i, in the transposed form

Lisp" The form of the & matrix is shown in Fig.7, the shaded areas being
the only regzans  of the matrix which are stored.

Chapter 1

The displacements are calculated using the matrix equation (I) and all
the non-zero displacements  are pnnted cut. The stresses in each triangle
are then calculated using equation (2) and prInted  cut.

The printout  of the program commences on the cw=lte Page.

.
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TITLE
PLANE STRESS ANALYSIS

CHAPTERI

I)J=~INT PT(C+O.I)
I=I(I)J
x1 =o
RkPEAT

JUMP1  ,R=o
1=x(1  R1
READ(K)
READ(XK)
XK=XK/H
REPEAT

&HP18,U=o
x7)R=‘+‘lNT-PT(U+o.r)
I=I(I)R

l=r(~)J
Fl=o
REPEAT

l=r(r)J
L=r(r)R
NyINT  PT(LC-C+l+o.~)
FI=F  l+E!LG,N
REPEAT
X1=X1-FI
REPEAT

IB)CAPTION
NON-ZERO DISPLACEMENTS
NtWL INE

1=r(1)J
dJf4P  a, I >M
P=M-I +1
JUMP3
a)P=o
3)R=t  -M+P



App.A Cont.

N=P(r)H
S’PN-I
Q=M-N+P
T’=w+N+1-H
Y=HT’
&MPQ,P>S’

3) JUNP6 ,N+N
JlNiPa4,e>Y
T’=Ml  +NiI -PI
~JW~T(Y)

an77
6iT 41 +N+1  -fl
0 PnR+R
FF’=YFO’
R=R+x
7)REPEAT
REPEAT

s’ et-1
l=r(x)J
JUNPg  , I>t4
P=M-1+x
JUNPr o
g)P=o-
xo)Q-I
Ypxl
JUHPI~,P>S’

K=S’(-I)P
Q=Q-I
T’=Nl+~+l-M

Giz HQ

13)O’=HI+I
HI =YFO’
REPEAT-

14(-x)1

Q=J-I
JJtiPx  I, Q>M
P=fl-cl+4
JUMPr  a
xx)P=o
I a)Y=HI
Q=I
JUMPr4,P>S’

.

l

i
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K=S’(-x)P
cm+1  .
T  ’ ‘MQ  +K+Q-H
Y-Y-FT’HQ
REPEAT-

14)O’=Hl  +I
Hl=YFO’
REPEAT-

R’yINT  PT(U+o.x)
JUMP~O.R=O

JqlNT  PT(C+o.r)

I=r(x)R
K=l+J
HK=Bl
REPEAT

6o)K=yllNT  PT(D/s+o.I)
X)JUMPI~,K=O
i=x(r)K.

p~fG]fj  a,0
P

X~“~).,~

NEWL I NE
REPEAT

r5)LqINT  PT(D-sK+o.xI
JUMPr6,L=o

P~lg)  a.0
P

%“,:;HP 10.3
REPEAT
NEWLINE

16)JaylNT  PT(D+r.r)
L=ylNT  PT(W+o.x)
I=J(x)L

HI==o.
REPEAT

CAPT ION
STRESSES
NEWL I NE
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SY
CAPT ION
TRIANGLE SX
NEUL INE
R=x(x)S

ztjt T)
READ(Y1)
REPEAT

Ao=Xa-Xx
AI =Xo-Xa
Aa=Xr-Xo

Bo=Yz-Ya
Bx =Y a-Ye
Ba=Yo-Yr

C=XaYo+XoY1+XxY  a-Y aXo-YoXr-YrXa
A=x/C

B=ABB=AB
PRINT(B)o,sPRINT(B)o,s
B=D~B~F~+B-JAoF~+D~BIF~+D~A~F~+D~B~F~+D~A~F~B=D~B~F~+B-JAoF~+D~BIF~+D~A~F~+D~B~F~+D~A~F~
B=ABB=AB
PRINT(  B)o,s
ED~AoF~+B~B~F~+D~A~F~+D~~~F~+D~A~F$+D~B~F~
B=AB
PRINT(B)o,s
NEWL INE
REPEAT
NEWL 1 NE
REPEAT

.
SXY

JUMP 31
a4)CAPTION
FAIL IN INVERSION
31)  ACROSSI  /O
CLOSE

.
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. CHAPTER0
VAR IABLESr

)READ(A)
CAPT  I ON
PROBLEM NUHBER
SPACE
PRINT(A)4.o
NEWL INE
1=x(:)4
READ(DI)
REPEAT
READ H)

tREAD W)
READ(D)
READ(M)
READ S)
READ U)t
READ(R)
D=W-D
C=D-U

J=yINT  PT(MC+C+o.r)
I=o(x)J
HIno-
REPEAT

J=vlNT  PT(UC+o.l)
I=o(x)J
($1-O*
REPEAT
PV(I)S

$?A$!:,

Es%? )

Ao=Xa-XI
Ar =Xo-Xa
Aa=Xz  -Xo

Eo=Yx-Ya
Br =Y a-Y0
Ba=Yo-YI

C'=XaYo+XoYI+XIYa-YaXo-YoXx-YIXa
A=o.s/CZ’

.
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XI =DI  BoBo+DqAoAo
Xa=DaAoBo+DqAoBo
X3=D3AoAo+DqBoBo
X4=D1 BoBr +DqAoAz
X5  =DaAoBr  +D~BoAI
X6=D1  BI  BI +D~AIAI
X7 =DaAx  B~+D~AoBI
X~=D~AIAO+D~&BI
Xg =D  ~AI  81 +D4Ar  BI
XIO-~~AIAI+D~BIBI
XI I=DI  BoBa+D4AoAa
XI  a=DaAoBa+D4BoAa
Xx3=GIBrBa+DqAtAa
XI~=DDIAIB~+D~BIA~
Xxs=DzBaBa+D4AaAa
X164JaAaBc+DqAoBa
Xxy=D3AoAs+D4BoBa
XI 8=DaAnBr  +D4Ar  Ba
Xxg=D3ArAa+DqBIBa
Xao=DaAaBa+DqAaBa
Xaz=DgAaAa+DqBaBa

l=x(r)ax
XI PAXI
REPEAT

READ(  0)
L=x(x)O
J=x(1)6

~Z!iJ’

N-o
l=r x)6

tJ=I r)l
N=H+r
JUMPag,F&FI
A=FI
B=F J
JUMP30
+9)A*J
BPFI
30)JUMP4,A>D
JUMPq,A>C
T=vINT-PT(MA+B+o.I)
HT=HT+XN
JUMP4
as ) JUMP4, B>C
T=ylNT PT(cA-cc-c+B+~,I)
GT=GT+XN

$gfAT *

REPEAT
REPEAT
ACROSS: /I
CLOSE

.
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Appendix B

SIMPLE EXAMPLE  OF JOB HEADUG,  INPUT DATA AND OUTPUT
.

This appendix illustrates the form of the Job heading, input data and
output for the simple example described in seotlon  4. The triangular
elements are numbered in the order shown in Fig.4, and the element data are
read Into the computer in the following order; A, to A4, B, to B4. The

printout commences on the following page.

i





i

J O B  HEADING,
- - - - - - - - - - - - -

JOB
Froo~/aao6/1  J.SINFIELD R.A.E. PLANE STRESS ANALYSIS
STORE. ai EiiOCKS
COWPUTINC,  8ooo INSTRUCTIONS
OUTPUT
&LINE PRINTER 3a LINES
COW  lLER  ENA
AuXILIARY(o,o)
HAIN- 7g

VARlABLtS DIRECTIVES
- - - - - - - - - - - - - - - - - -

4
a 3 4 5 1 11
6 7 :a 8 4 s

a36745
6 7 g IO 11 8

.



App.B  Cont.

OUTPUT
- - - - -

.

PLANE STRESS ANALYSIS

s.START  OF CHAPTER I
~03. START OF CHAPTER o
PROWAHWE  ENTERED

PROE%.EM  NUMBER
NON-ZERO DISPLACEMEN&

:
a.3o1,  1 g-59= 6-49s. -1 8.749
a. %#6 1.6SB o.r96p 2 s-%57
r.000

S&SSES
1 . 0 0 0

T R I A N G L E  SX SY SXY
I -a.87101, I -7.975r  = t.xaBgg.  I

3’
-1.43800r I ‘9. a738r,  ‘I 1.3377rr  I
-9.30*02a- 4.9r795r  -I 7.41470  .

4 -4.90859 x.s0693-  * I.osxg7.  1

I -1.57417 1.91461 x.osaax
4 a.576 ao a.67aa9,  I x.16746

3
9.90167,  - I 3.30056 -
4.6307x-

5.77 341
r.s4357r  1 3.679%

3.511
7-7x8

.
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.
COMPARISON WITH AN EXACT SOLUTION

A comparuon  is now made between the results obtained using this
program and the exact results obtained by Morley8 for an isotropx  square
plate, encast&  at one and, and loaded as shown in 1543.8. The plate and the
lo&ng are symmetric about the OX axis, so the upper half only 1s analysed,
usmg  the grxl  shown in Flg.9. The stresses along the edges of the plate are
shown in Figs.10 and 11. As this fxnite  element ideallzatlon  prescribes
urnform  stresses within each element, the results are made up of lines of
constant stress , Joined at the nodes to give a step formatIon. These
stresses are, Ineffect,  an average of the stresses over the area of each
element, so they cannot be expected to agree completely rnth  the exact stresses
along the edge of the plate. Figs.10 and 11 demonstrate, however, that the
funte element results follow the exact curve, differing most, of course, in
the immediate  vicinity of the point where the exact results have an influte
value.

.
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