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SUMMARY

A conputer programin Extended Mercury Autocode (EMA) iS described
for the finite element analysis of plane stress problems in regions of
arbitrary geonetry, using constant strain triangular el ements.
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1 | NTRCDUCTI ON

This Report describes a program in Extended Mercury Autocode (EMA) for
the finmite el enent analysis of plane stress problens in regions of arbitrary
geometry, 1n Nedia with uniformorthotropic Or isotropic properties; the
adaptataon Of the programto include variable thickness and variable elastic
constants 13 trivial. The dlsplacement1 nethod is enployed, and the region
to be analysed 1s divided into triangular elements2 between the vertices of
which the displacenents are assuned to vary linearly. I nstruction3 are
given for the use of the program the choxce of grid pattern is discussed and
the method of analysis is summarized. The programis pramaraily intended for
use on Atlas, but it may be used on any other conputer with an EMA conpiler
provi ded that details such as Job heading are nodified appropriately.

2 NOTATI ON

Underlined synbols are used to denote matrices.

Ne,h defined after equation (1)
Xy, coordinates Of a typical el enment vertex
Dl elastic constants, defined after equation (1)
M bandwidth paraneter of FﬁP matrix, defined in section 4
W number of displacement conponents
nunber of prescribed gero di splacenents
nunber of prescribed non-zero displacenments
R number of known non-zero applied forces which do not correspond

to displacement3 that are prescribed zero
¢ = WD-U number of unprescribed displacenments

r di splacement  matrix

R force matrax

jse’jle*ﬂ defined in equation (1)

S, defined in equation (3)

K stiffness matrix

i1 denote3 a colum natrix
Superscript

t denote3 a matrix transpose
Subscrapt

/ typical triangular el ement

Dy,T defined in section 3.



3 QUTLINE COF METHOD

This Section gives a brief account of the nmethod of analysis for those
users who wish to understand the working of the program The reader with
no experience of matrix notation is referred to standard texts Ik for an
explanation of the sinple matrix operations enployed

The deformation of the finite element idealization is defined by a
colum matrix, r, of the displacement conponents at the nodes of the grid
formed by the triangular elenents; a colum matrix R denotes the corres-

ponding force conponents. These matrices are used to define the | oading, and
are divided i nto submatrices as follows:

r unprescribed di spl acements

L, prescribed non-zero displacenents

E prescribed zero displacements

EP prescrabed forces corresponding to x,
gq unprescribed forces corresponding to ;q

The force conponents applied at the vertices of a typical elenent ¢,

of thickness h, are related to the corresponding displacement conponents by
tne following 6 x 6 Stiffness matrix:

o Nt
- 2

. £
K L 1L (1)

wher e N&: Xy, + x X -1( X X X
Y2 T T3 4 Xy T WaFp t kg v VY

Vo3 0 X3
0 =x v
25 "2 D D. 0
Vi 0 Xy b
I, = , ¥ =| D, D, O
0 =gy ¥y >
o 0 b
Tz 0 T2
0 =X Jp
Xlg = Xi-xJ,

and where the coordinates of the vertices and the force and displacement

conponents are numbered as shown in Fig.4; p . p . . and D

1> Dps Dy s represent the
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appropriate elastic constants. The superscript t denotes a matrix
transpose.

The stiffness matrix K for the assenbled idealization is formed by
adding the ooeffioients of the elenent stiffness matrices 56 into the
appropriate rows and col ums, this matrix i S divaded into the submatrices,

K K K
“pp =pq =pr

1=
"

K_ X K ,
=@p “qq =qr

Erp Erg Err

so the displacement conponents are related to the corresponding applied
forces by the equations'

R K K r
) PP ~P4 =P
R K K r
=-q —gqp =99 —-q

The unknown di spl acenents are thus given by
r =K'\ R -k r |. (2)
=P =pp P “pPaTQ

The ﬁPP matrix is banded and symmetric, and has its |argest
coefficients on the leading diagonal, it is inverted, in the program by the
Chol eski  decomposition nethod, wusing a translation of the algorithm by
Martin and Wilkinson5.

The stresses -} inatypical element are given by

t
- =
= {o‘x oy % = N, MT, V, (3)

where y% 1s the colum matrix of the displacenents of the element vertices,
in the order shown in Fig.1.



4 GR D _PATTERN

The triangul ar el enents used in practice are chosen on the basis of past
experience in simlar problems and, when necessary, by conparing results

obtained using elements of different sizes. Care shoul d be taken in choosing
a suitable grid to avoid elongated el ements, as these give relatively
inaccurate results. Smaller elements are needed in areas where the stress

gradients gre expected to be high, but it is worthwhile choosing a pattern
which is sufficiently regular for the results to be plotted and interpreted
without t 00 nuch @ifficulty.

In problems where distributed loadings are applied, the equivalent
concentrated forces at the nodes of the grid fornmed by the elements shoul d
preferably be obtained on g rigorous virtual work basis6, but sinpler techniques
based directly on considerations of equilibrium are often adequate.

When the jdealization has been sel ected, the nodsl di spl acenent
conponents are nunbered in the following order:

r
=p

[}
"

-q
r
=

where the submatrices are defined in section 3,

A sinple exanple is now given to illustrate the nunbering system
Consider the square isotropic plate ABCD, |oaded as shown in Flg.2 and
idealized as shown in Fig.3. Ref erence nunbers 1-10, in Fig.3, correspond
to unprescribed displacements, 11 and 12 to prescribed non-zero displacenents
and 13=-18 to prescribed zero displacenents.

The maximum si ze of problemthat can be analysed in a single conputation
I's discussed in section éand depends, anong other things, on the bandwi dth of
theﬁp matrix, which is defined here by a parameter M the value of this
paraneter is calculated by taking the maxinumdifference between the reference
nunbers of the unprescribed displacement COnMponents r at adjacent nodes.
This parameter is of significance because terns in the stiffness matrix g
coupling non-adjacent nodes are zero,

In large problems where the bandwidth is of inportance, it 1g Sometimes
worthwhile to make a diagramof the X matrix showi ng the position of the non-
zero terms.  For instance, the lower half of the .}ﬁop matrix for the above
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exanpl e, in which the bandwidth parameter 1s 5, may be shown diagrammatically
as

m+ 1 terns
including
the |eading
di1agonal

where 0 denotes a zero and X s non-zero term Such a di agram sometimes
reveal s a nore efficient nunbering systemfor the displacement components.

5 | NPUT  DATA

The input data is specified below in the order an which it nust be
read into the conputer. The synbol s zn the left-hand col um opposite
certain atems are used in the calculation of the directives at the beginning
of the program (see section 6)and are not punched on the tape. The data
may be presented in either fixed- or floating-point form Typical data for
input is illustrated in Appendix B

Data for Chapter O:

Probl em number, to help the user identify the different 0ases
conput ed
D,»D, Components of the elastic matrix M, defined after equation (1).
D350,
Thickness of the plate.
W Total nunber of displacement conponents (2 x number of nodes).
D Number of prescribed zero displacements




M Bandwi dth paraneter of szp, defined 1n section &,
Number of different basic 'types' of elenments, where each basie
"type' of elenent has a different size, shape or orientation, two
different orientations of identical elements give two different
basic 'types'.
U Number of prescribed non-zero jisplacements.
R Number of prescribed non-zero forces.
a) X,|,Y1 Coordinates of the vertices of a typical element of a basic 'type'
X551, nunbered as shown in Fig.?.
X3,¥5

Nunber of elenents which are identical in size, shape and

orientation to the above reference el ement (ineluding the reference
el enent).

Ref erence nunbers of the displacenent conponents at the vertices
of each of these elements in turn, in the order in whieh the
coordinates are specified.

The data sequence from (a) above is repeated for all the basic
types of element,

Data for Chapter 1

Wen R 1s zero, gump to (b) bel ow. Prescribed non-zero forces
preceded by their reference nunbers.

b) When U is zero, jump to (0). Prescribed non-zero displacenents
in the numerical order given by their reference nunbers.
c) The data for Chapter 0, from (a), are now repeated for reasons

given bel ow.

The data are ended by the synbols ¥ owy

The basic el ement data are read in a second time for the cal cul ation of

the stresses since this information has been overwitten in the execution of
the earlier part of the program The input 15 left in this somewhat
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cunbersome formse that the programcan be used on any machine with an EMA
conpiler irrespective of the peripheral facilities

6 JOB HEADING AND PROGRAM Sl ZE

The job heading required for an Atlas tape is illustrated in Appendix B
and discussed nore fully in the appropriate manual7. The method of
cal cul ating the relevent paraneters 1s discussed in this seection.

The codi ng which precedes the title in the second |ine of the Job

heading depends on the Atlas installation enployed, and the identity of the
user.

Tne nunber of Dbl ocks of store needed for the execution of the program
15 glven approximately by

23+ N/H2,

where Nis the total number of main variables which i s cal culated as indicated
bel ow. I'n normal running on the Manchester Atlas, 140 bl ocks cannot be
exceeded, al though more may be used by special request.

The costing on Atlas does not depend on the number of instructions
requested, so a generous allowance can be made without affecting the cost,
a nore accurate estimate may then be nade if the conputations are repeated
for any reason.

The number of lines of output 1s given by the smallest integer greater
than (or equal to)

20 + w/5+ total nunber of triangles.

The nunber of pain variables used is given by the total of the
numerical values of the directives listed below plus eight.

The directives are specified in nunerical form at the beginning of
Chapter 1, which immediately follows the title, as shown in Appendix A
These directives take the numerical values calculated from the followng
expressi ons:

A2

B~ 2 or U whichever i s |arger
D=4

F -+ (M+ 1)¢
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G - UC

H-»> M+ 1)C

X - 21 or G, whichever is |arger
Y- 2

where ( = W= D = U, and where the other synbols after the arrows are defined
in section 5.

It is difficult to estimate the size of the largest problemthat canbe
tackled with a single idealization because of the large number of parameters
i nvol ved. I[f we consider, for exanple, problens in which no non-zero
displacements are specified, i.e. U= 0, and a storage capacity of 140bl ocks,
then the 1limiting Size as far as storage is concerned, is given approximately
by

(4 + 24)(w = D) = 60000 .

Hence, by reducing the bandwadth parameter Mof the 5pp matrix, the number of
nodes in the grid may be increased.

If a problemis too large to be analysed in a single conputation, a
coarse grid of elenments can be enployed 1in a prelimnary analysis, and then
smal | er areas of particular interest can be reanalysed using the coarse grid
results as boundary conditions. An alternative and nore accurate method is
to subdivide the idealization and analyse each subregion separately. A
relatively simple additional programazs then required, however, to conplete
the analysis by reassenbling the defornmed subregions.

7 OUTPUT

The output 28 printed in floating-point form in the followng order:

(a) Probl em nunber.
(k) Non- zer Odisplacements.

The di spl acement s EP and £q are printed in tabular form 5 terms to a

r OW. The first displacement of each row is preceded by its corresponding
reference number

(e) Stresses

The results for triangles of the same basic type are presented on
consecutive lines and a space is left between the results for different
types of elenent. Each line begins With the triangle nunber, followed by
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the stresses o_, o and v__ (the colums are headed Sx, Sy and Sxy in the
X Xy
printout). The form of the output is illustrated in Appendix B

Consequences of Oata faults

Data faults can Obviously give rise to nonsensical results. They can
noreover cause the programto stop prematurely with the caption 'FAIL IN
INVERSION'. This inplies that a data error has nade the K matrix sirgular,
The captions ' EXCESS BLOCKS or 'S V OPERAND can al so be produced by this
kind of fault, although they may al so be due to a wong estimation of the size
of the problem

8 ADAPTATIONS TO I NCLUDE VARIABLE TH CKNESS AND VARIABLE ELASTIC
CONSTANTS

The program may easily be nodified to include varisble thickness
provaded that the thickness of each element may be assumed. uniform The
programis altered in such a way that the elementthicknesses are read in with
the element reference nunmbers, so that each term of the element stiffness
matrix can be multiplied by the appropriate thickness before being added into
the submatrices of K. The expression at the beginning of Chapter 14
containing the thickness h 1s then omtted.

The elastic constants may simlarly be varied by reading in the approe
praate values with the reference nunber of the individual elenents. | f
el enents of the same type have different elastic properties, then it is
necessary to calculate the stiffness matrices of the elenents individually.
The elastic constants are, of course, required agein When the stresses are

calculated.
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Appendi x A
PROGRAM  DETAI LS

Figs.5 and 6 give flow diagrams illustrating the organisation of the
program which is divaded into the two chapters described bel ow; Chapter 0

forns the two submatrices of the stiffness matrix K that are required in the

calculations, and Chapter 1 calculates the displacements and stresses.

Chapter 0

The basic data is first read in, followed by the coordinates of a
typical triangle of the first *type*. The |ower half of the element stiffe=
ness matrix is calculated and the required matrix el enents are added into
the appropriate positions in the K and K q submatrices, for each triangle
of this type; the procedure is then repeated for all other elenent types.

As can be seen in section 3,k and Ié are the oniy submatrices of X
: . . ~PP - Fq
required in the analysis.

Kpp is ;tored in the variables H in the form required for the Mrtin
and Wilkinson~ programfor matrix inversion by the Choiesk:x nmethod. The
d1agonal terms of the matrix are stored an the end colum of a C by (M+ 1)
matrix, which has the following formwhen Cis 5and Mis 2:

Stored array Lower zriangle of conventional array
X X a a
11 11

X a a a a

21 22 21 22
83 %32 B33 %31 %32 %33
2 %3 G O Bp B3 Ay
%53 fmy Pgs 0 0 53 fmy f5p

The X matrix is stored in the variables Gi’ in the transposed form
Ko The form of the K mtrix is shown in Fig.7, the shaded areas being
the only regions of the matrix which are stored.

Chapter 1
The displacenments are calcul ated using the matrix equation (1) and all
the non-zero displacements are pnnted cut. The stresses an each triangle

are then cal cul ated using equation (2) and printed cut.

The printout of the program commences on the opposite page.
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TITLE
PLANE STRESS ANALYSIS

CHAPTER:

A=2a
B=2
D=4
F-+60
G=ao0
H-+60
X+31
Y=2

1)J=YINT PT(C+0e1)
I=2(1)}J

Xl =o

REPEAT

JUMP17 ,R=0
l=t(z;R
READ(K)
READEXK)
XK=XK/H
REPEAT

JUMP18,U=0

17 )R=YINT-PT(U+c.1)
I=1(1)R

READ{BI)

REPEAT

i=x(1)J
Fl=o
REPEAT

i=1l{1)d

L=x(1)R

N=pINT PT(LC-C+I+0.1)
Fl=F i+BLGN

REPEAT

XI=XI-F1]

REPEAT

18 )CAPTION
NON-ZERO DISPLACEMENTS
NEWL INE

l=1(z)J
JUMP a, | >M
P=M-1 +1
JUNP 3
a}P=0
3;R=1—M+P

App.A



App.A Cont.

N=P(:)H

s! afN=-g

Q=M-N+P
;+N+I-H

Y=HT

JMPg, P>S!

K=P(|)S

o =Ml +K+1-M
T4 =MR+Q+R-M
Y=Y+0'FT!
Q=R +1
REPEAT

5) JUNP6 ,N#M
JUHP34,0>Y
T'=M1+N+1-PI
A-?sq RT(Y)
T'=1/A
JUHP
62T'=MI+N+I-H
0' =MR+R
F¥'=YFoO'
R=R+1
7)REPEAT
REPEAT

S! M=y
I=1(1)J
JUMPg | I>M
PaM=1+1
JUMP: o
¢)P=0-
10)Q=1

Y=X1

JUNP: 3,P>s"

K=s'(-1)P
O O-I

T! =HI+K+!—H
Y=Y-FT'HQ
REPEAT

13)0'=Ml+l
HI =YFO'
REPEAT -

I=d(~1)12
Q=J-1
JUMPr 1, O>M
P=M~yJ+1]
JUMP1 a
11)P=o
13)Y=H]

0=1
JUMP14,P>S!
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KeS'(-1)P

Q=Q+1 .
T!aMQ +K+Q=-M
Y=Y-FT'HQ
REPEAT-

14)0'=M] +]
Hi=YFO'
REPEAT-~

R=yINT PT(U+oe1)
JUMP6o,R=0

J=¢INT PT(C+0e1)

I=2(1)R
K=i+J
HK=B1
REPEAT

ar ) JUMP15,K=0
I=1(2)K-
B=sl—¢
PRINT(B) 32,0
Lar{1)s
P=gs]+lL=3
PRINT(HP )o, 3
REPEAT
NEWL | NE
REPEAT

15)L=yINT PT(D-5K+0.1)

JUMP16,L=0
B=sK+:
PRINT(B) a0
lex (1)L
P=xK+1
PRINT(HP )o, 3
REPEAT
NEWLINE

16)J=yINT PT(D+1e1)
L=¢INT PT(W+o.1)
I=J(z1)L

Hl=o:

REPEAT

CAPT ION

STRESSES
NEWL | NE

éogKawlNT PT(D/s+0.1)

App.A Cont.



App.A Cont.

CAPT ION

TRIANGLE SX sY SXY
NEWL INE

R=1(1)S

I1=6(1) 2

READ(X1)

READ(Y1)

REPEAT

Ao=Xa~X1
A1 =Xo-Xa
Az=X1r-Xo

Bo=Y3i-Y3
Br=Y 2=Yeo
Ba=Yo~Y1

=XaYo+XoY1+X1Y 3-Y aXo~YoX1-YiX3a
A=1/C

READ(N)
I=z{1)N
PRINT(1) 3,0
J=r{1)6
READ(L.)
FJ=HL
REPEAT

B=D1BoF1+D2AoF 2+D1 BIF 3 +D2A1F 44Dz BaF 5 +D2A 3F 6
B=AB

PRINT(B)o, s

B=D 2BoF1+BjAcF 2+D2B1F 34D 3A1F 4 +D2BaF g +D3AaF 6
B=AB

PRINT(B)o, s

B=D 4AoF 1 +D 4BoF 2+D4AIF 34D 4B1F 4+D4A 3F 5 +D4 BaF6
B=AB

PRINT(B)o,s

NEWL INE

REPEAT

NEWL 1 NE

REPEAT

JUMP 31

24 JCAPTION

FAIL IN INVERSION
31)ACROSS1 /0
CLOSE



CHAPTERo
VAR 1ABLESI

1 )READ{A)
CAPTION
PROBLEM NUMBER
SPACE
PRINT(A)4,0
NEWL INE
I=r(1)4
READ(DI)
REPEAT

READ{H;
READ( W
READ(D)
READ(M)
READ%S)
READ( U)
READ(R)
D=W-D
C=D-U

=y INT PT(MC+C+o.1)
i=o(1)J
Hl=o-
REPEAT

J=yINT PT(UC+o.1)
I=o0(1)J

Glwo-

REPEAT

P=IEI;S

l=o{1)3

READéXlg
READ(YI
REPEAT

Ao=X 2=X1
A1 =Xo-Xa
Az=X1-Xo

Bo=Y1~Y3
Br =Y 2-Yo
Ba=Yo-Y1

¢! =XaYo+XoY1+X1Y 2=YzXo=YoX1~Yz X3

A"OOS/S‘

App.A Cont.



App.A Conc’ld

X1 =D1 BoBo+D4A0A0
X2sD2A0Bo+D A0 B0
X1=D3AcAo+D4BoBo
X4=D1 BoBr +D4A0Az
Xs=DaAoBr +D4BoAx
X6=D3 B Br +D4Az1A1
X7 =D2A1Bo+DsAc b1
X8=D3ArAo+D4BoB1
Xg =D 2A1Bz 4D 4A1 B1
X1o0=D3A1A1+D4B1B1
X1 1=D1 BoBz+D4A0A2
X1 2=D3AoBa+D4BoAa
X13=D1BrBa+D4AtAz
X14=D2A1Ba+D4B1A2
X15=D1BaBa+DsA32As
X16=D3A2Bo+D4A0Ba
Xz 1=D3AocAa+D4BoBa
X1 8=DaAzB1 +D4A1 B3
X19=D3A1A2+D4B1Bs
Xz0=D3A2B2+D4A3Ba
Xa21=D3A2A2+D4BaBa

I=2(1)ax
Xl =AX]
REPEAT

READ( o)
L=x(1)0
J=1({1)6
READ{F J)
REPEAT

N-o
I=:il)6
J=1 (1)1
N=N+1
JUMP 29 ,FJ>F1
A=F|
B=FJ
JUMP 20
29 )A=FJ
Bﬂgl
o} JUNP4,A>D
311“925,1)0
T=@INT -PT(MA+B+o.1)
HT=HT +XN
JUMP 4
25 ) JUMP4, B>C
T=¢INT PT(CA-CC—C+B+0.1}
GT=GT+XN

4 JREPEAT
REPEAT
REPEAT
REPEAT
ACROSS: /|
CLOSE
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Appendix B
SI MPLE EXAMPLE OF JOB HEADING, | NPUT DATA AND QUTPUT

This appendix illustrates the form of the Job heading, input data and
output for the sinple exanple described in sectron 4. The triangul ar
el enents are nunbered in the order shown in Fig.4, and the elenent data are
read into the conputer in the followi ng order; A to A}+, B1 to BLF. The
printout comrences on the follow ng page.
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App.b

JoB HEADING

JOB

Froor/a406/1 J«SINFIELD RAE. PLANE STRESS ANALYSIS
STORE 34 BLOCKS

COMPUTING 8000 INSTRUCTIONS

QUTPUT.

o LINE PRINTER 33 LINES

COMP ILER EMA

AUXIL1ARY(o,0)

MAIN=1 79

VARIABLE DIRECTIVES

A—3a
B+a

F=60
G+ao
H=+60
X=+ax
Y+a-

- ————

[+ [+ Oe b Ce§ 0 Oe 5
4

2 3 4 §5 1 11

6 7 13 8 4 5§

13 14 6 7 2 3

1§ 16 g9 110 6 7

C O ©0a5 © Oe5 ©aj
4

2 3 6 7 4 5

6 7 9 10 3132 8

13 14 15 16 6 7
15 16 317 18 9 10
b S {

& 1

T 1

O ©O 0e5 ©Os§5 O 0.5
4

2 3 4 5 I 11

6 12 8 4 %

13 14 6 1 3 3

15 16 g9 10 6 19

O O0s5 © 0Oaj Oef

3 6 17 4 5
7 g 10 12 8

13 14 15 16 6 1
t5s 16 117 18 9 10

'Y ¥i



App.B Cont.

OUTPUT

PLANE STRESS ANALYSIS

5« START OF CHAPTER |
185+ START OF CHAPTER o
PROGRAMME ENTERED

PROBLEM NWWWEER 1
NON-ZERO DISPLACEMENTS

1 3e 331, 1 9e592 6¢495, ~1I 8e749
6 a. 346 I.650 201985 1 52357
11 T«000 1.000
STRESSES
TRIANGLE $X SY SXY
| =2e87101, | =7e97513 teX28gg, 1
2 =—1.43808; | =9e 273823, -1 1397771,
3 —3.30103- 4917855 =1 7e42470 ,
4 =4¢988359 I«506g973- ' I«008107, ¢
|  =Te57417 1.91461 1e05231
4 a.576 30 2.67339, [ x.16746
9090167, - | 330056~ 5.77 341
3 4e63071-~ 1054357s» 1 367984

33511
7718
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Appendix  C

COVPARI SON_ WTH AN EXACT SOLUTION

A comparison is now nade between the results obtained using this
program and the exact results obtained by Morley8 for an isetropac square
plate, encastré at one and, and |oaded as shown in Fig.8. The plate and the
loading are symetric about the OX axis, so the upper half only 1s analysed,
using the grad shown in Fig,9. The stresses along the edges of the plate are
shown in Figs.10 and 11. As this finite el enent idealization prescribes
uniform Stresses within each el ement, the results are made up of |ines of
constant stress , Joined at the nodes to give a step formation. These
stresses are, ineffect, an average of the stresses over the area of each
element, so they cannot be expected to agree conpletely wath the exact stresses
along the edge of the plate. Figs.10 and 11 denonstrate, however, that the
fimte el ement results follow the exact curve, differing nost, of course, in
the immedaate vicinity of the point where the exact results have an infinite
val ue.
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