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SUMMARY

Histograms for changes in turbulence velocity over given distances are

presented, based on a standard power spectral models It 1s proposed that thesge

be used as the basis of a camparison between the gradient properties of the

model and the measured gradient properties of samples of atmospheric

turbulence. An application of the histograms to the gust response of an air-

craft with an autothrottle 1s described.
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1 INTRODUCTION

Cne of the ways of representing atmospheric turbulence is as a quasi-
stationary Geussian random process defined by its power spectrum. It is
possible an this way to construct an analytical model of turbulence, with
parameters determined by matching the model against measured samples, which
can be used to estimate the effects of turbulence upon aircraft loads,
d¢ifficulty of control, etc. Atmospheric turbulence is of course neither truly
stationary nor Gaussian and the Gaussian model needs to be used with some care.
For example, it appears that 1t has little value as a means of predicting the
frequency of encounter with the very large gusts in and around storms that may
induce aircraft loads above the proof stress level. For such purposes a more
promising approach, mentioned by Zbrozek1, is the description of atmospheric
turbulence 1n terms of a two-dimensional probability dastribution of discrete
gusts of variable gradient (shear) and length. However, particulariy at low
altitudes, turbulence often appears in a falrly continuous form which maight be

adequately described by the power spectral model for many purposes.

One of tne most important properties of turbulence about which the air-
craft engineer requires statistical information is the magnitude of velocity
gradient, or change in velocity over a prescribed di§tance. This 18 because
such gquantities as aircraft lcads, or airspeed chenges when the aircraft is
controlled by pileot or autopilot, depend not only upon the magnitudes of the
gust veleocities but also to a large extent upon their rate of change. This is
a consequence of aircraft response decreasing the effects of the low frequency
camponients of turbulence: what usually matters is the probable change in

turbulence velocity in an interval of the order of the aircraft response time.

In the present Report we describe certain gradaent properties of the

Gaussian random model of atmospheric turbulence. These gradient properties

are expressed in terms of conditional probability distraibutions which determine
the change in turbulence velocity to be expected over some prescribed dastance.
Two possible applications of these results are stresseds One is as a means of
converting existing experimental data on the power spectral model to a form
which, by expressing the probabilaty of gradients explicitly, allows the order
of magnitude of same aircraft responses to be estimated without resort to a full
camputation of the power spectrum of the response variable in question. A
sample gxample, wnich is dascussed in section 5, 1s the assessment of the

effectiveness, in controlling airspeed in turbulence, of an autothrottle system
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with known response time. The other, and more fundamental, application of a
knowledge of the gradient properties of the spectral model is as a means of
comparing the model with actual turbulence samples. It is proposed to find the
best fit of the statistical model to the measured power spectrum of a sample
of low altitude turbulence and then to check how well the estimated gradients
taken fram the statistical model compare with the measured gradients taken
directly from the sample. Good agreement would not necessarily follow even
if the first order amplitude probability distribution of the sample appeared
to be consistent with a Gaussian distribution. For instance, a1t is possible
that the structure of turbulence 1s such that velocity gradients over shart
distances are determined by shear layers which are only adequately described
1n terms of higher order probability distributions (see section 5. 2). Good
agreement between measured gradients and those predicted by the model should
consaderably support confadence in the power spectrum method as a means of

estimating the response of aircraft in turbulence.

2 THE SPECTRAL MODEL

The gradient analysis described in the present Repart is based on the
assumption that, in the relevant frequency range, atmospheric turbulence can

be modelled by a Gaussian process with power spectrum described either by

2L 1
O'—m

H - * 1. 1)

(1)

or by the asymptotic form of equation (1):

0'21

3(n) = %-—I-'--Q—z . (2)

Here, 0‘2 is the mean square turbulence velocity, L is known as the 'scale
length', and 0 is spatial frequency in rad/ft. ¢ has the dimensions of
(velocru:y)2 per rad/ft. For the purpose of discussing velocity gradients over

relatively short distances the approximstion, equation (2), 1s often adequate.

For surveys of various possible forms for the spectrum of atmospheric ‘
turbulence see, for example, Refs.1 to 7. e review the more relevant aspects

of possible models in the present section. »

Equation (1) is usually quoted as one of a pair of 'Dryden' spectra, the
other farm being
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Equation (1) 1s usually quoted for the streamwise component and equation (3)
far the transverse components. These spectra are commonly employed in aero-
nautical engineering and values of 0’2 and L are chosen to give a good it of
the model spectra to measured spectra over the frequency range of seronautical
interest. For large 1 both forms beccme asymptotically proportional to 0-2-
More fundamental studies of the structure of turbulence suggest that over this
range the slope should be given by 0-5/5 (the Kolmogoroff similaraity theary).
However, since measured spectra show a scatter in asymptotic slope which makes
1t impossible to choose between the two forms, 0_2 and 9—5/5, the farmer 1is
often employed by aircraft engineers because of the associated simplification
introduced into aircraft response calculations, despite the more scientifically

respectable background of the latter.

For meny practical purposes, including the present gradient study, it is
possible to go even further in samplification and to use equation (1) for all
three camponents of turbulence. The usual practice 1s to use the more
complicated form of equation (3) far the transverse components of atmospheric
turbulence, largely because the correlation functions f(r) and g(r), equivalent
to the spectra given by equations (1) and (3) respectively, together satisfy

a basic equation far asotropic turbulence

s(r) = o) +grEE (&)
Such refinement 1s, however, rather inconsistent with the experimental basis
for the two forms in the case of atmospheric turbulence: equation (1) can be
made to give jJust as good a fit to measured transverse spectra as equation (3).
Etkin5 has directly compared the two farms (Fige1 of Ref.3) and in fact, when
suitably scaled, they only differ by a small amount which lies in the low
frequency region where experimental results are not particularly reliable
(Fige1).

There is some justaification, then, far basing the present woark on the
gpectral form, equation (1). Any experimental data presented in terms of
equation {3) can be converted to an equivalent expression in the form of

equation (1) by use of BEtkin's” conversion formula which we have quoted in



Appendix A for convenience. Further, except in the case of the vertical
component of turbulence at low altitude (where the boundary condition at the
ground introduces a bound on the scale length) it will usually be sufficient
to employ asymptotic results of the form of equation (2), since these cover
the frequency range within which aircraft response usumlly lies. In this case
the only significant parameter is 0'2/L, which is defined by the power per unit
band at any frequency within the asymptotic region. Values of L and o for
low altitude turbulence have recently been presented by Pritcha.rd7, who covers
a range of terrain types and degrees of atmospheric stability.

In order to use the spectral model to obtain results on gradient
probabilities we need also to assume that the turbulence can be approximated
by a Gaussian random process. This is a big assumption to make, but it is
forced upon us if we wish to use the power spectrum to cbtain any information
about crossings of levels, etc. The only relevant experimental inf armation
that has been discussed in the past concerns the (first order) amplitude
probability distribution. The evidence is (to quote Pritchard7) 'that far
short data runs of the order of 4 minutes, the probability density of the
fluctuations of a gust velocity coamponent is closely Normal except for the
large amplitudes where the measured density is usually much larger than
rredicted by the Nomal curve! No data exists on higher order vrobability
distributiona. As has been pointed out in the Introduction, one of the
applications of the present Repart is to check if the gradient properties based
on a measured spectrun and Gaussian random process assumptions are significantly
different from the cbserved gradient properties.

We have been discussing turbulence spectra in terms of spatial frequency
in radians per foot. In order to relate these to the time dependent random
process experienced by an aircraft travelling with velocity V we employ
Taylor's hypothesis through the relation

Q = v (5)

where « is frequency in rad/sec. This assumption is valid for the speeds at
which conventional aircraft fly (but is not valid fer low velocities, typical
of VIOL aircraft, very near the ground).



3 GRADIENT FROFERTIES OF THE STATISTICAL MODEL

3e1 Background

As discussed in the previous section we cansider a stationary random

Gaussien process u(s) (where s 1s distance, in feet) which is campletely

defined hy its power spectrum

() = Uz%ﬁn;i . (1)

This particular random process is also a scalar Markov process, l.e. the
probability law of the 'future' development of the process (in terms of
increasing values of 8), once 1t has taken same fixed value at a given point,
depends only on that value and not upon the previous 'histary' of the process.
Mathematically, the conditional probability of u(sz) given u(s) for all

8 < Sy where s

u(s1).

4 < 8, is equal to the conditional probability of u(sz) given

As a result, the gradient properties we require can be expressed simply
in terms of the conditional probability of u(s) at s = s, when same constraint
is put on the value of u(s) at s = 8, We will consider two basic types of
constraint at s = s,. In the first case (section 3.2) we assume that
u(s1) = 0 and determine the probebility distributions of bu = u(sz) far a
sequence of values of s, > 51. That 1s, we determine probability distributions
which define how quickly u(s) 'gets away' from zero value following a zero
crossing (Fig.2). In the case of the second type of constraint (section 3.3)
we assume that 8, is chosen in a campletely arbitrary way (so that u(s1) is a
randam varisble) and determine the probability distributions of

> 8, (Fige 3).

Au = u(az) - u(s1) for a sequence of values of s,

In section 3.4 we consider analogous results in the limiting case where
the power spectrum, equation (1), is replaced by its asymptotic form,
equation (2). These asymptotic results will be valid whenever the distance 4
over which gradients are to be considered is small relative to the scale
length L of the process.
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3.2 The case of gero initial value

In this section we are concerned with the Gaussian random process -
defined by equation (1) and we are given that u(s1) = 0 (Fig.2). Under this
candition we wish to find the probability distribution of the change in
turbulence velocity Au = u(sz) at a position s, > s,. Since the mrocess u( s)
is Gaussian it follows that this conditional probabality distribution is
Gaussian (Normal) and hence is completely defined by its mean and variance.
By symmetry the mean 1s zero and so all we are required to find is the variance

0'2 where d = 8, - 8y It 1s shown in Appendix B that

d 2
2 2d
O" - —
—% = 1 ~-e L ( 6)
o3

where o> and L are factors in equation (1). The presentation of results

derived from equation (6) is discussed in section 4

3.5 The case of randam initial value

(L]

Here we are concerned (Fig.3) with the case of arbitrary initial

position s, and hence u(s 1) is a random variable {with Gaussian amplitude ‘

1
drstrabution of zero mean and varience 0'2). Then the condition probability

distribution of Au = u(sz) - u(s1) , (32 > 31) , is Gaussian with zero mean

(by symmetry) and variance 3‘2 (say)» It is shown in Appendix C that

(ol [=H

= 2(1 - e- ) . (7)

Sl

Results derived from equation (7) are discussed in section lL.

3.4  Asymptotic results far small d/L

Por distances 4 = S, ~ 8, small compared with the scale length L of
the process the gradient properties can be written in a form dependent only

on the distance 4 and the coefficient 0'2/1. which appears in the asymptotic .
spectrum {equation (2)). These results will, moreover, be valid if the

asymptotic spectrum form, equation (2), has been fitted directly to experi-

mental data and hence a scale length L need not be assumed to exist. Thas

may be useful particularly in the case of spectra of high altitude turbulence
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(or even horizontal and lateral components of turbulence at low altitude) where
the measured spectra often show no signs of departing fram the 0" form with
constant (logarithmic) slope even at the lowest frequencies measured. Here

we assume that, with a suitable choice of o°/L, equation (2) can be fitted
with adequate accuracy to the measured spectrum over the frequency range of

interest, even if the measured exponent n 1is not exactly equal to 2.

To first order in &/L equatimns (6) and (7) give the same result for the
variance of Au. The mare useful form is that referring to an arbitrary

initiel point s,, in which case equation (7) gives, to first order:

- 22 z
O'd = (—L—- d . (8)

This result 1s discussed further in the following sections.

b4 SUMMARY OF RESULTS

Le1 Zero inatial turbulence velocity

The turbulence velocity u(s) is taken to be a stationary Gaussian process
with zero mean and power spectrum given by equation (1). Then the change in

turbulence velocity Au over a distance d = s, - 8 4 in the case where the

1atial turbulence velocity u(a1) is zero (Fizg.2) , is Gaussian with zero mean
and variance given by equation {6). Histograms, based on this Gaussian
distribution, for the random varisble %1 , for a sequence of values of &/L,
are presented in Figs.4a to 4f. The corresponding non-dimensional gust
gradients <-é§y<%> are also 1llustrated in Fig.4, in conjunction with each
histogram. Equation (6) has alsc been used to construct a graph (Fige5)
1llustrating the expected shear Au/d in a given gradient distance d in the
case of zero initial turbulence velocity. The results (Fige5) ere expressed
in terms of non-dimensional velocity change Au' = Au/o and non-dimensional

gradient distance d' = 4/L.

42 Random initial tuwrbulence velocity

A different result is obtained if we consider the change in turbulence
velocity u(s) over a given distance in the case where the initial value is
rendon (Fig.3). The initial point 8,

u( 51) 18 a randcm variable with Gaussian distribution of zero mean and variance

is chosen in a random manner (so that

0'2) and results for Au = u(sz) - u(s1) are obtained by averaging over all such
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1nitial values uf s,l). Then the carresponding change in turbulence velocity

Au over a distance 4 = s, - 8, (see Fig. 3) is Gaussian with zero mean (by

symmetry) and variance gfven by equation (7). Histograms, based on this
Gaussian distribution, for the random varisble Aw/c, are presented in
Figs.6a to 6c. Comparison of equations (6) and (7), and of Figs.l and 6,
illustrates the larger average velocity change Au in a given distance d
subsequent to a random initial value. This 1s to be expected since when the
initial value is randam, cases where the initial value is of large magnitude
are included {weighted in the appropriate way) and in such cases one would

expect relatively large velocity changes 4u towards the mean value u = O.

For smell values of d4/L (Figs.4a and 6éa) the histograms for the two
cases, zero initial turbulence velocity and randam initial velocity, show
little difference. This point is clarified in the following section where the
case of small d/L is reviewed in more detail.

4e3 Asymptotic results for small 4/L

In the case of gradiemts over distances d small compared with the
scale length of the turbulence the variance of Au becanes proportional to 4
and depends only cn the parameter 0'2/L (equation (8)). This result is
illustrated in Pig.7 and is particularly useful far describing the gradient
behaviour of samples of turbulence whose sample spectrum can be approximated
by equetion (2). This proverty holds in the case of marny samples of atmos-
pheric turbulence whose spectra have been measured: the scale length L,
which is associated with a departure from linearity in the logarithmic plot of
the spectrum, 1if often non-existent, or at least ill-defined.

5 AFPPLICATIONS

5.1 Airspeed response of aireraft with eutothrottle

We consider an aircraft, with airapeed catrelled by an autothrottle
system, flying at 150 kt at an altitude of the order of 1000 ft under
moderately severe turbulence conditions. Exdisting experimental date suggests
that under these circumstances we can use the spectral model of turbulence,
equation (1), with parameters for the horizontal camponent:

8 ft/sec

il

o

. (9)

L 1200 ft

1
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Typical present day autothrottle systems have a response time of about
10 seconds. Assuming that the speed stability of the basic aircraft is low,
it follows that fluctuations in horizontal gust velocity over a time interval
of the order of 5 seconds, far example, will largely appear as airspeed
fluctuations (though they will not necessarily be apparent to the pilot
because of instrument lags). It is of interest, therefore, to estimate the
probability density far changes in horizontal gust velocity in 5 seconds.
Using Taylor's hypothesis (equation (5)) we relate the turbulence fluctuations
in time to the spatial distribution used in the turbulence model. At 150 kt
the distance travelled by the aircraft in 5 seconds in approximately
d = 1250 ft. Expressed as a ratio of turbulence length (equation (9)) we have

/L #1 . (10)

Starting from an erbitrary instant of time it is appropriate to use the histo-
grams for randam initial turbulence velocity, and the corresponding case

d/L = 1 is illustrated in Fig.6c. Taking o = 8 ft/sec {equation (9)) this
histogram (Fig.6¢) can thus be used to describe the probability distribution
of airspeed fluctuations over arbitrary intervals of 5 seconds. For example,
considering the case of large fluctuations, changes in airspeed (Au) 5 geo
greater than 16 ft/sec (95 kt) correspond to Au/c > 2, and occur with a
probability of about 215%, or an average once every 200 seconds.

All this assumes, of course, that the spectral model, based on Gaussian
process assumptions, gives an adequate description of turbulence velocity
gradients over the corresponding spatial distance. This point is taken up
further in the following section.

Ge2 Proposed comparison with gradient properties of measwuwed turbulence

samples
As pointed out in the Introduction, it is advisable to dieck how well

the probability distribution of changes in turbulence veloeity over given
distances as predicted by the model agrees with the corresponding distribution

foar measured turbulence samples. Good agreement would not necessarily follow

even if the spectrum given by eguation (1) (with suitable choice of parsmeters)
fitted the measured spectrum well, land the first order amplitude distribution

of the sample were Gaussian. This ia because the measured gradient properties
depend on the joint probability of turbulence velocity at two points, and this

need not be Gaussian under the above conditions. For instance, in the case of
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turbulence generated by & grid it has been experimentally established that the
first order amplitude daistribution of the components of turbulence wvelocity
are normal to a high degree of accuracy, but on the other hand measurements of
the Joint probability dastribution of velocities at two diff'erent points are
in general not normal. Our genersal understanding of the nature of turbulence, .
in fact, suggests that the Gaussian random process will be a poor model for

describing gradients of turbulence wvelocity owing to the tendency far discrete

shear layers to form.

There is an increasing tendency for the spectral approach to be used in
the estimation of aircraft loads, etc., and there is clearly a case for check-
ing just how well the model predicts velocirty gradients. The most straight-
forward way to go about this is to measure gradients starting from each cross-
ing of the estimated mean (this 1s to enswe, as far as possible, statistical
independence of consecutive samples). Probability densities for the change in
turbulence velocity should be estimated for a range of gradient distances. By
estimating, in addition, the values of o and L which give the best fit of
the spectral model, equation (1), the histograms presented in the present *
Report can be used to give a direct comparison with the model gradient

properties. .
6 CONCLUSIONS

Aircraft responses (loads, etc.) due to turbulence depend to a large
extent on the change in turbulence velocity in an interval of the order of the
aircraft response time. There is an increasing tendency far the power spectral
approach to be used in the estimation of aircraft response and this gpectral
approach depends on the assumption that samples of turbulence velocity can be
adequately approximated by a stationary Gaussian process. In particular, the
Joint probability distribution at two points, which determines the gradient
properties of the process, is assumed to be Gaussian. On the other hand there
i1s strong experimental evidence in the case of turbulence behind a grid that
the joint probability distributions of turbulence wvelocity at two points are
not Gaussian. There 1s a tendemcy for a small mumber of strong gradients to
form rather than a unifarm distribution of smaller gradients. In view of this
it appears that there is a strong case for coamparang the gradient properties
of measured samples of atmospheric turbulence with the gradient properties of
the spectral model. To further this end, histograms for changes in turbulence

velocity over given distances are presented in this Report, based on a standard



13

power spectral model, equation (1). It 1s intended to use these histograms
in the analysis of experimental turbulence data.

Assuming that the power spectral model proves adequate, at least for
some purposes, the histograms can be used to estimate orders of magnitude of
same aircraf't responses without resart to a full computation of the power
spectrum of the response variables. As an 1llustration, the airspeed fluctua-
tions of an aircraft with en autothrottle flying in moderately severe turbu-

lence have been considered.
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Appendix A
ETKIN'S CONVERSION PORMULA A

Fig.1 is quoted from E‘L:lcin3 and illustrates the similaraty between the
two types of Dryden spectra when suitably scaled. The two farms illustrated

are:

2
2L 1 10
o(q) = o = 5.2 (2)2 (A-1)
{1+ (1)}
which is identical with equation (3), and
8(0) = 2o° 2 1 , (a-2)

27 ® 05, (LO)°

which is a scaled version of equation (1). The relation between equations (4-2
and (1) is given by the condition:

2 = 2 - B Y
2.25 + (LQ) 1 + (L) i
if
g
L' = —-——2.25L
and

12 _,.é .._1_ 2
¢ ‘2.’2.235‘T .
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Appendix B
CONDITIONAL VARIANCE FOR ZERO INITIAL VALUE

We consider the Gaussien process u(s) defined by the power spectrum

() = oF2—T— (B-1)
1+ (LO)
and we are given that u(s1) = 0. We wish to find the variance °§ of uf 52) ’
where d = s, ~ 8, The Gausaian process with spectrum given by equation (B-1)

2 1
can be generated by passing white nolse with autocorrelation function

2
R(%) = 3;— 5(t) through a shaping filter with transfer function LSL+ -
illustrated in Fig.8 (where we have used the conventional independent variable

s a8

T in the autocarrelation function and impulse response, even though it here

represents a distance rather than time).

In order to cobtain the variance o‘é subsequent to the initial condition
u( 51) = 0 we add a switch to the filter system as illustrated in Fig. 9. At
8 = 8y, the white noise input to the shaping filter is switched on. Thus the
condition u( 51) = 0 is satisfied. It is shown in Ref.9 that with an initial

constraint of this kind the variance 0'3 of u(s) is given by the equation

d
0'3 = 2 J P(t) h(t) av (B=2)

where h{t) is the impulse response of the shaping filter.

2
In the case R(1) = -2%- 8(t), we have’

T

F(t) = b[-%z-&(fr: - 1') h{x") ar' = i‘-z-h('r) . (B-3)
. -1/L . 1
Substituting hit) = e , which corresponds to owr shaping filter o7 v
obtain the required result
o 2
—g- = 1-e T (B-1y)
o
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Appendix C
CONDITIONAL VARIANCE FOR RANDOM INITIAL VALUE

In this case we consider the Gaussian process u(s), which can be
generated with a shaping fi1lter as allustrated in Fig.8, with a randam initial
value u(s1). e wish to fand the variance 82 of the related process

d
su(s) = u(s) - u(s1), where d = s - s,. Since the initial position 8, is
chosen at randam, we have
-2 . (c-1)
oy = fu(s + @) ~ u(s)}z
This function is known as the structure function of u(s).
Expanding equation (C-1):
-2 2 2
0y = fu(s + t:'i)]2 + {u(s)}” - 2 u(s) u(s + @) = o? +0 - R(@ , (Cc-2
where
{a) = e (c-3)
Thus
-2
L (1 R AT (C-1)
o /
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Fig. | Comparison of power spectra (from Etkin3)
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0-06%
5-2%
°/c Probability - 44 7%
é - o055
L
a - = 0.058
0 02%
']o 92 %
i i %
%o Probabilibty 38 -

e ——

O %Yo

1]
o

Fig.4 as b Histograms for change in gust velocity Au
in distance d when initial gust velocity is zero




0-07%

.lo 77%
47%
157 %
/o Probability 28-7 %

b1}

c 4 . o025
L
Au
I —=
4
T 0-01 %
3 0-08 %
A 05l %
L 2
2-4%
' 75%
160 %
Y% Probabiity 23-5 Yo
0 at
-1
L -2
-3 )]l
L -4
% = 0.5
d =05
L

Fig.4 c &d Histograms for change in qust velocity Au
in distance d when initial qust velocity 1s zero



>
£

o
4
3 0-03 %
0-20°%
T 0-94 %0
- 2
1 3-3%
, 8 6%
155 Y
%o Prob. 21-5 %
o] —-—
- = |
-2
-3
-4
d‘L = 0.75

e d . O-75
L

Fig.4 e Histograms for change in gust velocity Au
in distance d when initial gust velocity is zero



042Z s| A}D0|2A 1snb |DIYIUL u2ym p 22uUDISIPp U|
ny A1dojaa snb u; 2buby> Jo} swosboisiH 3 v B4

1
= —
| p 3}
= 1
' TP
¢'|
€=
2-4
ey o
— (o]
°le $-02 'qodd % 1
0\'.‘vmm_
(-
%8 8 1
%8 €
8] 2
O\ON- 1
O\Oom.o m J
0\.8.0
o100
% )
=



20

Ad'

"
>
L

am G % Probability
1%e

\\

\

o-5 }-O
Gradient distance d'

Fig- 5 Probability boundaries for shear in given gradient
distance with zero initial gust velocity



Ho-o-r%

5-4%0

Yo Probability 44.5°%,

-

O- 05

rlo

0-01 %%
0-§2 %l

t-1 %o
5 4%
16 °/o

°/e Probability 27 49,
i

= 0-25

ria

~ = 0-25
L

Fig. 6 aa b Histograms for change in qust velocity Au
in distance d when initial qust velocity is random



wopubd siI A1100j2A isnb |DIjIUl uaym p 2dUDISIP Ul
ny 4A310012A 1snb ui 2buoy> 1oy swoiboisiH > 9-bi4

L
p

ol 4

—
°fo 2 L1 'QOJd %%

% - bt
.9 6
% €S
% S-2
%h€6 O
%, 620
%, LO-O
o/, 10-0

<

e



Au |

——
—

Au

Fig. 7 llustration of Au for asymptotic limit of large L

Impulse response
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Fig 8 Shaping filter and turbulence model
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