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SULlMARY 

Hlstcgrams for changes 111 turbulence velcclty over given distances are 

presented, based on a standard power spectral model. It 1s proposed that these 

be used as the basis of a ccanparlson between the gradient properties of the 

model and the measured gradient propertIes of samples of atmospheric 

turbulence. An application of the histograms to the @I.lst response of an air- 

craft WI"% an autothrottle 1s described. 

* Replaces R.A.E. Technical Report 67134 - A.R.C. 29531 
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1 INTRODUCTION 

3 

, one of the ways of representing atmospheric turbulence is as a quasi- 

stationery Gaussian randaan process defined by its power spectrum. It is 

possible in this way to construct an amlytlcalmcdel of turbulence, with 
. 

parameters determined by matching the model agaulst measured samples, which 

can be used to estimate the effects of turbulence upon aircraft loads, 

difficulty of control, etc. Atmospheric turbulence is of course neither truly 

stationary ncr Gaussian and the Gaussian model needs to be used with scme cars. 

For example, it appears that it has little value as a means of predicting the 

frequency of encounter with the very large gusts in and around storms that may 

induce aircraft loads above the proof stress level. For such purposes a more 

premising approach, mentioned by Zbrcsek', is the description of atmospheric 

turbulence in terms of a two-dimensional probability distribution of discrete 

gusts of variable gradient (shear) and length. Hcwever, particularly at low 

altitudes, turbulence often appears in a fairly continuous fcrm which might be 

adequately described by the power spectral model for many purposes. 
. 

One of the most important properties of turbulence about which the a~-- 

craft engineer requires statistical information is the magnitude of velocity 
. 

gradient, cr change in velocity ever a prescribed distance. This is because 

such quantities as aircraft loads, or airspeed changes when the aircraft is 

ccntrolled by pilot or autopilot, depend not only upon the magnitudes of the 

gust velocities but also to a large extent upon their rate of change. This is 

a consequence of aircraft respcns e decreasing the effects of the low frequency 

components of turbulence: what usually matters is the probable change in 

turbulence velocity in an interval of the order of the aircraft response tims. 

In the present Report we describe certain gradient properties of the 

Gaussian random model of atmospheric turbulence. These gradient properties 

are expressed in terms of conditional probability distributions which determine 

the change in turbulence velocity to be expected ever scme prescribed distance. 

Two possible applications of these results are stressed. One is as a means of 

converting existing experrmental data on the paver spectral model to a form 

which, by expressing the probability of gradients explicitly, allcws the order 

of magnitude of sane aircraft responses to be estimated without resort to a f'ulI 

i canputation of the power spectrum of the response variable in question. A 

simple example, which is discussed in secticn 5, is the assessment of the 

effectiveness, in controlling airspeed in turbulence, of an autcthrottle system 



with known response time. The other, and more fundamental, application of a 

lmcwledge of the gradient moperties of the spectral model is as a means of 

oomparing the model with actual turbulence samples. It is proposed to find the 

best fit of the statistical model to the measured power spectrum of a sample 

of low altitude turbulence and then to check how well the estimated gradients 

taken fraa the statistical modal compare with the measured gradients taken 

directly from the sample. Good agreement would not necesserily follow even 

if the first order amplitude probability distribution of the sample appeared 

to be consistent with a Gaussian distribution. For instance, it is possible 

that the structure of turbulence is such that velocity gradients over shart 

distances are determined by shear layers which sre only adequately described 

in terms of higher order probability distributions (see section 5.2). Good 

agreement between measured gradients and those predicted by the model should 

considerably support confidence in the power spectrum method as a means Of 

estimating the response of aircraft in turbulence. 

2 THE SP!%CZRAL MODEL 

The gradient analysis described in the present Report is based on the 

assumption that, in the relevant frequency range, atmos*eric turbulence can 

be modelled by a Gaussian process with power spectrum described either by 

@(i-l) = IT2 4 ’ 
x 1 + (LQ2 

or by the asymptotic form of equation (1): 

(‘1 

Here, o2 is the mean square turbulence velocity, L is larown as the 'scale 

length', and R is spatial frequency 111 rad/ft. Q has the dimensions of 

(velocaty)2 per rad/ft. For the purpose of discussing velocity gradients over 

relatively short distances the approximation, equation (2), is often adequate. 

For surveys of various possible forms for the spsctrum of atmospheric 

turbulence see, for example, Refs.1 to 7. rYe review the nrn-e relevant aspects 

of possible models in the present section. 

Equation (1) is usually quoted as one of a pair of 'Dryden' spectra, the 

other form being 
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(3) 

Equation (1) 1s usually quoted for the streamwise component and equation (3) 
. 

for the transverse components. These spectra are commonly employed in aero- 

nautical engmeermg and values of c2 and L are chosen to give a good fit of 

the model spectra to measured spectra over the frequemy range of aeronautical 

For large R both forms became asymptotically proportional to n -2 Interest. . 

More fundamental studies of the structure of turbulence suggest that over this 

range the slope should be given by n -5'3 (the Kolmogoroff slmilsrlty theory). 

However, since measured spectra show a scatter in asymptotic slope which makes 

It impossible to choose between the two forms, R -2 and fl-5'3, the fcrmer 1s 

often employed by aircraft engineers because of the associated simplification 

lntrcdused lflto aircraft response calculations, despite the more scientlfxally 

respectable backgrcund of the latter. 

For many practical purposes, inoludlng the present gradient study, it is . 
possible to go even further in simplification and to use equation (1) for all 

three ccmponents of turbulence. The usual practice 1s to use the more 

complicated form of equation (3) fw the transverse components of atmospheric 

turbulence, largely because the correlation functions f(r) and g(r), eqmvalent 

to the spectra given by equations (1) and (3) respectively, together satisfy 

a basic equation for isotropic turbulence a 

g(r) = f(r) + $ r * . 

Such refinement 1s) however, rather inconsistent with the experlmentalbasls 

for the two forms in the case of atmos&eric turbulence: equatlcm (1) can be 

made t0 give just as good a fit t0 measured tranSVerSe SpeOtra as equation (3). 

Etkin3 has directly compared the two forms (Fig.1 of Ref.3) and in fact, when 

suitably scaled, they only differ by a small amount V&U& lies in the low 

frequency region where experimental results are not partxularly reliable 

(Fig.1). 

There is scme justification, then, for basing the present wrmk on the 

spectral form, equatxm (1). Any experlmentaldata pesented in terms of 

equation (3) can be converted to an equivalent expression in the form of 

equation (1) by use of Etkin's3 conversion formula which we have quoted in 
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Appendix A for convenience. Further, except in the case of the vertical 

component of turbulence at low altitude (here the boundary condition at the 

ground introduces a bound on the scale length) it will usually be sufficient 

to employ asymptotic results of the form of equation (2), since these cover 

the frequemy range within which aircraft response us~lly lies. In this case 

the only significant parameter is c2/L, which is defined by the power per unit 

band at any frequemy within the asymptotic region. Values of L snd c for 

low altitude turbulence have recently been presented by Fritchard7, who covers 

a range of terrain types and degrees of atmospheric stability. 

In order to use the spectral model to obtain results on gradient. 

probabilities we need also to assume that the turbulence csn be approtited 

by a Gaussian random process. This is a big assumptlcn to m&e, but it is 

forced upon us if we wish to use the power spectrlrm to obtain any information 

about crossings of levels, etc. The only relevant experimental information 

that has been discussed in the past concerns the (first order) amplitude 

probability distribution. The evidence is (to quote Pritcbard7) 'that far 

short data runs of the order of 4 minutes, the probability density Or the 

fluctuations of a gust velocity cclnpcnent is closely Normal except for the 

large amplitudes where the measured density ia usually much larger than 

predicted by the Nonsal curve! No data exists on higher order probability 

distributions. As has been pointed out in the Introduction, one of the 

applications of the present Report is to check if the gradient properties based 

on a measured speatrun and Gaussian random process assumptions are significantly 

different from the observed padient properties. 

We have been discussing turbuleme spectra in terms of spatial frequency 

in radians per foot. In order to relate these to the time dependent rsndau 

process experienced by sn aircraft travelling with velocity V we employ 

Taylor's hypothesis through the relation 

where w is frequency 111 rad/sec. This assumption is valid for the speeds at 

which conventional aircraft fly (but is not valid far low velocities, typical 

of V'I'OL aircraft, very near the ground). 

. 
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3 GRAD= ROPERTIES OF TfE STATISCICAL MODEL 

7 

3.1 BaCkgl-OUlld 

As discussed in the previous sectlm we cudstier a statlonsry randm 
Gaussian process u(s) (where s 1s &stance, ~TI feet) which 1s canpletely 

define3 by its power spectrum 

Q(O) 5 CT2 A ’ . 
x 1 + (In)2 

(1) 

This particular random process is also a scalar Markov process, I.e. the 

probability law of the 'future ' development of the process (in terms of 

increasing values Of s), once It has taken sane fixed value at a given point, 

depends only on that value and not upon the previous 'histary' of the proaess. 
Mathematically, the conditional probability of u(s2) given u(s) for all 

s<s , , where s, < s2, is equal to the conditional prcbability of u(s2) given 

. 4S,). 

As a result, the gradlent properties we require osn be expressed simply 

in terms of the conditmnal prcbsbility of u(s) at s = s2 when sane cmstraint 
is put on the value of u(s) at s = 5,. We will consider twobasic types of 

constraint at s = 5,. In the first case (sectmn 3.2) we assume that 

~(8,) = 0 and determine the probability dlstrlbutims of Au = u(s2) fur a 

sequence of values of s2 > S,. That x., we determine probsbdity distributions 

whioh define how quickly u(s) 'gets away ' fran zero value following a zero 

orossmg (Flg.2). In the case of the second type of constraint (section 3.3) 

we assume that 8, is chosen ln a canpletely arbitrary way (so that u(s,) is a 
randan variable) and determine the probability distributions of 
Au = u(s2) - ~(8,) for a sequence of values of s2 > 8, (Fig.3). 

In section 3.4 we consider analogous results in the limiting case where 
the pcwer spectrum, equation (I), is replaced by its asymptotic form, 
equation (2). These asymptotla results will be valid whenever the distance d 

over which gradients are to be considered. is small relative to the scale 
length L of the process. 
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3.2 The case of zero initial value 

In this section we are concerned with the Gaussian random process 

defined by equation (1) and we are given that u(s,) = 0 (Fig.2). Unier this 

condition w's wish to find the probability distribution of the change in 

turbulence velocity Au = u(s2) at a position s2 > s,. Since the process u(s) 

is Gaussian it follows that this conditional probability distribution is 

Gaussian (Normal) ard hence is completely defined by its mean and varisnoe. 

By symmetry the mean is zero and so all we are required to find is the varisnce 

ui where d = 8 - s . 2 1 
It is shown in AppmlixB that 
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L 
(6) 

where c2 and L are factors in equation (1). The presentation of results 

derived from equation (6) is discussed in section 4. 

3.3 The case of randan initial value 

Here we are concerned (Fig.3) with the case of arbitrary titial 

posltxm s, and. hence u(s,) is a random variable (with Gaussian anplitude 

c2lstribution of zero mean and variance c2). Then the condition probability 

distribution of Au = u(s2) - u(s,), (s2 > s,), is Gaussian with zero mean 

(by symmetry) an.3 variance ?i (say). It is shove in Appelldix C that 

ci2 d _- 
-j = 2(1-e L, . (7) 

Results derived from equation (7) are discussed in section 4. 

3.4 Asymptotic results for small d/L 

For distances d = s2 - s, snail ounparedwith the scale length L of 

the process the gradient properties csn be written in a form dependent only 

on the distance d and the coefficient c2/L which appears in the asymptotic 

spectrum (equation (2)). These results will, moreover, be valid if the 

asymptotic spectrum form, equation (2), has been fitted directly to experi- 

mental data and hence a scale length L need not be assured to exist. This 

may be useful particularly in the case of spectra of high altitude turbulence 
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(or even horlsontalsnd lateral components of turbulence at low altitude) where 

the measured spectra often show no signs of departing fran the Cl-" farm with 

constant (logarithmic) slope even at the lowest frequencies measured. Here 

we assume that, with a suitable choice of c'/L, equation (2) canbe fitted 

with adequate accuracy to the measured spectrum over the frequency range of 

Interest, even if the measured exponent n is not exactly equal to 2. 

To first order in d/L equations (6) and (7) give the same result for the 

varmnce of Au. The more useful form is that referring to an arbitrary 

initial point s,, 111 which case equation (7) gives, to first order: 

(8) 

This result 1s dlscussed further in the following sections. 

4 SU<%wIY OF RESULTS 

4-l Zero initial turbulence velocity 

The turbulence velocity u(s) is taken to be a stationary Gaussian process 

with zero mean and power spectrum given by equation (1). Then the change u1 

turbulence velocity Au over a distance d = s2 - s,, in the case where the 

uutlal turbulence velocity u(s,) is zero (Fig.2), is Gaussianwith zero mean 

and varlsnce given by equation (6). Histograms, based on th~sGaussian 

distribution, for the random varlsble e , for a sequence of values of d/L, 

are presented in Figs.& to 4f. The corresponding non-dimensional gust 

gradients c?y[$> are also Illustrated in Fig.& in conJunction with each 

histogram. Equation (6) has also been used to construct a graph (Fig.5) 

lllustratlng the expected shear Au/d in a given gradient distame d in the 

case of zero initial turbulence velocity. The results (Fig.5) are expressed 

m terms of non-dunensicnal velooity change Au' = Au/u and non-dimensional 

gradient distance d' = d/L. 

4.2 Randcm initial turbulence velocity 

A dlfferentresult is obtained if we consider the change in turbulence 

velocity u(s) over a given dlstsnce in the case where the initial value is 

rsndan (Fig.3). The initial point s, is chosen in a random manner (so that 

u(s,) 1s a random variable with Gaussian distribution of zero mean snd varisnce 

u2) and results for Au = u(s2) - ~(8,) are obtained by averaging over all such 
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lnltlal values ~(9,). Then the carrespcmding change in turbulence velocity 

Au over a distance d = s2 - s, (see Fig. 3) is Gaussian with zero mean (by 

symmetry) and variance given by equation (7). Hlstogrsms, based on this 

Gaussux~ distribution, for the random variable Au/a, sre presented 5n 

Figs.6a to 60. Comparison of equations (6) and (7), and of Figs.l, and 6, 

illustrates the larger average velocity change Au 111 a given distance d 

subsequent to a ratdom initial value. This 1s to be expected since when the 

initlalvalue is rardan, cases where the initial value is of large magnitude 

are included (welghted in the appropriate way) and in such oases one would 

expect relatively large velocity changes Au to.vards the mean value u = 0. 

For snmll values of d/L (Figs.& and 6a) the histograms for the two 

oases, zero initial turbulence velocity and randan initial velocity, show 

little difference. This point is clarified in the following section where the 

case of small d/L is reviewed in more detsil. 

Ir3 Asymptotic results for small. d/L 

In the case of gradients over distances d small compared with the 

scale length of the turbulence the variance of Au becanes proportional to d 

and depends only on the parameter c'/L (equation (8)). This result is 

illustrated in Fig.7 ati is particularly useful fcr describing the gradient 

behaviour of samples of turbulence whose sample spectrum canbe approximated 

by equation (2). This property holds in the ease of mariy samples of atmos- 

pherio turbulence whose spectra have been measured: the scale length L, 

whxh is associated with a departure from linearity in the logarithmic plot of 

the spectru+ If often non-existent, or at least ill-defined. 

5 APPLICATIONS 

5.1 Airspeed response of aircraft with autothrottle 

We consider an aircraft, with airspeed coltrolled by an autothrottle 

system, flying at 150 kt at an altitude of the order of 1000 ft under 

moderately severe turbulence conditions. Existing experimental data suggests 

that under these circumstames we can use the spectral model of turbulence, 

equation (I), with parameters far the horisontalccmponent: 

u = 8 ft/sec 

1 

. 
L = 1200 ft 

(9) 
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Typical present day autothrottle systems have a response time of about 

IO seocde. Assuming that the speed stability of the basm aircraft is low, 

it follows that fluctuations in horizontal gust velocity over a time interval 
of the order of 5 seocds, fca: example, will largely appear as airspeed 

i 
fluctuations (though they will not necessarily be apparent to the pilot 

because of instrument lags). It is of interest, therefore, to estimate the 

prcbability density for changes in horizontal gust velocity in 5 seconds. 

Using Taylor's hypothesis (equation (5)) WB relate the turbulence fluctuations 

in time to the spatlaldistribution used in the turbulence model. At 150 kt 
the distance travelled by the aircraft III 5 second& in approximately 

d = 1250 ft. Expressed as a ratio of turbuleme length (equation (9)) we have 

d/L51 . (10) 

Starting from an arbitrary instant of time it is appopriate to use the hlsto- 

grams for rendon initial turbulence velocity, and the corresponding case 

d/L = I is illustrated in Fig.60. Taking u = 8 ft/sec (equation (9)) this 

histogram (Fig.60) can thus be used to describe the probability distribution 

of airspeed fluctuations over arbitrary intervals of 5 seconds. For example, 

considering the case of large fluctuations, changes in airspeed (Au) 
5 se0 

greater than 16 ft/sec ($ kt) correspond to Au/Q > 2, and occur with a 
prdxbility of about 2$%, or on average once every 200 seconds. 

All this as-es, of course, that the spectral model, based on Gaussian 
process assmptions, gives an adequate description of turbulence velocity 
gradients over the correspondmg spatlel distance. This point is taken up 

further in the following section. 

5.2 Proposed can~arison with medient properties of measured turbulence 
samples 

As pointed out in the Introduction, it is advisable to dxck how well 
the prdability distribution of changes in turbulence velocity over given 
distances as predicted by the mcdel agrees with the correspcmding distribution 

for measured turbulence samples. Good agreement would not necessarily follow 
even if the spectrum given by equation (I) (with suitable choice of parameters) 
fitted the measured spectrum well, and the first order amplitude distribution 

2 of the sample were Gaussian. This is because the measured gradient properties 
depend on the joint probability of turbulemze velocity at two points, ad this 

need not be Gaussian under the above conditions. For instance, in the case of 



turbulence generated by a grid it has been experunentally established that the 

first order amplitude bstrlbution of the ccnnponents of turbulence velocity 

are normal to a high degree of accuracy, but on the other hand measurements of 

the Joint probability dutrlbutlcm of velocities at two deferent points are 

In general not normal. Our general understanding of the nature crf turbulence, 

in fact, suggests that the Gaussian randcan process will be a poor model for 

describing gradients of turbulence velocity cwng to the tendency far ducrete 

shear layers to form. 

There is an increasing tendency for the spectral approach to be used in 

the estunation of aircraft loads, etc., ad there is clearly a case for check- 

ing Just how well the model predicts velocity gradients. The most straight- 

forward way to go about this is to measure gra&ents starting fran each cross- 

ing of the est.-ted mean (this 1s to ensure, as far as possible, statistical 

independence of conseoutwe samples). Probability densities for the change in 

turbulence velocity should be estimated for a range of @$adisnt distarkzes. By 

estimatmg, m addition, the values of c and L which give the best fit of 

the spectral model, equation (I), the histograms presented in the present 

Report can be used to give a direct comparison with the model gradlent 

properties. 

6 CONCLUSIONS 

Aircraft responses (loads, etc.) clue to turbulence depend to a large 

extent on the change in turbulence velocity in an interval of the order of the 

aircraft response tune. There is an increasing tendency for the paver spectral 

approach to be used in the estimation of aircraft response snd this spsctral 

approach depends on the assumption that samples of turbulence velocity can be 

adequately approxunated by a stationary GaussIan process. In particular, the 

Joint probability distribution at two pouts, which determInes the gradient 

properties of the process, is assumed to be Gaussian. On the other hand there 

1s strong experimental evidence in the case of turbulence behind a grid that 

the Joint probability distributions of turbulence velocity at two points are 

not GaussIan. There 1s a tendemy for a small number of strrmg gradients to 

form rather than a unlfarm distribution of smaller gradients. In view of this 

it appears that there is a strong case for ocnnparmg the gradient properties 

of measured samples of atmospheric turbulence with the gradient properties of 

the spectral mdel. To further this end, histograms for changes in turbulence 

velocity over given distances are presented in this Report, based on a standard 

Y 



power spectral. modal, equation (1). It 1s intended to use these histograms 

in the analysis of experimental turbulence data. 

Assuming that the power spectral mcdel proves adequate, at least far 

some purposes, the histograms can be used toestimate orders of magnitude of i 
sane aircraft respxses without resort to a fullcomputatlon of the paAer 

spectrun of the response variables. As an illustration, the airspeed fluotua- 

tions of an aircraft with en autothrottle flying in moderately severe turbu- 

lence have been considered. 
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AppendixA 

ETKIN'S CONVEXSION FORMLILA 

Fig.1 is quoted from Etkin3 and illustrates the similarity between the 

two types of Dry-den spectra when suitably scaled. The two forms illustrated 

S2.S: 

which is ldentlcal with equation (3), and 

1 

2.25 + (Ln)2 ' 

(A-1) 

(A-2) 

v&ich is a scaled version of equation (I). The relatirm between equations (A-2 

and (1) is given by the omdltion: 

1$L 1 ro’2L’ 1 
2 x 2.25 + (Ln)2 x 1 + (L'Q2 

if 

L’ = 1 

J- 2.25 

ana 

. 
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CXXDITIONALVARIANCE FORZERO INITIALVATJJE 

We consider the Gaussian process u(s) defined by the power spectrum 

B(O) = u2 L ’ 
n 1 + (LO)2 

and we are given that u(s,) = 0. We wish to find the variance $', of u(s,), 
where d = s2 - s,. The Gaussian process with speotrm given by equation (B-l) 
can be generated by passing white noise with autffiorrelation function 

2 
R(r) =+- S(T) through a shaping filter with transfer function LsL+ , , as 
illustrated in Fig.8 (where we have used the conventional independent variable 
z in the autocarrelation function and impulse response, even though it here 

represents a distance rather than time). 

In order to obtain the variance CJ~ subsequent to the initial condition 
u(s,) = 0 we add a switch to the filter system as illustrated in 9ig.g. At 

s=s ,, the white noise input to the shaping filter is titched on. Thus the 

condition ~(8,) = 0 is satisfied. It is shown inRef.9 that with an initial 

constraint of this kind the variance cri of u(s) is given by the equation 

d 
2 ua = 2 F(T) h(T) dz 

where h(T) is the impulse response of the shaping filter. 

In the case R(T) = $ 6(z), we have9 

F(z) = 2 'c - 'F') h(z') dz' = 7 h(z) . 

(B-2) 

(B-3) 

Substituting h(z) = e -z/L , which corresponds to our shaping filter Lsl+ , , w= 
obtain the required result 

4 -$f 
1 2= -e . b-4) 



Appendix C 

COh?XTIONAL VARIANCE FOR RANDOM INITIAL VALUE 

In this case we consider the Gaussian process u(s), which can be 

generated with a shapmg filter as illustrated in Flg.8, with a randan 

value u( s,) . We wish to fmd the variance gi of the related process 

m(s) = u(s) - u(s,), where d = s - s,. Since the initial positlon s, 

chosen at randan, we have 

-2 
"a = )u(s + a) - u(s)j2 

This function is known as the structure function of 

Expanding equatkon (C-l): 

-2 
ud = iu(s + d)i2 + )u(s)j2 - 2 u(a) u(s + d) = 

where 

2(d) = c2 e-d'L . 

Thus 

-2 
ud 

2 
= 2 1 - e-"/") . 

/ 

. 

44 * 

a2 + 2 - a(d) , 

initial 

is 

(c-1) 

(c-2) 

(c-3) 

(C-4) 

. 

5 
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i d = s* - s, dz3tance (ft) 

L 

9 

turbulence scale length 

distance feet 

Laplace trsnsfom varxible 

turbulence velocity 

aircraft velocity 

power spectral density of u(s) 

mean square value of u(s) 

conditional variance of u(s2) when u(s,) q 0 

5 a conditional variance of Au(s2) when u(s,) is randcm 

w frequency (z&see.) 

R spatial frequemy (rad/ft) 
Y 

. 
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Fig, 2 Illustration of Au for zero initial value 
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Fig. 3 Illustration of Au for random initial value 
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