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SUMMARY

This paper describes e method for calculating the pressure
diatribution on the swrface of a two-dimensional aerofolil of arbltrary
shape in subsonic flow, taking into account the presence of a boundary
layer on the surface of the aerofodil. The effect of the boundary layer
is acocounted for by considering the inviscid flow over a displacement sur-
face made up of the merofoil section shape, boundary layer displacement
thickness and the wake. A simple model of the wake is introduced, and it is
shown that provided certain simple conditions are satisfied in the region
near the aerofoil trailing edge, the pressure distribution predicted is not
unduly sensitive to the detailed development of the wake. The method has
been developed using techniques which make 1t very suitable for computation
on g digital computer, Caloulations have been made of the pressure distri-
bution on & RAE 101 aerofoil section at incidence for which measured boundary
layer data were available, and also in the case of a heavily cambered aero-
foil at incidence using theoretically predicted boundary layer charascteristics.
The comparison between the experimental and predicted pressure distributions
shows good agreement in both cases.
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Notation

q(x),y(x)

s(n)(x) n=1,2,3,4,5.

B'EI:) m1,2,3,£}-,5-

s(2)* (x)
v
Vo

non-dimensional co—-ordinates measured along and normal
to the chord-line of the aerofoil.

thickness and cember ordinates of the aerofeil section.
thickness and camber ordinates of the displacement surface.
thickness ordinate of the residual aerofoil, see Section 3.1.

boundary layer displacement thicknesses on the upper and
lower surfaces of the aerofoll.

total displacement thickness of the wake.

% x total displacement thickness at the trailing edge of the
aerofoil.

(iZt

(....) see Section 2.5.

dx /o g,

gerofoil incidence,

change of incldence produced by differential boundary layer
thickness on the upper and lower surfaces of the aerofoil.

incidence of the displacement surface,

leading edge radius of the aerofoil.

leading edge radius of the displacement surface.
pressure coefficient on the aerofoil surface.

free-stream Mach number.

strengths of the source and vortex distributions to make the
displacement surface a streamline.

see Section 2.2 and Refs. &4 and 5.

see Sectlon 3.1 and Refs. L and 5.

velues of S(n)(x) evaluated for the residual aerofoil.
local velocity on the displacement surface.

free-stream velocity.

momentum thickness and form parameter of the boundary layer.

1lift and drag coefficients.

number of reference points taken along the chord.
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distance downstream of the trailing edge st which the wake
displacement thickness is assumed to become constant.

compressibility factors.

functions used to define the thickness distribution of the
displacement surface.

coefficients used to define the wake.
(1)
functions used in the calculationef S (x) .
(2)
funotions used in the caloulation of 8 (x)

(3)
functions used in the calculation of 8 (x) .

velue at the trailing edge of the aerofoil,
upper and lower surfaces of the aerofoil.

value at large distance downstream of the gerofoil,




1. Introduction

The pressure distribution on the surface of an aerofoil in inviscid
flow 13 determined by the aerofoil geometry, i.e., the thickness distribution,
the shape of the camber line and the incidence. The circulation about the
aerofoil and consequently the 1lift developed are determined primarily by the
camber and incidence.

In the case of a symmetric aerofoil at zero incidence the circula-
tion is zero, and the pressure dastribution is dependent only on the thickness
distribution. This 1s to a large extent a local problem in the sense that
the pressure at a point on the aerofoil surface is determined almost entirely
by the shape of the surface in the region of that point, and consequently any
small alteration in the shape, i.e., the thickness dastribution, will primarily
affect the pressure in the region of the change, the pressure over the rest of
the aerofoil being relatively unaffected. The presence of a boundary layer
on the surface of the aerofoil will produce a distortion of the streamlines
close to the surface equivalent to a change in the thickness distributaion.

Thus at gero incidence the effect of the boundary layer at any point is expected
to depend mainly on the thickness of the boundary layer near that point, and
significant changes in the pressure should occur only when the boundary layer
thickness is significant, i.e. over the rearmost part of the aerofoil.

Fig. 1 shows a comparison between the calculated inviscid pressure dastribution
and the measured (viscous) one on a 10% thick symmetric aerofoil at zero
incidence. It will be observed that there is no significant difference between
the two results except over the last few percent of the aerofcil chord, as
expected.

In the general case of the flow about a thick merofoil (symmetric or
cambered) at incidence, the pressure distribution over the whole of the aerofoil
1s very dependent on the circulation which is i1tself dependent on the incidence
and the growth of the boundary layer, particularly near the tralling edge.

Thus the boundary layer characteristics near the trailing edge no longer just
affect the pressure in that region, but by altering the circulation, change the
pressure distrabution significantly over the whole aerofoil. In Fig. 2 s
comparison is presented which shows the measured pressure distribution and the
theoretically predicted inviscid pressure distribution at the same incidence,
The comparison indicates the drastic change in the pressure dastribution due to
viscous effects, the considerable loss of 1lift, and the necessity of a theory
which will adequately account for the presence of the boundary layer.

Previous authors, Preston (Ref. 1) and Spence and Beasley (Ref. 2)
have tackled the problem of predicting the reduction in circulation due to
viscous effects and the resulting loss of lif+t. The purpose of the present
report is to develop a method to deal with the more general problem of predicting
the detailed pressure distribution over the surface of the aerofoil when the
boundary layer characteristics are known.

The complete problem of calculating the pressure distribution on an
aerofoil section an viscous flow can be broken down into two distinct problems
for those cases where the effects of viscosity are confined to a thin layer
adjacent to the surface of the aerofoil, i.e., the boundary layer. In such
cases the flow outside the boundary layer is essentially potential flow, and
the two complementary problems can be stated as follows:

(1) the calculation of the boundary layer characteristics over the
surface of the aerofoil when the pressure distribution on the

aserofoil is known;

(41)/
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(11)  the calculation of the pressure distribution on the serofoil
when the boundary layer characteristics, in particular the
displacement thickness, are known.

This papsr 1is concerned with the second of these problems. For methods of

dealing with the first problem, the reader should consult Ref. 3. The calcu- -
lation of the pressure distribution on an aerofoil of arbitrary shape ab initio,

must involve both problems. It is envisaged that the calculation would take

the form of an iteration between these two separate calculations, starting from

some convenient initial approximation such as the inviscid pressure distribution.

If the boundary layer is thin, then the streamlines in the viscous
flow just outside of the boundary layer are displaced relative to the corres-
ponding streamlines in the inviscid flow, by an amount equal to the local
boundary layer displacement thickness. The flow outside the boundary layer,
which is essentially potential flow, is therefore very similar to the potential
flow about a “displacement surface™ formed by adding the boundary layer dis-
placement thicknesses on each of the aerofoil surfaces to the basic aerofoil
shape., Domnstream of the {railing edge of the aerofoil the streamlines are
displaced by an amount approximately egual to the displacement thickness of
the wake; thus the displacement surface must be extended downstream in this
manner., The displacement surface, unlike the basic gerofoil section which
is closed at the trailing edge, is of infinite extent. However, only that
part of the displacement surface which extends over the aerofoil chord is
capable of sustaining a significant difference in pressure between its upper
and lower surfaces. It has been shown that the potential flow over the
displacemen} surface gives rise to a streamline pattern outside the boundary
layer almost identical with that of the viscous flow about the aerofoil; in
addition there must exist a surface such-that the inviscid pressure distribu-
tion on this surface is the same as the viscous pressure distribution on the
basic asrofoil. The hypothesis is made that this surface and the displacement
surface defined above are for all practical purposes identicel. The problem
of calculating the viscous flow about an aserofoil therefore becomes the problem
of calculating the inviscid flow about a surface of infinite extent, the dis- ‘
placement surface referred to agbove.

For consistency in terminology the terms "thickness distribution”
and "camber line" will be retained with reference to the displacement surface.
The thickness distribution is defined as the semi-height between the upper
and lower surfaces, the camber line as the mean line between the two surfaces.
The velocity field about the displacement surface will be simulated by distri-
butions of sources and vortices, providing the symmetric and aesymmetric compon-
ents of the flow respectively, which make the displacement surface a streamline
of the flow. The value of the circulation is fixed by the criterion, based on
experimental evidence, that the ratio of the velocitles on the upper and lower
surfaces at the trailing edge is unity. This criterion replaces the Kutta
condition which establishes the circulation in the case of an aerofoil with
& sharp trailing edge, by positioning the rear stagnation peint at the trailing
edge.

L
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2. Basic Method

2.1 Displacement surface

The displacement surface over the aerofoil chord has been defined
as the surface generated when the boundary layer displacement thickness on the
upper and lower surfaces of the aerofoil is added to the basic aerofoil section
(Rig. 3). These increments should strictly bs added normal to the aerofoil
surface. In practice it is more convenient to add them normal to the chord
line, the error introduced being small and in most cases inside the accuracy
with which the displacement thickness distribution, measured or calculated, will
be known., Thus the upper and lower surfaces are given by

ZU = 2y + 6; H ZL =z - 5; . eer (1)

and the thickness distribution of the displacement surfece is related to that
of the basic aerofoil by

* *
Zt =2z, + %(BU + SL) 0 x<g 1
* L L ) (2)
- 1
2, =3 Bw x> 1

The camber line has been defined as the mean line between the upper and lower
displacement surfaces, for convenience taken normal to the chord line of the
baslic aerofoil. In general, the ordinate of the mean line at the trailing
edge will not be zero (Fig. 3); thus the effect of the boundary layer will be
to modify the camber line and to induce a change of incidence Aa . The
camber ordinates for the displacement surface are given by

]
2, =z + %(6U - 5L) + X.tan Aa 0 g x g 1

eas (3)

&

6L)TE

.
where  tan Aa = "'Q"(GU -

Thus the problem of calculating the pressure distribution about an
aerofoil defined by (zt,zs) al incidence « with a boundary jlayer, becomes

the problem of calculating the potential flow about the surface defined by
(Zt’zs) at incidence a*(= a + Aa) .

2.2 Symmetric flow about the displacement surface

The symmetric component of the flow is represented by a source
distribution of strength q(x) which generates a stream-surface having the
same thicknegs distribution as the displacement surface. The required source
strength can be related approximately to the local slope of the thickness
distribution (Ref. 4),

dZy
a(x) = 2 Vo — x>0 ore (&)
dx

and/
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and the velocity distribution V(x) evaluated on the surface, due to this
source distribution, is given to a good approximation by !

Yy 2 ] :
G":):H ’EE),[“’;{ = ] o
dx

(1)
Using the notation of Ref. 4, but defining S5 (x)} by

(1) ) o 37 dy
S (x) FUum— f .——.‘-:- LN Y (6)
nd dy x-~-3y
and
(=) dz
5 (x)=— , vee (7)
dx
equation (5) becomes (1) g
Vix)\?* [1+8 ] (8)
vo > _—T—T-(S )9 sos

203 Asymmetric flow about the displacement surface

The asymmetric component of the flow is represented by a distri-
bution of vortices along the mean line whose strength y(x) is related to the
slope of the camber line, and which takes account of the fact that the veloclty
increments are to be evaluated on the displacement surface and not on the
camber 1ine itself. The contribution of the vorticity in the wake to the
circulation gbout the serofoil is negligible, and the assumption is made that
the vorticity in the wake is zero. Hence, with this assumption, the vorticity
distribution is contained within the chord of the aerofoil. The problem thus
becomes one of finding the strength of the vorticity y{x). in terms of the
shape of the camber line and the thickness distribution of ihe displacement
surface. If the displacement surface were to be closed at the trailing edge
then the problem would be identical to that for a conventlonal aerofoil in
inviscid flow.

With the notation of Ref. 5, the velocity distribution sbout the
disslacement surface due to the combined effects of the source distribution

q(x) and the yortex distribution y(x) is given by g
(1) (4 () ——
v " [?cos at (148 %8 Jisina*t (1+58 ') . M]
_—) = =
(;k ) 1s (850

ceo (9)

and the pressure coefficlent in incompressible flow is given by

Y 8
C =1 -(—-)
P Yo

where/



- 9 -
(1) (3)
where S8 (x) and 8 Sx) are defined by equations (6) and (7) respectively,

and the definitiom of 8 (x) 1s extended in a very simple manner to acocunt
for the fact that the disg}acement surface does not oclose at the trailing edge,

5 (x), s (x) and 8 (x) are thus defined as follows:

(3) 1 pwr d2 Z dy

8 (x) = -/ l:-i; - :I eee (10)
xy Ldy (U -y)d x-y

(4) 1 ’ 1-x o 42 y dy

3 (I) =- -__[ -_E — ene (11)
x x o dy 1-yx-3

(8) 4z

s (x) = — ees (12)
ax

The mlternative signs in equation (9) refer to the upper and lower surfaces
respectively,

If the boundary layer displaceme P thicknesas on iﬂp serofoill and
in the wake are known, then the functions 7(x) sevess 87 (x) ocan be
evaluated to glve the velocity distribution over the displacement surface and
hence the pressure distribution over the aerofoil with boundary layer.

2.4 Circulation about the merofoil and conditions at the trailing edge

The value ¢f the circulation is established by means of the criterion
that the ratic between the velocities at the edge of the boundary layers on the
upper and lower surfaces of the aerofoil, evaluated at the trailing edge, 1s
unity. By virtue of the hypothesis made in Sectlion 1, this becomes equivalent
to the condition that the pressure on the displacement surface at the trailing
edge is squal on the upper and lower surfaces. This require? that the vortex
distribution must be chosen so that y(1) = 0, and hence Ay =0.

The streamlines outside the boundary layer are continuous and have continuity
of slope even though the aerofoil has discontinuous slope at the trailing edge.
Since the pressure on the aerofoil surface in the presence of a houndary layer
is approximately equal to the pressure along the streamline just outside the
boundary layer, there c¢annot be a stagnation point at the trailing edge as
this would Jmply the existence of a discontinuity in slope of the streamline.
The hypothesis that the displacement surface 1s such that the pressure distri-
bution on i1t in inviscid flow is the same as the pressure distribution on the
aerofoil in the viscous flow requires that there is no discontinuity in slope
of the displacement surface at the trailing edge, and hence no stagnation
point nor infinite velocity.

2 5 Displacement thickness of the wake

No satisfaoto:y pmethod exists at present for the prediction of the
way in which the displacement thickness of the wake develops immediately down-
stream of the trailing edge. From momentum considerations etc., at large
distances downstream of the trailing edge (i.e. as X + w) we have 6, = %GD

and H =1 . Thus the displacement thickness of the wake has a value of
L]

2/
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%GD 85 X > ew » This, in conjunction with the constraints mentioned in
Section 2.4, requires that the displacement thickness of the wake satisfies the
conditions:

. * *
(1) Z, =d when x =1, where 4&*= %—(GU + GL) TE
(11) d.Zt/d.x is continuous at x = 4 ,

(111) Zt+ GD/‘t a8 X > w

A simple model of the wake is proposed which satisfies conditions (1) and (i1)
at the trailing edge and has @ displacement thickness which is assumed to reach
the value -;—GD at some finite distance X downstream of the treiling edge and

remain constant after that point. Using this model the wake thickness distri-
bution can be approximated to by the function

*
Z, =d +ofx - 1) + Plx - 1F +Qx-1P ,isxs1+X
thcn/"-l-, x>14+X. see (13)
where *
BGD—‘IZd - 80X
P=
A
E
-—CD+lpd. + 20X
Q=
%

It is shown in Appendix 2 that provided the continulty of the displacement
surface and its slope are preserved at the trailing edge, the pressure on the
aerofoil surface, even at the trailing edge, is not particularly sensitive to
the detailed shape of the wake downstream of the trailing edge (e.g. to the
value of X) . For practical calculations a value of X in the range 0.2 to
0.3 should be satisfactory.

3B Numerical Method

2.1 Basic problem

The calculation of the velocity distribution on the displacement
surface, and hence the pressure dist(rf_}:ution on the merofoil surface, requires

2 3) 4
the computation of the functions 8 (x), 5 (x), 8 (x), s (x),
and 8 (x) for the thickness and camber distributions of the displacement
surface defined in equations (2), (3) and (13).

(4) (5) ‘
The functions 8§ (x) and § (x) which depend on the camber
ordinates can be computed by the numerical method developed by Weber (Ref. 5),
ioeo,

s (x)/
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() 1w
4
S (xv) = Z pr Zﬂu sen (1)-}-)
u=1
(5) = (5)
S (xv) = S]J.U ZB}J. ase (15)
p=1
VR .
Where xv = % (1 4+ C05 re— ) VvV = 1,2,30-.-0N“1 -
N
(n) *
and & are influence coefficients independent of the camber ordinates.

v
The method of Ref, 4 for the calculation of the functlons
S(n)(x) y n=1,2,3, is designed to deal only with closed aerofoil thickness
distributions and cennot be used in the present calculation.

It 18 convenient to subdivide the thickness dastribution of the

displacement surface over the serofoil chord into three parts as shown in
Fig. 3B.

Z, = 4 d*F(x) - o 6(x) 0<xg 1 0se (16)
where F(x) = 2 (3-2x) ; G&(x) = # (1-x)

*
Defined in this way, 2z which is referred to as the "residual thickness",
satisfies the conditions,

* *
* dz 2p
when x=0, z =0 and —_— ] -
a'x c
»
* dz
x=1, z =0 and - =0
dx

l.es, ; ig the thickness distribution of an aerofoil sectlon, cusped at the
trailing edge, with leading edge radius p* . In practice it may be convenient
to assume that p* = p , i.e., that the leading edge radius is not significantly
ag.tered by the presence of the boundary layer. Hence the function

1)
8 (x) evaluated for the displacement surface becomes

(1) 1
3 (I) o -

+ - ——

-— - p— ligae——

* »*
j»idxdydidde ot d6 dy

aco dy X - ¥y 'ﬂ:odyx-y ﬁodyx—y

o 14X dy 2P 1+Xy_.1 3Q 1+X (y_-])ﬂ
+ — +--f dy + - dy
L X-¥y w4 xX-y R g X -y

oo (17)
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(2) (3)
with similar expressions for 8 (x) and 8§ (x) . The first integral,

involving z* , can be evaluated by the Weber method (Ref. 4) and the other
integraél.s evaluated analytically taking Cauchy principal values throughout.

1)
Thus S (x) can be written concisely as

(1) (1) » *
S (x)=38 (x) + A ¢y (x) + 0 (x) + Poa(x) + Qo (x) .o. (18)

where (1) N-1 (1) o
S (x) = 5 z
TR

p=l

(2) (3)
8imilarly the functions S (x) and 8 (x) can be written

S(a)(x) = s(a) *(x) + @ xe(x) + o Xa (x) vos (19)

(3)

s  (x) S(a) *(x) + d*xzri (x) + o ¥a(x) + P¥s (x)

Q¥a(x) + (@ = C/u) ¥ een (20)

The functions ¢ieese ¢ j X1 5 X2 3 V2 ooseeees 5 are listed in Appendix 1,
and the influence coefficients sés) , n=1,2,3, are tabulated in Ref. 4.

Thus, given the aerofoil geometry and the boundary layer displace-
ment thickness distributions on both surfaces of the aerofoil, the constants
d* , o and «* can be evaluated. The residual thickness distribution can

be cslculated using equation (16) and the tunctions S(n) (x) s N=1 .00 b can
be evaluated from equations (14),(15), (18), (19) and (20), and the pressure
distribution from equation (9).

3.2 Calculation of trailing edge pressure

At the trailing edge of the aercfoil the pressure coefficient,
which is equal on the upper and lower surfaces, is given by

cosPa* [1 + S(i) (7P

(cp) m = - — eoe (21)

where

Sm(*i) = 5(1)*(1) 3 (1) + o ga(1) + Pes(1) + Qga(1)

From equations (15) sceo (18) of Appendix 1, evaluated for the trailing edge,
ioeo, X = 1 >

1
g1 (1) = $2(1) = - (- 2.5 - 2og X )

™

(@)= 2(-%  g6()=2(-18)
. ® i

A 1w

and/
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and from Ref, 4 ,

(4)* Ll R 2 sin 6 . ux
8 (1)=Z . b vz 3 08 = — ... (22)
N (1 -coso ¥ ¥ H
u=1 .

Using the expressions for P and Q from eguation (13), the function 8(1)
becomes

(1) (1) * 1 1+X 3C
3 (1) =5 (1) + - [ 5(1‘ - log X - __D_ Y] (23)
x X LX

and using equations (21}, (22) and (23) the trailing edge pressure can be
evaluated. .

Equation (22) is sensitive to small changes in the thickness ordinntes
of the residual aerofoil close to the trailing edge. The values of these
ordinates will not be known with a high degree of accuracy since this would imply
an unreasonably good lmowledge of the precise behaviour of the boundary layer
close to the trailing edge. Therefore it 1s recommended that equation (22) be
used only with a small value of N , the number of reference stations along
the chord. A value of N =8 seems adequate for this purpose.

L. Compressibility Corrections

The hypothesis has been made that the flow about an aerofoil with a
boundary layer can be represented by the inviscid flow about a suitably chosen
displacement surface. In the absence of any evidence to the contrary, it will
be assumed that this hypothesis is equally valid in the case of compressible
subsonic flow, provided of course that the boundary layer displacement thickness
appropriate to the particular Mach number is used to define the displacement
surface. The equation for the velocity distribution (equation 9) can therefore
be gemeralised to deal with oompressible flow in the following manner

(1) (4) (3)

(Y_>g =[cos a‘-(1+§ t z )tsinﬁa (1+§ )Jt;—:la

Yo S(a) + S(S) 2
) +[ :I coo (24)
B

where B and # are compressibility factors applied to the contributions
to the velocity distribution due to thickness and camber respectively. The
precise form that these factors should take is discussed in Refs., 6 and 7,
which recommend the following

g=(1-1)F eos (25)
B= (1 - L;(1 - CP:L))% Ref. 6. vee (26a)
or B={(1 -1 -% cpi))% Ref. 7. ees (26b)

where/
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where (1)

1+s5 7P

Cp, =1~ (2)
-
i 1+(s )

L4

The pressure coefficient Cp is calculated from the compressible form of
Bernoulli's equation which, taking the value y = 1.4 for air, becomes

oo (LoD (D)7 -

oeo (27)

It should be noted that the compressibility factors appearing above are of

two kinds. The first, B (equation 26a or 26b) applies only to the thickness
terms; and for the reasons given at the beginning of the introduction and
i1lustrated in Fig. 1, it is reasonable to justify this factor by reference to
experimental results for symmetrical aerofoils at zero incidence, as well as

to higher order theories. This has been done in considerable detail in

Ref, 7, and as a result the modified factor (26b) is definitely to be preferred.
The situation with regard to the lifting terms, end in particular the justifica-
tion for using the simple Prandtl-Glauert factor £ din them, is however much
less satisfactory} and a re-appraisal of the subject is desirable now that a
method exists for predicting the viscous pressure distribution, so that a more
valid comparison between theory and experiment would now be possible.

5. Comparison between Computed and Experimental Results

In order to assess the accuracy of the method described in this
report it is necessary to make use of tests on aerofoils in which not only the
pressure distribution was measured, but also the boundary layer displacement
thickness, thus eliminating any sources of error in predicting the boundary
layer. Such tests are rare. Comparison has been made in the case of the
RAE 101 aerofoil, tested at a Reynolds number of 1.6 x 10° , at incidences of
4.,09° and 8,18° (Ref. 8). The boundary layer displacement thickness was
measured at 7 stations on the chord on each surface, and an interpolated dis-
placement thickness distribution based on these measurements was used in the
calculation, Figs. 4 and 5 show a comparison between the measured and predicted
pressure distributions at the two incidences. Good agreement is achieved in
both cases, the 1ift coefficient being overestimated by approximately 3%.

In the introduction mention was made of the calculation of the
pressure distribution on an aerofcoil ab initio using an iterative process invely-
ing the present method and a theoretically predicted boundary layer. Three
such calculations have been made to explore the feasibility of the process.

In each case the boundary layer characteristics were calculated by the method

of Nash and Macdonald {(Ref. 9). To check the accuracy of the predicted boundary
layer the combined method was first used to predict the pressure distribution

and boundary layer displacement thickness on the RAE 101 aerofoil section referred
to above for which measured boundary layer data was available. Fig. 6 shows a
comparison between the measured and predicted displacement thickness on the two
aerofoil surfaces for incidences of 4.09° and 8.18°. The quoted transition
positions (Ref. 8) were used in the calculations and are shown in the figures.

The/



- 15 =

The pressure distributions celculated using the theoretically predicted bound-~
ar y layer data are almost identical with those calculated using measured

data and shown in Figs. 4 and 5, the mean difference in the pressure coeffi-
cient Cp being approximately 0,005. The comparison indicates that for

typical merofoil pressure distributions the method of Ref. 9 should be
adequate for use in conjunction wlth the method of this report to calculate
the pressure distributions on aerofoils. Fig. 7 shows a comparison between
the measured and predicted pressure distridbutions on a 14% thick cambered
serofoil, designed to carry 1lift over the rear part of the chord, and tested
at a Reynolds number of 1.16 x 10° at an incidence of 3.2°, The calculation
was carried out as described above using observed transition positions on the
aserofoil surfaces. Again, the agreement is good over the majority of the
chord.

These three calculations indicate the possibility of predicting,
with reasonsble acouracy, the pressure distribution on an aerofoil in viscous
flow almost entirely theoretically using the present method and a method such
as that described in Ref. 9 for predicting the boundary layer characteristics.,

6. Concluding Remarks

A theory and a numerical technique have been developed for predicting
the pressure distribution on a thick cambered aerofoil at incidence when the
boundary layer displacement thickness is known. This method shows good agree-
ment with the limited experimental data available. The absence of suitable
experimental results at high Reynolds numbers and high subsonic Mach numbers
makes it impossible to thoroughly assess the accuracy of the method, in particu-
lar the compressibility corrections discussed in Section 4. In the case of
predicting results at high Reynolds number, the fact that the results must lie
between inviscid theory (infinite Reynolds number) and results such as those
presented here suggest that the method should be at least as accurate in those
cases. It is hoped that tests to be made in the near future at Mach numbers
up to M = 0,7 including the measurement of the boundary layer characteristics
will rectify this omlssion.

At present no satisfactory method exists which will predict transi-
tion position. Until such a method is found, the transition positions on the
upper and lower surfaces of the aerofoil must be specified independently of the
boundary layer calculation. This has been done in all the calculations
referred to in this report.

Comparisons between theory and experiment have been presented for
the RAE 101 aerofoil and a cambered aerofoil for which the boundary layer data
were obtained theoretically using observed transition positions. These
comparisons indicate that methods now exist for calculating turbulent boundary
layer data with sufficient accuracy which, when used in conjunction with the
theory developed in this report, enables the pressure distribution on an aerofoil
in viscous flow to be predicted almost entirely theoretically, This is being
investigated in greater detail and will form the basis of a separate report.
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Appendix 1
(1) (2) (3)
Functions Used in the Evaluation of 8 (x) , 8 (x) and 8 (x}

The functions S(n) (x) , n=1,2,3, have been defined as

1 1 * az a
s( )(x)=-[ = Y eeo (1)
R & o x-y
2 az
s (x) = —2 e (2)
dx
@ 1 eTran z dy
° ()"wl [dy 2y(1-y)]x—y
(1) 1 vz, dy
=5 (x) - — eee (3)
Zﬂ«[y(‘l-y)x-y

where Zt is defined in equation (2).
(1) (2) (3)
It is shown in Section 3.1 that S (x), S {x) and S (x)
can be expressed in terms of the functions ¢y (X) eeee $0(x) 5 % (x), %Xa(x);
¥ (x) veeee ¥s6(x) . These functions are tabulated below, both in their integral
form and functional form.

6 y(1-y)ay oo (B)
¢ (x) = - —
o
1 tyGy-2)yy gy
(x) = - ——————— 4 vees(5)
we e[ [ [ 2]
5 1+X
da (x) = - / (y-18y cee (6)
A x-y
14X
) = j (y-1Fey e (7)
X x-y
yu(x) =6x {1 -x) eee (8)
X, (x) = x(3x - 2) eee {9)

Ha(x)/
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1 ~ 1y(3-2y)dy = dy
Y (x) = o (x) - = )
ox _j (4-3) (x=y) / ﬂ$wxrv)]

0

%&):hh)_é :_fydy_[1d dy

| x -y y{x-y )
1 14X (y-1)dy
Wix) =f(x) - =1 -
2n [: }C y(x-y)
14X (1Y &y

Yo (x) = fa () 1;-[ [T

¢5(X)=j—[“ v

an 4, y(1-3)(x-y)

Taking Cauchy prineipel values of the integrals:

6 x
¢ (x) = -| x(1=x)log — + x - %:]

®L 1=x

1 _
¢a (x) = -| x(3-2x)1log x + (3x+1){(1—=x)Llog(1-x)

- log{14X-x) - 3x + %:\

g (x) = E[ (1x)106 . - x]

t-x

1+Xi-x

Mx)=-§[(1-x)“1°g + 3 X —x(1-x)]

1-x

1 - 1-=x 1
h_(x):ﬁ(x)--—l:x(BZX)logx-Z-f( )(Zx-!-)
2n 1=x x
1 1-=x 1
Ve (x) = ¢ (x) - --l: 1 + x log =— - - log { 14X)
2% X x

1 14X-x
+ —-log :]
X 1=x

eeo (10)

eee (11)

coo (12)

ess (13)

eee (14)

vee (15)

eee (16)

eea (17)

e (18)

log(‘l—x):l... (19)

vo {20)

*3/
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1 ~ 1 1-x 1+X-x

Ve(x) = ¢ (x) = — | = Tog(14X) - — log ] vee (21)
2 L ox x 1=x
1 +~ (1=) 14X=x 1

'd“ (X) = *‘ (X) — — log - - log (1+X) + X] sous (22)
2x L x 1-x X

() = [ — L og (a) - — (23)
BAX) = —~~]| - log (14X—=x) - —log( 14X} — —=~ log X “as
N ztl:x(1-x) s (1a1) x il 1= s :] *
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Appendix 2

The Effect of Wake Displacement Thickness on the Trailing
Edge Pressure

The choice of model for the wake displacement thicknesa will
affect the pressure distribution over the aerofoil surfacet the effect being
progressively more significant over the rear part of the serofoil and greatest
at the trailing edges. It is informative to consider the effect on the trailing
edge pressure of a range of wake models.

The trailing edge pressure is given by (Section 3,2)
cod® « [1 + S (1)]’

c = 1 - woo (1)
()TE 1+ (

]
Since « and o are small, the pressure is given with good approximation
by

(c)TE=-2s (1)=--[——— wes (2)
P e &y x-y
where
'y
Z, = 1z + d F(x) - o6 (x) 0gsxg %
»
th%ﬁw x> 1

Using the constraints listed in Section 2.5, the wake thickness distribution
can be expressed in the form

2, = d‘-n-crE(x) x> 1 ees (3)

where E(x) satisfles the conditions
*

dB M-GD
E(1) =0; ~=(1)=13 E(w) =-
dx Lo

and the trailing edge pressure becomes

‘ (€ )pp = —2|:S(1>.(1)+3—d+f {f tyr2) dy +

P
[ 575 -

where Cauchy principal value of the integrals is taken.

Consider/
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Consider the following two wake models which represent reasmasably
extrems cases:

(1) "repidly convergent wake", in which the displacement thicimess
decreases linearly to a value of {rcn and remains constant
thereaf ter;

(14) "slowly convergent wake®, in which the displacement thickness
decreases exponentiaslly to become asymptotic to the value %—GD
at infinity.

Typical wake displacement +thickness distributions for these two cases are

shown in Figs. 8a and 8b. The wale model proposed in Section 2.5 lies between

these two extreme cases.
Rapldly convergent wake:

in this case the function E(x) is defined ast

1
E(x) =x - 1 1¢xc1+ -
k
1 000(5)
E(x) = c];/l" x> 1+ -
k
"I-I-O'
where k= .
44 - Cy

and equation (4) becomes
*

(cp),]:E = -21: s““(1) + Bj + S[ log k - 2.5]] eee (6)

x =
Slowly convergent wake:

in this case the function E(x) is defined ast
1

E(X) == (1 = e—k(x-1)) x> 1 anve (7)
k

and equation (4) becomes

(c_) |: (”‘(1) Ly U[ logk - 2.5 + [ =
= =2 3 + - ogk - 2, +[
p'IE X % u

-u

-["’;m]] veo (8)

1

Figz. 8o shows the values of trailing edge pressure given by equatio?s (6) ard

(8) for aerofoil NPL 3111, for which a* = 0.0084, o = —0.067, S’ (1) = -0,084

and/
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and CD wasg taken as 0.03. Also shown are the values of trailing edge

pressure for the wake model proposed in Section 2.5, for a range of values

of the parameter X . The extreme values of trailing-edge pressure coeffic-
ient are 0.145 and 0,170, a range of only 0.025. Fig. 8c shows the

relatlive insensitivity of trailing-edge pressure to the choice of wake model,
and provided that a reasonable value of the parameter X i1s used, the
pressure coefficient can be calculated to within a tolerance of * (,01.

In the predicted pressure distributions shown in Figs. 4, 5 and 6,
a value X = 0.2 was used.
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