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SUMMARY

The paper sets out to summarize the properties of the flow in a
local supersonic, two-dimensional, steady potential flow region, Starting

from the results of the theory of characteristics, the concept of wave strength

is introduced and used to develop logically the properties of the supersonic

region,

The conditions which must be imposed on the flow in order
shall remain irrotational are reviewed. The practical significance
is mentioned.
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Notation

P

-]

pressure

density

sound apeed

speed

flow direction

Mach number (= g/a)

g/a* where a* 1s the scund speed when local M =
streamline coordinates

general rectangular coordinates

characteristio coordinates

Mach angle (= sin™% ;T)

Prandtl-Meyer angle (ses equation (6a))
ratio of specific heats
0 -w o = 0+

- (0a - wa) S = = (0s + ws)

0+ u g = 8-y

angle between streamline and iscbar
90 - ¢

transformation Jacoblans

acosleration

Suffices denote partial differentiation



(Y

[}

i

1 Introductoion

When a mathematicel model 1s posed as a representation of a physical
phenomenon it needs investigatang to determaine to what extent this representation
18 correct. Provided that the model has been correctly posed (i.e., has a
unigue solution, etc.) then 1ts value is best estimated by comparing its
predictions with reality.

In the problem of the transonic flow past an aerofoil the usual
assullptions made are that the flow is two-dimensional, steady and irrotetional.
The purpose of the present work is to summarize the properties of the flow
obtained from this model, and to investigate conditions for flow brealkdown.
There 13 considerable practical importance assoclated with the phenomenon of
potential flow breakdown (shock wave formation in a real flow) since this
occurrence results in a large increase of aerofoil drag (wave drag). The need
exists to understand the mechanism of flow breakdown in order to establish
optimum operating conditions.

The basic theoretical concept used in the analysis is the method of
characteristics from which the properties of the flow model follow naturslly.
We should not, however, expect the properties of the flow model to necessarily
agree with experamental findings. Where disaegreement is found the flow model
should be modified to improve the agreement. In genersl, recourse must be made
to experiment in order that the deficiencies of the flow model may be rectified,
the type of experiment needed being qualitative rather than guantitative.

For the present a complete comparison of the flow model with experiment
is not undertaken but doubts about its adequacy are raised.

2e The Theory of Characteristics Applied to a Local Supersonic Flow Region

The flow under consideration is one where the local supersonic flow
region 1s bounded on one side (along a streamline) by a solid surface while the
rest of the boundary is the subsonic wain stream - i.e., the M = 1 isobar.
The flow ls assumed throughout %o be steady, isentropic, irrotational and
two—dimensional.

The general theory of the method of characteristics is not repeated
here since 1t is adequately treated in such stendard works as Refs. 1 and 2.
The pertinent results for the type of flow considered here are stated below
and then the concept of a wave strength is developed to give some insight into
the structure of such a flow region,

2.1 Results from the theorv of characteristics

2.1+1 Referring to fig. (1), we define the charecteristics g, m
to be inclined at the Mach angle p to the streamline 's'; the streamline is
at an angle '6' to the reference direction ‘'x',

If we define A = q/a*, the equations of motion along the streamline
are obtained as follows,.

Expressions/



Expressions for the normal and tangential accelerationz are given
in Ref's 3 as:

‘0
Pn - P4 Y, } (1)
P - pPdQg

5
where, as throughout, suffices denote partial differemtiation.
For irrotational flow
q, = LY, eee (1a)
while continulty demands that

3
— (pa) = -pq &, ,

os
or, on using equation (1) together with the relation P"3 = asps,
q 9
n
qa = . eoe (10)
8 M -1
In terms of the variable A, equations (1b) and (1a) become
A o
8 n
— - »
* M- 1
- 2
. (2)
—_— = es.
A
For isentropic flow we have, from Bernouilli's equation,
YA s
2 2
B o oo (3)
1+ -Y-:-l M
2
A 1
giving dA = = ——————— dM, eve (3a)
M 14 tl ¥
2

Considering the variation of quentities along the characteristics,
the following fundamentel facts may be noited; +they apply to all flows of the
type under consideration (steady, two-dimenzional, potential flow).

Treating first the & family, we note that

%

eg = escosp-i-ensinu.

i

eee (&)

Kscosuq-?tnsn.np ,}

Then/
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Then since

1 Yif- 1 1
sinp = -, €08 p = y tanpy = ——— ees (5)
M M VE-1’
and writin
8 -1
dﬂ) = dl » sew (6)
A
the equations (4) may be cast in the form
@ = | ; 1w +0),
va e ('Lba)
Vi - 1
GE = (0.) + 0 ) ’
8 s
M
where use has also been made of the equations (2).
The result (4a) implies that
0. - = 0
E” % ’
or
6 ~w = const 2 71, eos (7)
along the E characteristic.
Anglogous equations to (4a) for the 7 family are
Vi —1
wn = (ws - BS) »
M aee (8)
ViE - 1
6, = - - (ms - es) ,
giving
Bn + Qn = 0
or
8+w = const = O eeo (9)

along the 1 characteristic.
In general ¢ and 7 will be functions of s and n.

By using equation (3), equation (6) can be integrated to give

o = fui tan-=J”‘1 (F= 1) - tan"t ViF= T vee (62)
y = 1 y + 1

thus identifying ® with the Prandtl-Meyer function. With as the variable
the equations (2) become 9

w =
5

e (2&)
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The following equalities may also be noted

TR dM
M\fﬂ” 1
(5 a
N > so0o (10)
y-'l
= dm. J
Also, since Yif- 1
dw = aM ,
M.(1 + x4 Mi
2
it follows that at M = 1 G = 0, so that, for Mg finite, w, = 0; hence
in such figures as fig. (Zthhe 6 % curves should touch the 6 curve at
M = 1. For a non-zero 6y this requlres T >0 in fige. (2). The significance

of thas will be seen in sectaon 2.2,

If a, 8 are the inclinations of the g, m waves to the x direction,

we have
a = O+ alonga E wave ,
ees (11)
f = B8 -p alonga m wave ,
or dafferentiating along the stream direction
s = es * Mg oo
“ea (118.)
ﬁs = es = Hg s
showing that for a compressive flow on a convex surface, for which
es < O By > o ,
then
g T l“sl - |64 ?
. ose (12)
By = - |es| -l usl ’

so that ﬁs < 0 and the m family converge.

On the other hand,

R
v

0 if Ip.si > |es‘,

8 if l psl < les"

!
A
(&

so/
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so that the E waves can either converge or diverge, depending on the
particular flow, This point is considered again later. - section (3.2.1).

Differentiation of equation (14) along the respective
characterigtics gives for the curvature of the characteristics:

,____i_<1_22’.ua)2,

%
VI =4 4 LS
\ . eea (11D)
Iy
. = 1 - _-_.Mﬂ).;ﬂ ,
n Y -1 4 A

where the equations (4a), (6) and (10) have been incorporated, Thus, as shown

by Laitone in Ref. 7, @ and ﬁq change sign when M* = Eé? (M = 1 5%) -
it being shown in section 2¢2 that lg < 0 and kn > 0, It is interesting to

note that this inflexion point 1s not generally related to the inflexion point
in the Prandtl-Meyer function. Since, by equations (3a) and (6),
Vi - 4

d2
gﬁ = , equating 22 %o zero glves:

M(1 + X%l M) a

4
[ + 7%

3 A
M=+[J'++l;. Y_1}

as the only admissible solution of the resulting quartic equation, Henocs
only at a value of y = 14400 do the two inflexion points ocour at the same
Mach number, f.e., M = 1+581 (or A = V2).

2.1.2 It is useful to define the gtrength of the characteristics
(designated "wave strength"), The strength of a wave may be measured by its
effect on waves of the other family, Thus kn (or wn) could be taken as

the strength of a E wave®, However if use 1s made of equations (4&) and
(8) a siightly different, but more useful, definition of wave strength emerges.

Differentiating equations (7) and (9) along the streeamline gives

g +w = O

T - 13

— e e v mw we

*As wes done hmiﬁiégggﬁﬁgggp i1 . Reyn in Ref. L defined the
contribution: oft’eathzchatagteribtic to- L. as the wave strength

}:- e tai g Oy
(i.e., quantities such as 3 RE are considered),

cos M
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Combining equation (13) with equations (4a) and (8) gives

) |
w, = S
3 u s
ees (1)
M -1
w = T @
M M 8
Now define
§ = -0, = - (BS + ws) the strength of the 7 weave,
ces (13a)
T = = Ty = < (68 -ms) the strength of the E wave,
Then from the equations {(4a}, (6) and (8)
A A
= = =3 A = —~T
e Mo Ty
cee (14a)
T e - 1
g, == S 6 = = .
g M ’ n M

With the asbove sign convention far the wave strength, T > 0 makes
E an expansion wave and S > O makes 7 a compression wave,

The derivative of T along the E ocharacteristic is

T, = Tscos M+ Tnsin o

(w

s~ ess)cos Mo+ (wsn - Gan)sin j from the definition (13a) of T,

Differentiating equations (2a) to cbtain 0 s Wy We find that

T

(es B ws) * Ms
E = =T« M ten .
M° =1 s toe (13b)

Similarly S -5 o Mstan He

]

N

Repeated differentiation of equation (13b) (for the E wave ds
example) gives:

T o™
HH = T . f(M,MS’M g ssoae "'—n>0
3% s 2s
Hence, if T = O at some point on the & wave it will be zero

along the whole wave, since all the derivetives of T along & are then zero,
(See Lemma of section 2.3.) In other words, an isolated zero of T 1s not

possible/
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possible in a supersonic flow region (except, possibly, at the sonic line),

Hence, 1t follows that S and T do not change sign along the respective
oharacteristics, and, since they are positive at the sonic line (see section 2,2},
they will be positive throughout the supersonic flow region,

It follows from equation (43b) that S and T 4ncrease or decrease
along the characteristlos depending upon the sign of aM/3S., For example, for
expanding flow (Ms > 0), T decreases along the E wave while S decreases

along the 7 wave (taking account of the direction of the elements AE and
An - Fig, (1b).

Equation {13b) shows that, in general, 3T/ (or 85/dm) becames
infinite at the sonic line where u = 90°. The value of T (or S§) will,
in general, remain finite since T = = es when M = 1,

We note in passing that equation (1412) may be written:

-
3y ) 1+ M3
a = 2<—M3-1) s . Y?_ 7

8 i ) M -1
ses (110)
3y 88 1+ X%l.m?
ﬁ = 2<“M2-1) - So
8 L M -1 M - 4

2,2 The structurs of a local supersonic flow region

In the following the properties of a local supersonic flow reglon -
as shown in Fig, (1a) ~ are developed in a logilcal way. It should be noted
that, in general, the results only hold in regions where the characteristics
end on the sonic lins,

Let € be the inoclination of a conastant velooity line '¢' to the
streamline - see Fig, (1b) - then

l& = ls cos € + kn sin € = 0,

s0 that
. eee (15)

i ven (16)
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and
T+
% 7 T ( 2 ) ’
T=-2
wS = y sae (168)
2
T
0 = — (T - 8).
Equation (15) becomes
T-3
tan £ = ta.np( ). ees (15a)
T+ 35S
From equation (15a), Busemann's result - Ref, 5 = can be recovered,
namely:

If T and S (in the present notation) are of the same sign, then
€ < u, wvhereas if T and S are of opposite sign then € » p, Busemann
o6lains that the fact that this result must be true on the sonic line shows that
T and S muat be of the same sign. This does not follow directly, as above,
from equation (15a) since at the sonic line u = 90°,

We argue, instead, that in general the sonic line is not
perpendicular to the streamline, so that fram equation (15a) we must have

T-8 = 0 at the sonic line ves (17)
end the sonic line slope is indeterminate frem equation {15a), Busemann's
result is thus recovered provided that the sonic line is not perpendicular to
the streamline, If &€ = 90° then equation (1 Sa.) ¥yields no information

ooncerning S and T, Equation (17) also follows froam the definitions given
in equation (13a) and the fact that w, = 0 at the sonic line,

With the present choice of axes we must have at the sonic line

).n-( o,

and since T and S are to be of the seme sign, it follows from equation (16)
that

T> 0O and S35 0, ees (178)
Also, from equation (16) (using equation (17a)) it follows that when
JLB > 0, T > 8§,

and when
ls < 0, T < S.

Since/
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Since both S and T are positive, the E waves are expansion
waves and the 1 waves must be compression waves, With T » O we have
from equation (43a)

Tg< 0 ees (17D)

along & streamline. Sinece 7 = ﬂs ~w,and w = O when ¥ = 1
(see remark after equation (10)), it follows that 6, <0 when ¥ = 1,
Now en 1s then zerc (equation (2)), so that the rate of change of 06 along

the sonic line is simply 6 cos &  But it can easily be showmn from

equation (15) that € must be an acute angle, and it follows at once that the
flow direction deoreases monoaonically on moving along the sonic line, as was
shown by Nikolski and Taganov®.

For T and S to be positive, a compression wave mist be a
ocompression wave aslong its whole length (and similarly for expansion waves)

and so & charactgristic oan only have one end on the sonic line, as was pointed
out by Guderley®*°c,

It is of interest to note that from equation (17) it follows that
the two waves that meet on the sonic line must be of the same strength. The
relative strengths of the two waves meeting on the surface depends on the
pressure gradient as seen from equation (16); if A, >0 then T> 8, i.e.,

the outgoing wave is stronger than the incoming wave.

With both T and S positive, equation (14) shows that Wy < O
and ® > 03 and equation {14a) gives

<0 A >0
lE N ees (18)

0, <0 86 «< 0
E n

as indicated by Laitone in Ref, 7 and Nikolski and Taganov in Ref, 8,

2,3 Simple wave flows

The general theory of characterlstics for two independent varilables
solves two quasi-linear partial differential equations of the form

M +Bu +Cv_+Dv +E = 0
X Ny x ¥

where uw,v are the dependent and x,y the independent variables, The
coofficlents A ... E are funotions of (u,v,x,y). If these coefficients
are functions of (x,y) only, the equations are linear, Agein if the
equations are homogeneous (E = 0) and if A ... D are functions of (u,v)
anly (il.e., reduoible waquations) the hodograph transformation may be applied
to interchangs dependent and independent variables, The gquations so formed
will be linear,

.Tha apparent anomaly caused by the presence of a sonic line in the boundary
layer of a real fleow disappears with the Ilntroduction of a vorticity temrm
in the equations,
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The hodograph transformation can only be applied if the Jacobian

J = 3u,v) o.
a(X,Y) ’£

The special case of fluld flow, for which the egquations are reducible
and J = O 1dentically over a region, gives rise to simple wave flow. The
fact that J = O over a region implies that u and v are not independent
and the whole of the region in the x,y plane corresponds to & curve in the
u,v plane. Fuller details are given in Ref, 1,

When the equations of motion in streamline toordinstes asra used
(equations (2)) the relevant Jacobian is

a{x,0)

Jd =
8(s,n)

glving
AO0 =A0 = 0 for simpls wave flow,
8 n n s

From equation (2) it follows that

12
J = (M ~1) -f--xe: = 0, eee (19)
o (% - 1)
62 = _______la
8 7\9 8

2

wl by squation (6).

On integrating along a streamline it follows that
8 *w = constant eee (19a)
for plane simple wave flow,

Further propertlies of simple wave flow are worth noting, Putting
the results of equations (16) and (16&) into (19) gives

J = - 2.T.S, ees (19b)
Hence for J = 0 we must have either T or S vanishing,
As an example, consider the case whenm T = 0, Then from
equation (14a)
ln = 0, en = 0,

and so from equation (10) My = 0, showing that the 7 waves must be

atraight lines with veloocity and flow direction constant along them, We note
in passing that the pressure gradient is locally perpendicular t¢ the
characteristic and that the veloocity camponent in this direction is sonic,

An/
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An important result follows from the fact that the wave strengths
are constant along characteristics in simple wave flow (section 2.1.2).

Lemma

If at any point in the flow field a wave of one famlly orosses a
simple wave of the other family, then all the waves of the second family which
oross the sald wave of the first family must be locally simple waves.

For: 1if (say) T = O et some point it will be zero along the
whole of the E wave in question, Similarly for the 1 family when
S = 0,

Distinctlion should be drawn between a single E wave for which
T = 0O, The former implies that the Jacobian J = O along a line in the
flow field and this cmmstitutes a branch line in the flow (see Ref. 9 or
Ref, &), Simple wave flow strictly only results in the latter case when
T = O over a reglon where the above lemma still applies,

It should be noted that simple wave flow cannot exist up to a
sonic line which is of finite length and not in the characteristic direotionm,
sinoce such waves are of constant Mach number, and some limiting characteristio
of the other family must exist (see fig., (3) whers BC 1is such a limiting
characteristlc), There is still doubt as to whether simple wave flow can
exist in the reglon AB in fig. (3) (where AB 1is both the final
charaocteristic and the sonic line - which is thus straight and perpendivular
to the streamline), From equations (6), (13) and (14a) we find for the case
T = O that

s0 if ls is finite A_ must approach zero for M + 1, Nikolski and

Taganov in Ref, 8 show that the characteristic AB of fig. (3) would have to
be of infinite length, thus proving that simple wave flow in a finite region
1s impossible. A modified form of thelr proof 1is glven in the Appendix,

To illustrate a simple wave compression the campressing fiow around
a ocircular profils (es = oonst) is shown in f£ig, (4). In the example ths

flow from a Mach number of 1+2 was teken for a values of Bs = 0«01,

3. Comments on Criteries for Potential Flow Breakdown

In the following section some comments are made ooncerning the
various oriteria that have been proposed for the breakdown of potential flow,
As far as possible the oriteria have been ocast in a form to be consistent with
the notation of ssciion (2) 30 that any relation between the oriteria is more
easlly seen,

3,4 Conditions for infinite acceleration

The finding of an infinite acceleration in the flow field has arisen
from two different lines of approach, namely treatments in the flow plane and
solutions by the hodograph method,

3.1.1/
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3,141 Bickley in Ref, 10 - followlng Scherberg in Ref, 11 =~ found a
condition for the appearance of an infinite acceleration in the flow, The
analysis of Bickley is summarized below,

Taking rectangular coordinates with the 'x' axis in the direction of
the pressure gradient, so that %5 = 0 locally, the equations of motion may

be manipulated to show that the accsleration £ u gﬂ + v %&- is given by
x

a? uw?® + v

t e e————— L] sae 2
- u? u? - 8% vy (22)

Thls gives Biokley's result that the acoeleration becomes infinite when the
veloolty component along the direction of the pressure gradient beoames sonic,
provided that the quantity vy 1s non-zero,

Substituting & = u in Bernoulli's equation

a3 u? + v y+1
+ = a¥?
y-1 2 2(y=-1)
and noting that Zi} a*? = q; - the maxlimum possible velocity, gives
'y-

u? v
_2""""'; = 1, sew (23)
a¥ a

Equation (23) represents Scher'berg's11 oritical ellipse in the
hodograph plane and any flow whose streamline in the hodograph plane orosses
this elllpse must attain infinite acceleration, The oritical ellipse is
shom on fig, (5) for a typical case, Since the oritlcal ellipse is defined
relative to the direction of the local pressure gradient, it 1s not a fixed
ourve in the hodograph plane,

On making the substitution
u = q cos ¥, v = qs8in vy,

whers v 18 the angle between the streamline and the direction of the
pressure gradient, equation (23) can be cast in the form

M2 cos? v = 1, ees (230)
where use has been made of squation (3).
We note that since % = sin u equation (23b) shows that
cos® v = ain® |,
or since
v = 90° - ¢
that

E = % u; ees (24)

thus the local isobar mist be in a characteristic direction,
This/
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This result was obtained differently in the more complste analysis
of Craggs - Ref, 9.
Combining equation (23b)} with the fact that
b

tan v = —= (from equatians (15) and (2))

A
8

gives, when Integrated along a streamline
6 = * w + constant,

i,8., simple wave flow results if Blekley's criterion is continuously
realized along a streamline, We msy note, in passing, that the Jacobian

3= (uxy& - uyyx) , Which would be zero for simple wave flow,ocan be written

P = Y eee (22a)

in the present notation, Hence the Jsoocbian is infinite when u® = a® if
vy is non~zero. The significance of the singularity in the Jacobian is

evlident from considerations in the hodograph plane.

3.1.2 Solutions of the flow equations in the hodograph plans ars
only acceptable if the transformation to the real plane is non~singular,
This econdition 1s satisfled if the Jacobian

a(x,y) (\ 1 )

3(u,v) he
is non-zero, It is suggested in the literaturs that the ocourrence j = 0
leads to the breakdown of potential flow, [ILines slong which J = 0 in the
hodograph plane give rise to the so-called limit line in the flow plana, The
properties of such & limit line are dealt with in Ref. 9, for example, and
need not be considered in full herein, It is noted in passing that at a2 limlt
line the stresmlines have cusps and the acceleration is infinite, This latier

faot was shown in equation (22a) which thus provides the 1link between the limit
line and Bickley's oriterion for potential flow breakdown {see also Ref, 9).

Karman in Ref. 12 was the first to give any geometrical
significance to the vanishing of the transformation Jacoblan, EKarman
aonsidered the Jaccbian

. a(e,¥) o
a8

which reduces to §1-M?)¢3 +ugf¢zi = O when the squations of motion in the

hodograph plane are used, If & is the angle between the constant velocity
line and the streamline in the hodograph plane, then

tan &/
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tan § = - —

so that for § = O we must have tan®$ = +tan®u and the streamline
touches the characteristic in the hodograph plane (see fig. (5)).

The results of Sections 3.1,1 and 3.1.2 may be sunmmarized as
followsa:

(a) Bickley's criterion implies infinite acceleration when the
velocity component along the pressure gradient is sonic,
unless vy = 0,

(b) This condition of infinite acceleration indioates the formation
of a limit line.

(e) Bickley's criterion is satisfied by a simple wave flow (but since
v, = 0 here, the acceleration is finite - except where the

characteristics form an envelope)., For a limited region of
superaonic flow it was shown in Section 2,3 that simple wave

flow was not possible, Henoce Bickley's criterion always implies
a flow breakdown somewhere in a limited supersonic region,
although not necessarlily at ell points at which the oriterion
itself is satlsfied,

3e1¢3 Nikolski and Taganov in Ref, 8 developed a oriterion for
the breakdown of potential flow, The physical background to thelr method is
that all outgoing, £, characteristies from the surface are to end on the
sonio line (i.e., none end on a shock wave). The result of equation (17b) -
glving LN €0 {or T » 0) - then gives & limitation to the velooity

distributicn on the surface which may be written as
dr

€ - A tan 4 along a streamline,
a(- 8)

since from equations (46) and (16a):

T=-3
= = - tan p.( )
BS T+ 8

and T » 0, S » O, Hence the condition for flow breakdown taken in Ref, 8, is

>

dr
= = A tan He s (25)

a(- o)

Comparison with the equations of Section 3.1.1 show thls criterion
to be identical with that of Bickley and thus deserves no further ocmment,

3.2/
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3,2 Other considerations®

The previous section related the limlit line formation and the
Blokley, and Nikolski and Tagenov coriteria for potential flow breakdown,
In essence the criteria demand that the acceleration at some polnt be
infinite,

The oriterion of the last paragraph(equation (25)) shows that if
8, 1s finite then so will be A (except possibly at M = 4), Hence

the only possibility for the flow past a non-singular boundary to have
infinite acceleration would be if this ocourred on another streamiine in the
flow,

3.2,1 Several authors have oconsidered the possibility of the
formation of an envelope of characteristics in the flow field away from the
surface, The conditions for envelope formation, expressed in terms of the
rate of convergence of the characteristioes, are less precise than the results
discussed in Section 3,1 since they are expressed by inequalities of the type

@, * o, @, g 0,

To study these conditions we develop same aspects of the geametry
of the characteristics in the local supsersonic flow region, thus avoiding
the oonfusion evident in the literature (see: 8.8., Ref, 75. An dmportant
observation follows from equation (11a). We note that for the flow past a
convex surface (63 < 0):

(a) «
() 8,

it

5 0 1s only possible in a compressing flow;

0 iz only possible in an expanding flow;
(e) 4n ocompressing flow B, < a,, vhile in expanding flow o < f_.

Hence we conclude that for compressing flow, the 7 family of
characteristios converge more rapidly than the & family, 1l.e.,, 1t 1s the
incoming family of waves that will tend to form an envelope. For expanding
flow the families of characteristlos reverse their roles, This result
indiocates that any criterion for envelope formation of the E waves in
compressing flow will be misleading (see Ref. 7 and 16).

From bquations (10) and (11) it follows that for a, = O we have:
dM
— = WM -1 veo (26)
ao

along a atreamline,

Similarly, for the mn family of oharacteristics we find when
ﬁs = 0
du

de

1}
]
=

]
1
-
L2

ves (26n)

‘The analysis presented in this seotion was developed after discussions with

Mr, G, Y. Nieuwland of the Naticnaal Lucht- en Ruimtevaartlaboratorium,
Amsterdam,
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For limit line formation we have (Section 3,1) tan € = % tan p,
giving:
au M (1 S5l )
—_ =+

a6 B MF - 4

ees (26b)

which 1s equivalent to % = %1, That is, the condition for limit line

formation and simple wave flow are given by the same expression,

following conclusions are evident from oconsideration of fig, (6):

The equations (26) and (26b) are presented in fig. é6g. The

(1) The Mach number gradient, ~ M for limit line formetion is a
] dB’

minimum at M? = Faw (M = 14581 for y = 1+400).

(41) If a 1limit line forms at M?® = 3%; , the equations (26), (26a)

and (26b) show that either a, or B is zero; see also

equation (11¢) which indicates that a, = O when Yo IR,

(3)
and T = O (simple wave), and correspondingly that By, = O
when M*® = ke and S = 0 (simple wave).

(3y)

Equation (11c¢) shows that o (and similar results hold far the

N waves) can change sign with increasing Mach number for various values of
es and T, Fig. (6) includes the locus of conditions under which this

change of sign takes place, This implies that a convergence of characteristics
can result on either side of the streamline, depending upon the relation
exlsting between the parameters, However, the other family of waves always
forms & limit line first on the concave side of the streamline (since By < ag

for compressing flow). This result was obtained differently in Ref. 14 - see
Section 3,2,2.

The above remarks are, to some extent, in contradiction to the
suggestions of Laitone in Ref, 7 - particularly in connection with the

vy °
This is due to the fact that in Ref, 7 the results are limited to the special
case a, = 0 and confusion with generality follows,

formation of envelopes and iIn the significance of the Mach number

Finally we collect together the following conditions holding at
b,
> °

(2) The characteristics have an inflexion point (which 1s not related
to the inflexion in the Prandtl-Meyer function except for the
special value 1°4 of y).

(b) In general, the velocity and flow direction vary monotonically and
contimiously, At the special points where a, = 0 or ﬁs = 0
then this result need not hold - see Ref, 7.
(0)/
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(6) The Mach number / 3%; in no way represents a meximum obtainable

looal Mach number, nor need the cusp of a limit line ocour at
this Mach nmumber; i.e., the oritical velocity A = A 44 In
fig. (5) does not need to take the value V2, or

3e2.2 Various attempts have been made to prove that infinite
acceleration 1s mathematically impossible in a local supersonic flow region,
We deal with two such cases,

Firstly, Nikolskt and Taganov in Ref, B gave a long proof which
attempts to show that if there is no singularity on the surface, (i,e., if A
end O_ are finite) there cannot be one on any other streamline in the

local supersonic flow region, Using the result of equation (25) we see that
if 6 is finite, N will be also, along the same streamline (A, end 6

must also be finite from equation (2)})., Thus follows Nikolski and Taganov's
first result - that A  etc, are only singular if 8 1s infinite. (This

result may not be true at M = 1; see below,)

The final part of the proof of Ref, 8 takes several pages and will
not be reproduced here, The essence of the proof, however, follows from the
equations (16) and (416a) where the quantities RS, 63 etc,, are written in

terms of the wave strengths T and S, Exceptat M = 1, ls and 63

are only infinite if T and § are infinite., By differentiation along the
characteristics, Nikolski and Taganov show that if S and T are finite on

a bounding streamline, then they will be finite in the whole supersonie flow
region, Hence the result follows, At M = 1 the above argument breaks
down and Nikolski and Taganov conclude that if infinite acceleration does arise
it does so at the sonic 1ine, (This would certainly be in agreement with the
result of Emmons in Ref, 13.)

This proof is correct and valid only if the conditions under which it
was formulated hold, One condition is that two characteristics of the same
family must not cross (the velocity field is single valued); henoe the above
result i1s only true if waves do not cross. The proof does not, however,
eliminate the possibility of the formation of envelopes of characteristics with
resulting infinite acceleration, For example, in the case of the supersonic
flow in & concave bend, the equations of Seotion 2,1 are valid along a
charecteristic only up to the point where two waves cross; but this point is
not determined by oonsidering the variation of quantitles along a single wave,

Mention should also be made of the work of Morawetz and Kolodner in
Ref, 14, who, following Friedrichs'5, attempt to show that the Jaccbian

TN cannot vanish for the type of flow under consideration, With the
]

assumption that the derivatives wee, weq, wqq exist and are bounded in the
supersonic flow reglon of the hodograph plane they prove:
() A 14mit line cannot appear in a plane continuocus flow past an

aerofoil of finite curvature if the flow depends continuously
on the freestream Mach number,

(b) For a set of flows which depend continuously on & parameter, a
1imit 1ine will only form for some value of this parameter if the
profile similtaneously has infinite curvature at some point,

This/
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This result of Morawetz and Kolodner is significant in that it
suggests that limit lines can only enter the flow field through the boundary
streamline (solid surface). Hence if the boundary is uniform (6s finite)

at all points the flow should not oontain & singularity, However, the theory
of Ref, 14 does invoke the theory of characteristics and it could be that the
oriticisms made above oonoerning the work of Nikolski and Taganov are also
relevant here, Indeed Tsien!8 made an equivalent comment concerning the
original work of Friedriochs, Manwell - 2Ref 20) - made similar deductions
to those of Morawetz and Kolodner, These writers use quantities which are
inversely proportional to the wave strengths of the present work,

In relation to this problem, mention may be made of Ref, 16 where
Tollmein and Schafer construct flow patterns about convex surfaces which
contain envelopes of characteristlos in the flow field. Certain
approximations were, however, made in the theory of Ref, 16 and these could
lead to doubts concerning the exsotness of the flows obtained, In partiocular
the comments made Iin Section 3.2.1 are relevant,

In Ref, 17 an attempt was made to use the oriteria of limit line
formation in practice, It was found that shock waves formed at Mach numbers
well below that reguired for limit line formation,

L4, Conclusions

The first part of the paper = Bection 2 -~ obtained the following
properties of a local supersocnic flow region in steady, two-dimenslonal
potantial flow, In general the results are only valid in a region where the
characteristics end on the sonioc line,

(a) Waves incident on the sonic line must be expension waves, while
those leaving the sonic line must be compression waves.

(b) A characteristic cannot change fram an expansion wave to &
compression wave (or the revarse) and hence can have only one end
on the sonic line,

(6) Along the expansion wave, the velocity and flow direotion
monotonically deorease towards the sonic line, Along the
compression wave the veloolty monotonlically increases and the
flow direction monctonically decreases away fran the sonio line,

(d) Two waves which meet on the sonic line are of the same strength,
while two which meet on the surface are of different strengths,
the relative magnitudes depending on the sign of the pressure
gradient,

(e) The isobar is at & smaller angle to the flow direction than is a
characteristic,

(£f) The rate of change of velooity along a streamline must be less
than that required of simple-wave flow,

(g) Infinite acceleration on a streamline must be accompanied by
infinite curvature of the streamline,

Certain/
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Certain restrictions are to be imposed on the flow if it is to
remaln potential - Secticn 3. One restriction iz that the velooity gradient
must nowhere exceed that of simple-wave flow, since (as was shown in
Section 2.3), simple~wave flow cannot exist up to the sonio line in a finite
reglon, In a real flow there is also a restriction on velocity gradient if
the boundary layer is to remain unseparated, This question was not
considered herein but should always be borne in mind in any practical
situation,

The other restriction is more obscure and demands that the
streamline in the hodograph plane should not cross the Scherberg critical
ellipse, When the streamline doss cross this ellipse infinite acceleration
results in the flow plane and 1limit lines form,

The result presented in Section 3.2 would indicate that a limit line
can only enter the flow through the boundary streamline and not by the
ccalescence of characteristics in the supersonic region, This latter result
follows only for convex (6s < 0) surfaces, However the formation of a
limit line demands an infinite curvature of the streamline and hence it
remains a philosophical polnt as to what happens for increasing freastream
Mach number in the flow about a glven smooth surfacey it may well be that
the simple-wave flow limitation then governs the flow.

Flnally, we note that in practice shoock waves often form before
the theoretical prediction of limit line formation, and so the consideration
of the steady potential flow model of the local superscnic region in
isolation seems inadequate.
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Appendax

Nikolski and Taganov's: proof of the non-realization of simple wave flow
in & finite supersonic flow region.

Assume simple wave flow between two members of the 7 family (say).
The following flow diagram then holds:

Then d51 + 8lnA = rdB,
and ds, sina = (r+¢)aB,
but @& = (dﬂn - d.si) cos A .,
az
Hence 2 = cotAdB. eee (a)
Notj_n.g ﬂlat ﬁ = l.i - 6 - *aa (b)

Since the flow is assumed to be simple wave compression we can put

0 = w+o where & = 9)m=o.

Then sance

® = p+kcot? (ktanu)-% , ¥ = ng.

[ by equations (6a) and (5) ]

we have x
F = 5 -koot? (x tanm) -~

Then/
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Appendix (cont'd)

Then putting

- 1! = ﬁ - 3 + O
gLves kEtanpy = cot Tq;-
Using cot 2 pu = l_:._t;.‘n’_.;...l"_"
2 tan p
gives cot 2 p = ¥ - cot® ¥/k
2 x cot Y/k
- ¥ _1 ot ¥
= %—[kte.nk 1!:cotk
so that equation (a) may be integrated to give
]
dné = —%—{k’ £n cos%-n-&n B:Ln%}i- const .
0o ¥\ o ¥
Hence in [& (cos E) sin E } = const}

since sonic conditions correspond to ¢ = O then & + w as sonic conditions
are reached.

™
Where 'én' denotes the natural logarithm.

D 106886/1/136845 K.3 0/88 P
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