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SUMMARY

; Results are presented for the stability derivatives of a slender-wing and
fin configuration as obtained from a series of tests with models flying at near-
zero 1ift. These results are compared with theoretical estimates obtained from
1lifting surface theory at subsocnic speeds and slender-wing and linearised super-
sonic theory at supersonic speeds. The agreement between the experimental and
theoretical results is satisfactory, the largest discrepancies occurring at
transonic speeds and at the higher superscnic Mach numbers.
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* Replaces R.A.E. Technical Report No. 66170 - A.R.C. 28574
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1 INTRODUCTION

Over the past few years a great deal of experimental and theoretical work
has been done on the aerodynamics of slender wings’, mainly directed towards the
design of supersonic transport eircraft. While some of this information has been
used in theoretical studies of the dynamic characteristic52’3 of such aircraft,
and experimental work4 has been done at low speeds, little had, at the time of
sterting this investigation, been attemped for supersonic flight conditions.

The slender-wing configuration raises many novel stability problems, For

exarple, several of the lateral stabllity derivatives are strongly dependent on
incidence so that pronounced aerodynamic coupling may arise between the longitudi-
nal and lateral motions. Furthermore, the very smell moment of inertia about the
rolling axis compared with the moments of inertis about the other axes may result
in very different lateral oscillatory characteristics from those of conventional
subsonic aircraft.

For these reasons, quite gpart from the general ones involved in the design
of most aircraft, it is importent that the stability derivatives be measured at
transonic and supersonic speeds so that the characteristics of any particular
slender-wing design can be accurately calculated. The measured derivatives may
also be used to check the validity of present theoretical methods5 of estimation,
extending the comparisons already made for subsonic conditionss, and enabling
estimates to be made for the derivatives of other similar slender-wing designs,
Standard wind-tunnel techniques can, of course, yield data on all the lonzitudi-
nal and lateral static stability derivatives, and their variation with incidence,
The measurement of the rotary and acceleration derivatives is more difficult,
although Thompson and Fa117 have evolved a wind-tunnel technique using oscillat-
ing models throughout the speed range. However, at the time this investigation
started, the only feasible way of obtaining the required information was by the
free-flight model technique, and so a series of tests with rocket-boosted models
was made and the results are reported here. The derivatives are obtained under
osclllatory conditions, and results are given for derivatives due to incidence
and sideslip (corresponding to the static derivatives measured under steady
conditions in the tunnel tests), and for most of the more important derivatives
due to angular velocities. An additional advantage of this method is that the
models are completely unrestrained, so that any unexpected flight characteristic
(e.g. an sutorotational state) can be observed and investigated.



In order to facilitate the desired comparison between experimental and
theoretical results a planform was chosen which is typical of a range of
configuretions studied for the supersonic transport but at the seme time is
simpie encugh to be amenable to theoretical treatment.

The eventual aim of the programme is to measure and compare the derivatives
over e range of lifting conditicns so that the lift-dependent effects can
be studied. The present paper is concerned with the necessary first stage of
obtaining the derivatives at zero lift, In flying the models, however, it 1s
not possible to cbtain precisely zero-1ift conditions at all times and so some
lifting effects are included. For the theoretical estimation of the derivatives,
the effects of leading edge vortices are neglected at supersconic speeds, so that
"classical" linearised theories may be used for the wing and fin contributions,
Interference effects between the wing and fin are estimated, usually on the
basis of slender body theory, and the increments due to wing thickness are
included.,

The experimental technique depended on exciting either the short-period
pitching oscillation or the lateral Dutch-roll oscillation by disturbing the
model during its flight by firing small pulse-rockets, Before the model design
was finally settled, some preliminary theoretical studies were made on a Short's
analogue computer. These gave a valuable Insight into the relative magnitudes
and types of response that could be induced by firing sets of pulse rockets in
various ways to produce different combinations of pitching moment, rolling
moment, yawing moment, normal force and side force. The effects of some of the
gerodynamic cross-coupling derivatives were alsoc explored in this way.

In this progremme the experimental technique was being developed and new
kinds of instruments were being tried and developed, and so a relatively large
nurber of models had to be flown to collect data of the reguired quantity and
quality, The experimental results have, in fact, been compiled from the flight
records of eight models.

Three specialised test-vehicles, for measuring the roll damping derivative
under steady-state eonditionss, were alsc flown. From these tests results are
presented for wings of different stiffness and for the incremental effect of a
dorsal fin.



2 EXPERIMENTAL TECHITTQUE

2.7 Design of models

The model design is illustrated in Figs.l to 4, and the main data are
given in Table 1. The wing planform is delta-type, with parabolic tips, (Fig.1)},
and with thickness distribution such that the spanwise section is diamond, and
the chordwise section,on the centreline, parabolic. The fin is of similar plan-
form, but with less leading edge sweep, and has flat chordwise sections, although
a few of the early models had a cropped delta fin of the same area and

sweepback.

Because of the very simple configuration chosen for this investigation a
cheap and rapid method of model construction could be adopted. In the event,
the relative cheapness of the models allowed & large number of them to be made
and flown for a number of investigations additicnal to these experiments on
dynamic stability,

The method of construction was common to all the models although their
internal equipment differed considerably. The wing was constructed as a sandwich
having at-inch-thick shuminium alloy centre-plate forming the wing planform,
and hence the leading and trailing edges, with hollow glass fibre mouldings
glued above and below to provide the profile shape (Fig.2(a) and (c)). These were
moulded to the required dimensions and finish on the outer surface so that no
hand working wes required over the larger part of the wing. Inside the mouldings
s number of spanwise and chordwise gtiffening ribs were incorporated which were
also bonded to the centre-plate, The early models in the series had only four
chordwise ribs and experienced a violen}t vibration in several different modes at
Mach numbers above 1.7, For the free-flight stability investigation this
vibration had to be restrained or avoided because it ruined the telemetry trans-
mission and compromised the aerodynamic conditions of the test. It was found
that increasing the number of chordwise ribs progressively raised the Mach number
at which the vibration started end eventually an arrangement of 14 ribs, shown in
Fig.2(c) was chosen because it eliminated the most troublescme vibration modes at
Mach numbers below 2.1.



The fin was a hollow structure fabricated from aluminium alloy sheet and vas
bolted along its base to the wing centre-plate. The fin section was flat, with a
blunt trailing edge and the front 8¢ of the chord was rounded off to a circular-
arc section to give a sharp leading edge and a tangential junction with the flat
portion of secticn.

Detachable hatches were provided in the top surface of the wing to give
access to the instrumentation and pulse-rocket installations (Fig.2(b)). The
recess in the underside of the'model, for the boost-motor attachment hook, was
covered by & retractable door to preserve the shape of the wing profile but the
ports for the pulse~rocket nozzles had to be left uncovered. Two Pyrotechnic
flares were faired into the underside of the wing at the trailing-edge centre-
line. These were regquired to assist the operators of the visual-tracking equip-

ment at the range.

Each model was bellasted to bring the centre of gravity as close as possible
to the desired mid-point of the centre-line chord. This was achleved within the
limits ~0.01 to +0.04 e, for all the models in the series. No gttempt was made
to give all the models the same inertis characteristics but the moments of
iﬁertia of each model were measured and incorporated in the analysis of the
results.

Tﬁe method adopted for disturbing the models in flight was to fire the
pulse rockets by a clockwork sequence switch at pre-determined times. The array
of pulse rockets used on the later models in the series is shown in Fig.3(a).
Eerly models had either the set of eight pulse rockets at the mid-chord for
lateral stability tests or the set of twelve at the rear for longitudinal
stabllity tests. On the basis of some theoretical studies made on an analogue
computer the pulse rockets were chosen to give a thrust of 180 1b for 0.07 seconds
duration end were arranged to fire in pairs. The pulse rockets at the mid-chord
were fired in opposed pairs so that a pure rolling couple was produced with no
resultant normel force, assuming perfect matching of the pair. The pulse rockets
at the rear were fired either as a symmetrical pair about the centre line to
produce a combined pitching moment and normal force with no lateral component or
as an asymmetric pair on one side of the fin. The latter arrangement produced
a pitching moment and normal force but the dominent effect was to provide a
large yawing moment plus side force arising from the shock-induced loading on
one side of the fin.

1

L
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2.2 Instrumentation

All the models were equipped with the R.A.E. 465 Mc/s sub-miniature
telemetry system but there were considerable differences between the instrumenta-
tion details adopted for the various models, For example scme carried two multi-
channel. sets to provide a large capacity for data transmission, some carried one
multi-channel set and a Doppler transponder system for improved trajectory
determination and some carried one telemetry set only. In all cases the aerials
were either mounted flush with the wing surface or behind the blunt trailing
edge of the fin so that the shape of the models was wunaffected from the aero-
dynamic point of view.

There was alsc considerable variation in the choice and arrangement of the
transducers for the various models., This was largely dictated by the specific
purpose for which & given model was to be flown but it also arose in the search
for an adequate method of measuring the rotary components of motion,which is an
essential requirement of the analysis procedure. In the course of the tests
three methods were used,

(a} rate gyroscopes
(b) displaced and differenced linear accelerometers

(e¢) angular sccelercmeters,

On several of the models two of these methods were used simultaneously.
A typical arrangement of transducers as used on the later and most successful
models is shown in Fig.3{b). Most of the measurements were made by differencing
pairs of linear accelerometers., The differencing was not done electrically
within the model but subsequently during the analysis in order to cbtain the
highest degree of reliability end accuracy. This method was entirely satis-
factory for determining the angular accelerations in pitch and yaw but was not
so good for the roll acceleration because the accelerometers could not be placed
sufficiently far apart (Fig.3(b)). In principle, rate gyroscopes are a satis-
factory way of measuring the rotary motion but they suffered the following
disadvantages in practice:-

(a) their power supplies required a relatively hé;vy rotary convertor
having an inevitable gyroscopic couple,

(b) the roll gyro was sensitive to any steady rate of roll performed by
the model as well as to the oscillatory component to be measured, (this was, at
times, a large effect),
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{c) the yaw gyro was sensitive to the rate of curvature of the flight
path vhenever the model was flying with its wings out of the horizontal, this
usually being a small effect.

A more preferable instrument, which avoids these difficulties, is the
angular accelerometer. The only suitable instrument of this kind readily avail-
able was a spring-mass transducer with a variable capacity output that had been
developed, but not used, by Space Department, R.A.E. Inevitably a number of
practical difficulties arose in using this untried instrument but it eventuwally
proved to be the best method of obtaining the required neasurements., It was
used for the rolling axis only since the displaced linear accelerometers were

satisfactory for the other ases.

2.5 TFlight tests

The models were launched pick-a-back fashion from solid-fuel rocket motors
(Fig.4(a)). Two sizes of rocket motor were used depending on whether the maxi-
mum Mach number was to be gbout M =2 or M = 1.3, The larger motor was poten-
tially able to accelerate the medels to M = 2.5 but velocities above M = 2 were
aveided for the later models because of the flutier problem already mentioned.

The vehicles were launched on a fairly low trajectory in order to obtain
the maximum Reynolds number and the highest possible quality of experimental
data. Typically the maximum altitude was about 5000 ft and the range about
50000 ft, During the coasting portion of the flight, wvhile the stability tests
were being made, the models were, of course, free to roll and trim according
to any imperfections in their shape. They generally performed a steady roll,
to port or starboard, of about 50° per second which is low enough to have a
negligible effect on the dymamics of the superimposed oscillatory motions.

The trim conditions varied somewhat from model to model, At Mach numbers above
1.4 they generally flew at very nearly zero lift, but as the Mach numbers fell
to near sonic the trim usually changed rather guickly to a small negative 1ift

but sometimes to a small positive 1ift.

2.4 The roll-damping test vehicles

Supplementary to the main experimental investigation three special tests
were made to measure the roll-damping derivative ﬂp. The models were made of
solid metal to one gquarter scale ofthe external linear dimensions of the main
models, and were attached to the nose of a test vehicle equipped with a roll
balance. The vwhole vehicle was made to roll at a high rate so that the roll-
damping component on the model could be measured directly by the roll balance.
A photograph of one of the vehicles is shown in Fig.h4(b).

-
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Three kinds of model were used,

(1} the wing elone made in light alloy,
(2) +the wing alone made in steel,
(3) the wing plus fins above and below (for symmetry) made in light alloy.

A comparison of the results from models (1) and (2) was intended to show
the influence of amerocelastic distortion, and the difference between the results
of models (1) and (3) yields the contribution of the fin to the total damping of

the complete configuratlion.

On all the models the wings were of the same section and planform as in
the stability models but a small modification had to be made at the rear to

accommodate the sting mounting of the roll-balance.

3 ANATYSIS OF THE EXPERIMENTAL DATA

%] Bosic data

Typical values of Reynclds number, end trimmed 1ift coefficient end
epproximate angle of incidence throughout the Mach number range are shown in
Figs.5 and 6, together with the extent of variation between all the models.

An almost complete telemetry record from one of the models is reproduced
in Fig.7. This particular form of presentation is used for visual assessment
only and is not of sufficient eccuracy for numerical analysis, for which the
data was obtained either from the film record, or on later models in digital
form recorded on magnetic tapé. It does, however, conveniently show many
interesting features of the model behaviour. When the model separates from
its boost motor, at 3.8 seconds, it experiences disturbances in pitch and yaw
which may be analysed to yield useful stability data. During the coasting part
of the flight considerable differences can be seen in the types of response

from firing different combinations of pulse rockets,

(a) Vhen & rolling couple pair near the c.g. are fired there is very

little response in pitch, e.g. at 7.4 seconds.

() Vhen a symmetrical pair at the rear are fired there is very little

response in yaw or roll, e.g. at 15 and 18.2 seconds.

(¢) Vhen an asymmetric pair adjacent to the fin are fired there is a
very large response in yaw end roll with a moderate response in pitch, e.g. at
5.8, 8.7, 10.2 and 11.8 seconds.

On several of the lateral oscillations the roll subsidence mode can be

observed superimposed on the roll record (e.g. at 10.2 and 11.8 seconds) end at
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15,4 seconds the roll subsidence mode is dominant with the oscillatory mode
almost completely asbsent. The significance of this is discussed later on. On
this particular model the record from the angular accelerometer shows a certain
amount of "fuzziness" during some of the oscillations., This was probably caused
by vibration, in the rolling plane, of the instrument mounting bracket.
Subsequent laboratory tests on an identical mounting showed that the degree of
fuzziness could be accounted for by a vibration amplitude of only 0.00007 inches.
TLater models with a redesigned bracket showed no sign of this effect.

3.2 Longitudinal stability

The analysis of the longitudinal stability information was limited to
evaluating the derivatives zs B and the damping pair m.q + me . Standard
methods of data reduction were used? baced on an analysis of the frequency,

damping and "focal point'" of the short-period oscillation,

The longitudinal response is of course, affected when there is also a
significant response in the lateral modes, e.g. the oscillation starting at
10.2 and 11.8 seconds in Fig.7. Distortion of the damped harmonic wave form
of the records of normal acceleration can be sesn with the naked eye and the

results from the "coupled" oscillations have not been included in this report.

The frequency of the longitudinal oscillation is shown in Fig.8(a) for
the various models, and the reduced frequency of one model, 17, is seen to be
between 0.112 and 0.115, Fig.8(b). The total damping, Fig.9(a), exhibits
greater scatter than the frequency, but the variation with Mach number is
clearly defined. Some results for M > 2 ere also given, as some of the models
were free of the flutter phenomenon &t the speed of separation from the boost
rocket,

3.3 Lateral stebility

The motion in the lateral Dutch-roll mede is strongly affected by any
motion in the longitudinal mode because of the large incidence-dependent
derivatives on a configuration of this kind. 1In the present tests, however,
it was possible to avoid such effects because the longitudinal motion damped
out so much more quickly than the lateral motion, e.g. at 8.7, 10.2 and 11.8
seconds in Fig.7. The analysis of the lateral motion was therefore restricted
to those parts of the flight record where the longitudinal motion had decayed
to & negligibly small amplitude.

As already mentioned, the response to a lateral disturbance sometimes

conteined & significant contribution from the roll subsidence mode, so that
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responses of the form Ae'kt * Bevaet sin Cvet + €) had to be analysed. In order
to separate the modes, successively corrected values of Ale—k]t were subtracted
from the response until the pesk values of {he resultant oscillation lay on &

straight line when plotted logarithmically. The final value of ki(=k) obtained

was used to determine an approximate value of the damping in roll derivative, LP.

The frequency of the Dutch-roll oscillation is shown in Figs.8(c) and (4),
and the results for the various models are seen to be consistent., The total
danping, Fig.9(b), exhibits a similar percentage scatter to that of the
longitudinal oscillation, although the damping is smaller, as is to be expected
for a slender wing design. The roll-subsidence damping, as obtained for one of
the models, is shown in Fig,i0,

The main method adopted for deriving the steability derivatives from the
oscillatory mode was the time-vector solution developed by Doetschlo. A detsiled
description of how this technique is applied to free-flight meodel tests is given
in Ref.!!. Briefly, the emplitude and phase relationships, plotted in Figs.!1(a)}
and 11(b), btetween the three degrees of freedom v, p, r, of the Duteh-roll
oscillation are measured and used in vector solution for the rolling-moment and
yawing-mement equations. Examples of the vector disgrams are shown in Figs.12(a)
to (e). Measured values of the inertia characteristics are used and, in order
to solve the two equations, one of the derivatives in each must be assumed. In
the present case, estimated values of‘ﬁr and np were used (Figs.iS and 14)
because they are the least important ones, and the vector solution for the yawing
moment equation has been cbtained by neglecting the derivative n_. However, the
vector diagram (Fig.12(c)) of the kinematic equation

~ Y 4
a, = g B+ )

shows that B = - r, and so

rb Bbhy rb
<—nr v "y ﬁ) B (‘nr'* ny) 5y ’

Thus the vector labelled (-—nr rb/2V) in Fig.12(a) may be taken to provide an
epproximate solution for the derivative pair (nr - nv), and so the results have

been presented this way.

In addition to the vector method the folloewing analytic solutions were

used to reduce some of the experimental data as & semi-independent check,
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Vhile most of the perturbation parameters behave in an orderlY menner
over the Mach number range the behaviocur of the roll/yaw amplitude ratio and
phase angle (Fig.11) merits further comment. Between M = 1.25 and 1.4 there
is a sudden phase-change of about 160 degrees accompanied by a translation
through zero® of the amplitude ratio at M = 1.34 (i.e. at 14 seconds on the
telemetry record Fig.7). This represents a de-coupling of the roll and yaw
motions and provably explains why the pulse rocket at 13.4 seconds (on the
model from which the record of Fig.7 was obtained) produced a roll subsidence
mode only. In terms of the aerodynamic derivatives this behaviour is accounted
for by & change of sign of the rolling wmoment due to sideslip derivative ﬁvJ due '
to interference between the fin and wing. The effect of this change in Bv on the
vector diagrams is illustrated in Fig.12. It is worth noting that the experi- .
mental points covering this particular feature of the results came from four
models. Two ylelded results from M = 1.8 down to 1.5, one yielded the points
at M = 1.15 and 1.06 and the Tourth covered the range from M = 1.8 down to 1.2,
Although these four models did not fly at precisely the same trim conditions

they were sufficiently similar for a valid comparison to be made,

Most of the values of Lv plotted in Fig.21(a), including the sign change,
were checked by equation (3), the results agreeing within C,0005 zv in each

case.

The experimental walues of LP derived from both the oscillatory and roll-
subgidence modes are plotted together in Fig.ae(a). It is perhaps surprising,
but encouraging, to observe that both kinds of analysis yield very similar
results. The points showing the sudden reduction in zp below M = 1.25 came

.

* In the bottom diagrem of Fig.11(a), the amplitude ratio Rﬁi is plotted above
or below the zero maghitude axis according as Qb} is less than or greater than
180°, in order to demonstrate the zero amplitude more clearly.
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from two different models and so there is scme confirmation that 1t is & genuine
effect.

3.4  Steady-state roll damping

The results from the three roll-damping test vehicles (Fig.4(b)) are
shown in Fig.22 (b) and (c). The particular merit of this technique is that a
continuous measurement of the roll-damping moment is obtained over the whole
Mach musber range, instead of at rather widely spaced discrete points as in the
cace of the stability models. Thus any sudden change of rolling moment over a
emall increment in Mach number, as might occur transonically, can be detected.
It is clear that this has in Tact happened, although in different ways, on all
three models between M = 1,05 and 1.15.

The roll-damping moment obtained by this technique is, of course, measured
under very different conditions from those on the stability models. Heve a
steady-state rolling motion is maintained, with a tip-helix angle of between
0.5 ond 2.0 degrees whereas the rolling motion of the stability models is
dynamic (vhether oscillating, decaying or both) with a maximum tip-helix angle
of about 0,02 degrees.

Nevertheless the general level of results, above M = 1.4, 15 very similar
from both kinds of model, Below M = 1.25 the steady-state results do not show
the sudden falling away that is an unexpected feature of the dynamic results.

Comparing the results from the two roll-damping models of different stiff-
ness (models 1 and 2, Fig.23(b)) it is evident that there can be very little
loss of roll-damping from aercelastic distortion, bearing in mind that the steel
model has three times the stiffness of the aluminium-alloy model. Vhat difference
there is between the twe results can be accounted for by experimental uncertain-
ties, In fact, between M = 1.2 and 1.9, the more flexible model shows the higher
darping. This is impossible for such o planform where aercelastic distortion at
the tips ceauses the load to be shed and not increased. Thefefore a mean line
between the results from models 1 and 2 has been taken as representing the roll-

darping derivative for the case of the wing alone.

Comparing the results from the models with and without the vertical fins,
(Fig.22) shows that the fin contribution to zp is very small, as one might expect.
Here one rmst remember that model 3 had vertical fins above and below the wing
instead of on the upper surface only as on the stebility models.
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An interesting peculiarity is that all three models show quite different
characteristics between M = 1,05 and 1,15, The models without fins show a 10%
increase in damping, the steel one having a much more violent change, whereas
the model with fins shows a decrease in damping of sbout 7%.

3.5 Accuracy

A general analysis of the accuracy with which the main flight parsmeters
such as velocity, Mach number, dynamic pressure etc. can be established in free-
flight model tests has been made by Pickenle. Typical values are, velocity and
Mach number 0.5%, dynamic pressure 1%,

The accuracy with which the aerodynamic derivatives can be determined from
the stability models varies considerably from model to model, depending on the
quality of the instrumentation and the amplitudes of the oscillations. Further-
more the accuracy with which different derivatives can be determined varies
according to whether they have a dominant or minor influence on the motion.

Thus mW and, n_ can generally be extracted to within about #5% because they are
the main stiffness terms in the longitudinal and lateral mcdes and so have the
largest effect on the freguencies of the oseillations. On the other hand the
yew-damping derivative n, has & relatively minor part to pley and cen be
determined only within about #20%, An immediate sppreciation of the relative
accuracies with which the various lateral stability derivatives are extracted
can be obtained from the sample vector diagrams (Fig.i2). The smplitude ratios
between the different degrees of freedom, which determine the length of the
vectors, can generally be obteined to about 5%, The roll/yaw phase angle can
be determined to sbout 13 degrees and the yaw/sideslip phase angle within sbout
% degree, When these conditions hold the derivatives LP and.i’,v can be evaluated
within ebout +10%,

The accuracy with which LP can be obtained for a specific model from the
roll-damping test vehicles depends almost entirely on the magnitude of the
rolling moment experienced by the model, At the highest Mach numbers, where
the moment is large, the derivative can be determined with an uncertainty of
about 15%, but at transonic and subsonic speeds the uncertainty increases to
gbout *7%. An additional error may be present in the results from the indivi-
dual models arising from imperfections in their manufacture such as twlst at
the wing tips. Careful measurements on each model indicate that this should
not exceed 5% of the wing-tip helix angle.
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k4 THECRETTCAL METHODS OF ESTIMATIOQN OF DERIVATIVES

4,1 General background

For the simple configuration chosen (showm in Fig.l), flying at near-zero
1ift, the theoretical estimation of the derivatives may be based on the
linearized theories of potential flow for the wing and Tin considered separately,
with corrections for the interference effects between the two surfaces being
applied to the resulis., The effects of leading-edge vortex sheets can be
ignored. In practice, application of the theories necessitates various approxi-
mations being made, which must be proved satisfactory or otherwise for particular
types of planform by comparing the results with experimental values. Such-
comparisons have not previously been made for slender wing designs at transonic

end supersonic speeds, for the longitudinal and lateral derivatives.

!
!
!
i

The wing planform is delined by the relations

s(x)
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s{x) = 0.3 x- 0,45 - 5) for 5 <xs1
with ¢ =1,
O
However, some of the existing computer programmes for various lifting surface
theories require that the planform shape be expressed as a polynomial,

n
s(x) = 2{} e X, 0sxs51 (5)
1

and it is found that the "mild gothic" planform given by

s(x) = 0.25 (1.25 x - 6.25 x) )

is very close to the actual planform. The maximum difference in local semispan

is 3.3% (at 0.447 co) and so equation (6) was used when necessary. In addition,
an "eguivalent" cropped delts planform was chosen, for which charts or algebraic
expressions for many of the derivatives have been evaluated., The cropped delta

has the same slenderness ratio, s/cO = 0.25, and same parameter A tan A , giving
A = 0,859 (compared with 0.865),A0==73.35° (73.30°), planform parameter P:Sfbco
0.582 (0.578) and A = 0,164, The conditions at the wing tips must be different
for the two plenforms, as the discontinuity in leading-edge sweep of the cropped

1§

delta implies a discontinuous behaviour of the pressure disvribution on the wing
along the rearvard-going Mach line through the corner, a feature which is not
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found with the curved leading edge. However, the resultant total forces and
moments may be similar, and, if so, the derivatives of other slender wings

could be readily estimated by considering an sppropriate cropped delta.

The fin planform is similar to that of the wing but with less leading-
edge sweep, and so corresponding eauivalent planforms could be chosen.

The thickness distribution of the wing, being diamond spanwise and para-
bolic chordiiise, is amenable to the analysis required for evaluation of thickness
corrections. The corresponding correction to the fin contribution is zero,

since the section is a flat plate.

4.2 Derivatives due to incidence

(i) Planform contribution

An approximation to supersonic linearized theory has been applied to wing
planforms with curved leading edges by Smith in some unpublished workTa, the
load distribution being obtained by the cancellation technigue in a similar way
to that used by Cohe:*:a“L for wings with straight edges. The Mercury programme
has been written for planforms given by eguation (5), and so the mild gothic,
equation (6), has been considered,

An extension to Multhoppls lifting surface 'bheory']5

to supersonic flow
has &8lso been programmed}G, mainly with a view to calculating the generalised
forces for structural problems. Frequency effects may be evaluated, although
for the frequency of the longitudinal short-period oscillation of the free-
flight models it should be admissible to assume zero frequency (i.e. steady)

conditions, It is again necessary to use equation (6) for the planform.

For the cropped delta planform, charts of lift-curve slope and aerodynamic
centre are given in Ref.17, and algebraic expressions have been derived in
Refs.18 and 19. There is a restriction on Mach number range, as the theory
does not account for interference between the two Mach cones from the wing
tips, that is MZ 1.2 for A = 0.164 and so/co = 0.25. (The restriction
that the leading edge should be subsonic is not significant for the present
study, being M< 3.5 for sweepback of 73.35°.)}

"Not-so-slender” theory may also be used for moderate supersonic speeds,
and Squireao has obtained the lift-curve slope and aerodynamic centre for the
mild gothic planform, defined by equation (6) above, in terms of the parameter
BsO/co. The theory agrees with linearised supersonic theory to order (BSO/CO)E,
so that with sO/cO = 0.25, and assuming that reasonable accuracy is obtained
with (Bso/co)2 < 0.1, then the maxirmm Mach number for which the theory applies

is sbout 1.6.
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At M = 1, sonic theorye1 gives Z, = - aAf/L for the actual planform, and
for the equivalent cropped delta, but the positions of the aerodynamic centre
on the root chord are different, being dependent on planform shape. At subsonic
speeds with the programme322 available for Multhopp's 1ifting surface theory, it
is possible to consider the actual planform shape, and to include frequency
effects. The cropped delta planform is included in the charts of Ref.23,
(Wings §.01.05.0%3-06 and §.,08.01.02), although interpolations have to be made
in the région where some of the theoretical curves are themselves fairings
between results from Weissinger's compressible lifting line theory24 and sonic
theory. Goodman25 also gives charts, based on Lawrence's low aspect ratioc
theory26, for cropped deltas in incompressible flow, but the method has not

been apnlied to wings with curved leading edges.
{ii) Thickness contributions

Slender body theory, for exarple Ref.27, indicates a change in pitching
moment due to incidence, but no change in overall 1ift, for thick wings with
sharp trailing edges. The conformal transformation required for wings with
diamond (spenwise) cross-section has been obtained by Maskell in some unpub-
lished work, and is given in Ref.6. The expression for the rearward shift in

aerodynamic centre, as a percentage of root chord,is given as

b =j5(‘) 1"“('5(?7) (1-—- +§tan9:Idx )

C

I‘O v 5 . A
5-(55:' ﬂ‘/ECOSQF('}-;)F(-E_‘_;{_) (8)

and 26(x) is the apex angle of the diamond cross~gection at the leading edge.

where

Two-dimensional supersonic theory, extended by strip theory to finite
wings, predicts a forward shift of aerodynamic centre due to thickness, (see,
for example, the results obtained by Lehrianee). For lov aspect ratio wings,
the results are only valid for large M, but do indicate that there must be an
apprecisble Mach number effect which cannot be estimated adequately by existing

29

methods. The non-linear thickness correction used by Cooke™ ™ and others, has

not been extended to wings at incidence, as far as is known.
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The contributions to Z, from the profile drag has been assumed to be
negligible,

(ii1) 1Incidence contribution

Although the models were designed to fly at zero 1ift, the trim chenge at
sonic speeds gave rise to small trimmed incidences during the subgonic phase of
flight, as shown in Pig.6, so that non~linear effects must be considered. The
expressicn for 1ift suggested in Ref.17, C, = a(taf2 + ¥ al ), based on slender
body theory, may be used to give the increment in Z s and the shift of the aero-
dynamic centre has been calculated for the mild gothic by Smith in an unpublished

extension of the work of Ref.30,
(iv) PFin contributions

The incremental 1ift and pitching moment induced on the wing due to the
31

Tin thickress distribution”’ is independent of incidence, and so contribute

nothing to the derivatives.

4.3 Damping-in-pitch derivative, my = m, + me

(1) Planform contribution

The methods of estimation ocutlined in Ref.32 have been used as far as

6
possible. The lifting surface theories, programmed3 »22

for oscillating wings,
are those used for estimating the derivatives due to incidence, snd so the same
planforms may be considered. Tor the cropped delta planform, algebraic expres-
glons ere given for the dexivatives m.q amd m% at supersonic speeds in Refs.19
and 33 respectively, which although lengthy mey be evaluated fairly readily.
For subsonic flows, Ref.34 tabulates functions for cropped deltas of effective
aspect ratio AV1] - =3, 2 and 1.2, with A = 1/7, and these have been extra-
polated to zero at A = O to give the values required for the equivalent cropped
delts. Lawrence’s2 theory has alsoc been applied to cropped deltas in incom-

pressible flow, the functions required being given in Refs.25 and 35.

A% sonic speeds, although slender body theory6gives a value for mq.+ me
36,37

dependence, since a term involving log v, arises, A general formula for low

independent of frequency, lifting surface theories show a strong

aspect ratio wings is given in Ref.37, and the integrals are more readily
evaluated for the sctusl planform than for the mild gothie.

Not-so-slender theory could be spplied directly to obtain ms but the

load distribution due to acceleration, ig has not been considered.
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(ii) Thickness contribution

Although slender body theory gives m.q and me dependent on the thickness
distribution, the oscillatory damping-in-pitch, my = mq + ey is dependent
only on the shape at the trailing edge, since the terms due to the thickness
distribution are equal but opposite in sign for mq and me . Resulbs for two-
dimensional supersonic aerofoils are given in Refs. 28 and 38, but the applica-
tion of strip theory to obtain finite wing results is only valid at high Mach

numbers.
(iii) Incidence contribution

Garner and Lehrian39 have developed a method for estimating the effects
of leading edge separation on the pitching derivatives of a gothic wing, but
for the small incidences under consideration the increment is negligible and

hag not been evaluated.
(iv) Fin contribution
Any interference between the fin and wing in pitch has been neglected.

4.4 Derivatives due to sideslip

4L,4.,1 Sideforce due to sideslip, Yy

(1) Ving contribution

Although the thickness distribution of the wing will give rise to g
sideforce in sideslip, the contribution has been neglected in comparison with
that from the fin. Slender body theory27 giveszero sideforce, being dependent

only on the spanwise cross-section shape at the tralling edge.
(ii) Fin contribution

In order to evaluate the lift-curve slope of the fin, the wing is
considered to be a complete reflection plate. The planform of the fin with its
reflection is similar to that of the wing, but of larger aspect ratlo, and so
the same methods of estimation could be used as for the incldence derivatives.
At supersonic and subscnic speeds the lift-curve slope of the equivalent cropped
delta should give sufficient accuracy (A = 1.37, Q)= 65.5° A = 1/7), evaluated
from Refs.17 and 25 respectively. For low supersonic speeds, 1,08 M& 1.2,
not-so-slender theoryC may be used, and at M= 1, dC;/do = #A/2, The sideforce
on the fin due to sideslip is then given by
y =-%E§E% (9)

YR

where the suffix R denotes the contribution from the fin with its reflection.



(iii) Ving-fin interference

A correction factor 4o Yy has been deriveduo’IH from the sideforece of the
R

wing-plus-fin, of the wing alone and of the fin-plus-reflection alone, in the
form

— -

y -V
ur VI
yv = ------y—-—— yv (.! 0)
F VR R
. —

the terms inside the sguare brackets being evaluated by slender body theory.
Since the leading edge of the fin remains subsonic for M< 2.37, the region of
interference is independent of M in the present speed range, and so the inter-

ference factor remains constant,
(iv) Incidence contributicn

For the small angles of incidence under consideration, the interforence
effects considered in Refs.40 and 42 may be neglected.

h.4.2 Yowing moment due to sideslip, n

(1) Ving contribution

The thickness distribution gives rise to a destabilising {negative) yawing
moment, and so, although small, it is necessary to estimate its effect. The

integral expression for n o, corresponding to equation (7),is given in Ref.6.
W

(ii) PFin contribution
The position of the aerodynamic centre on the root chord of the fin may be
obtained, for the fin-plus-reflection, by the same methods as for the lift-curve

slope. The fin section is flat plate, so that no thickness corrections are
needed, thus the yawing moment is given by

*F
an = - (;é) va (11)

where XF is the distance of the aerodynamic centre behind the centre of gravity
of the model.
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(1ii) Ving-fin interference

The correction factor to be applied to n, is obtained from the analogous

relstion to equation (10), giving n_ and so R
F
n = n 4+ 1 .
v i Vg

(1v}  Incidence contribution
. . 4o, ki
The effect of incidence on nv has been neglected,

4. 4.3 Rolling moment due to sideslip,zv

————

(1) Ving contribution

The planform and thickness distribution do not contribute directly to the
rolling moment, and the wing contribution is considered under (iii) and (iv)
below.

(i1} Fin contribution

The height above the wing of the centre of pressure on the fin may be
estimated from slender body theory, giving 4sF/3n, and is independent of Mach
number. The rolling moment is then given by

4(59

& = gl Y (12)
VR I A8 VR

and so is negative.

(1ii) Uing-fin interference

There is a large positive rolling moment arising from the pressure induced
by the fin on the wing, opposing the fin contribution. At supersonic speeds,
the region of interference is confined to the Mach cone from the fin apex, and
the pressure distribution on the wing, due to a delta fin, has been evaluated
in Ref.45 for Mach numbers such that the Mach lines intersect the tralling edge
of the wing, that is M> 1,75 for the present configuration., In order to give
some idea of the megnitude of the interference effect at lower Mach numbers, the
induced pressures were integrated over the wing surface within the Mach cone,
neglecting the effect of the wing tip. This should overestimate the magnitude
of the induced rolling moment, since the simplification implies that a finite
pressure difference exists at the wing leading edge; epplication of cancellation
techniques to correct the difference is not straightforvard, as the configura-
tion is non-planar,
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At sonic speeds, slender body theory gives the wing-plus-fin rolling moment
to be dependent only on the aspect ratio of the wing, and the fin height at the
trailing edge, and a simple algebraic expression is given in Ref.4k, (Tt should
be noted that the opposite sign to the usual convention for rolling moment has
been used. The interference at subsonic speeds is difficult to determine, but

becomes hegligible when the angle of incidence is appreciable,
(1v) Incidence contribution

The rolling moment due to combined incidence and sideslip is large and
negative for slender wings, and should be estimated even for the small incidences
under consi@eration. The expression derived from supersonic linearised theory45
is too lengthy to be usgeful, but slender wing theory should give the accuracy
required. Mach number dependence may be approximated by the slender body factor
to the loading, as for delta wings. The effect of wing lhickness ™ and the
presence of the fin44 may also be obtained separately from slender body theory
to give further corrections to the thin wing result.

4.5 Damping-in-roll derivative, &p

(i) Wing contribution

In principle, any lifting-surface theory may be used for calculating the
loading due to steady rolling, the effective downwash beling yp at the wing
surface. Supersonic linearized theory18 for the equivalent cropped delta plan-
form leads to an algebraic expressiocn, and at sonic speeds, zpu==-ﬂA/52. Also,

for the cropped delta, Lawrence's low-aspect-ratio theory has been used to cbtain

35

charts”” for subsonic speeds (incompressible flow).

47

The effect of thickness has been studied for an infinite wing and is

found to be small for sections with zero trailing edge thickness.
(ii) Fin contribution

At supersonic speeds, the variation of £P with Mach number for slender
wings is small, and so slender body theory may be used to obtain the loading on
the fin. Considering the fin and its reflection, in roll, the effective down-
wash is p|z], for which the velocity potential rmst be obtained from the Fourier

series

kl

[ 4]

-t

-
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fg [ain(n+])6 _ sin (n-])e]}_ (13)
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where
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"

A cosné, z = SF(X) cos @

=78

and SF(x) is the local fin height.

The 1ift on the fin is found to be

c
r_ . -2
GRS
—

where AR is the aspect ratio of the fin-plus-reflection and the height of the
centre of pressure is given by

1

i _ 2z ; [ ) [ e
s “[5+Z<4n2-1>(en+5> W1 Wpe)? - 2

Then
by - (@%(@2? . (15)
v

(ii1) Wing-fin interference

The fin interference cn the wing is small, but the loading on the wing
causes a sidewash on the fin, reducing its effectliveness. For the accuracy
required it is sufficient to use the mean value of sidewash evaluated in Ref.6
from slender body theory, so that

5, = <1- | 2% 1 . 16
pF RE J BPR ( )
- 2v av
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(iv) Incidence effects

The effect of incidence on bp is second order, and may be neglected for

y

the present comparisons,

4.6  Damping-in-yaw derivative n, - ny

(1) Uling contribution

The thickness distribution contributes to the steady damping nr, aend
~
glender body theoryCT gives

for the diamond cross-section where ro/s is given by equation (8). However, the
oscillatory damping-in-yaw, n, - n, is zero, being dependent on the thickness
at the trailing edge conly.

(11) Fin contribution

As for the sideslip derivatives, the damping-in-yaw due to the fin may be
determined from the corresponding longitudinal derivative of the fin with its ’
reflection, that is, n from mq and ny, from - . The methods of estimation given
in Section 4.3 may be used, the lift also having to be evaluated in order to .
cbtain the meoment sbout the centre of grevity position on the wing chord. The

conversion to wing representative length and area is given by
cN\2 S
). = [E) E . 8
(nr nv)R = (sé) 3 (mq + mw) . (18)

An alternative method of estimation, usually used for configurations with
the fin mounted on the fuselage some distance behind the wing, is to assume
that the incidence distribution (x - xg) r/V due to the steady rate of yav is
equivalent to a constant mean incidence of xFﬂ, and that the effect of the

acceleration B is accounted for by 2 lag in sidewashhg, -

X NS
(nr - n{r)R = (§§> (5 - g% yVR . (19)
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However, at zero incidence the only asymmetric loading on the sideslipping wing
is that induced by the presence of the fin, so that do/dB = O,

(1i1) Wing-fin interference

Slender body theory glves an interference factor equal to that for Y
gince the oscillatory damping-in-yaw is dependent only on the trailing edge
configuration,

5 COMPARISON BETWEEN THEORY AND EXPERIMENT

5.1 Lift curve slope, z_ = - % dCI/dﬂg Fig.15

W

At supersonic speeds the 1ift curve slope obtained by Smith'® for the
mild gothic planform, gives a satisfactory mean curve for the experimental
values For M> 1.2. For the epplication of Multhopp's theory76 to slender
wings, it 1s necessary to use a relatively large number of lift and dowuwash
points on the wing, and the initial choice of five chordwise and eight spanwise
points had to be increased to five chordwise and ten spenwise points (with
eleven integration points across the span), before satisfactory agreement with
Smith's results for z., was obtained. The difference in z, 88 c:s;.:l.cula:l:ec.‘L.I for
steady conditions (zero frequency) and for thé'experimental frequency is less
then $%at M = 1.4, and so is negligible. The 1ift curve slope of the equivalent
7 is slightly larger than that of the mild gothic planform
throughout the supersonic speed range, but the difference is smaller than the

cropped delta wing1

experimental scatter. It also eppears that not-so-slendex theoryzo is applicable
only up to about M = 1.2, where it gives values close to Smith's linearized
3

r

1 .
theory esult, for the present slenderness retio of s/co = 0,25, but the experi-

mental value of -z at M= 1.07 is much greater then the theoretical result.

The theoretical variation of zw with Mach number subsonically is given
for the equivelent cropped delta in steady flow25, and agrees well with the
theoretical value et M = 0.8, ¥ = 0,1, obtained using lifting surface theory22
for the actual planform. The experimental value of --zw at M = 0.9% was obtained
from & model flying at C = ~0,03, and so the non-linear contribution to Z
has been evaluated, the iggggment being shown in Fig.15 for 0.8 < M < 1.0. 7The
agreement between experiment and theory is excellent, although this may be
fortuitous, as there is appreciable scatter between the experimental values at
supersonic sgpeeds.
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5.2 Manoeuvre margin, h - h, Fig.16

The theoretical position of the aerodynamic centre appears to be further
forward than that obtained experimentally over most of the Mach number range,
and there is about 4% ¢ overall difference between the results of the theories
of Refs,13, 16 and 17. At M = 7.4, the theoretical results from Ref.16 for
zero Trequency and finite (experimental) frequency agree, and so Smith's steady
theory13 is the most rigorous method of estimation. It appears that even more
Multhopp points on the wing would have to be considered before agreement is
achieved between the results of Refs.16 and 13, although increasing the mumber
of spanwise downwash points from eight to ten and integration points from eight
to eleven reduced the difference from 5.5% ¢ to 1.5% c at M = 1.4 and from
16.6% ¢ to 2,0%¢ at M = 2,0,

The thecretical results for the equivalent cropped delta are about 2% ¢
rearward of the results of Ref.13, but at subsonic speeds agree with the subsonic
1ifting surface theory22 at M = 0.8, Thus the theoretical variation of aero-
dynanic centre position with Mach number is best assessed from the Data Shee’cs23
(plus the non-linear contribution) for M < 1.0, not~so-slender theory for -
1.0<M< 1.2, and Smith's theory* for M> 1.2,- so that up to about M = 1.5, the
average difference between experiment and theory is 4 &, For M> 1.6, although
the experimental results and theoretical curves are in closer agreement, the
veriation with M appears to be different, with the experimental aerodynamic
centre moving forward as M increases, and the theoretical position continmuing to
move rearward, up to M = 2.1, before beginning to move forward. As mentioned in
Section 4.2, this discrepancy may be due to the effect of thickness. A constant
increment, £h = 0.033 from equation (7), has been added to the thin wing results,
although it is known that &h becomes negative at higher Mach mumbers, according
to strip and piston theories. Van Dyke®s thick aerofoil results have also been
evaluated, and used with strip theory, but this gives &h = -0.05 and -0.035 at
M= 1.8 and 2.2 respectively that is, again in the opposite sense to experiment;
these latter increments have not been included in the theoretical results shown
in Fig.16.

5.3 Pitching moment due to incidence, Fig.17

o

Since mo = (h - ho) 2. the difference between estimated and experimental
position of the aerodynamic centre is also apparent in the results for the
pitching moment., The experimental trend is more clearly defined for m, (since
this can be obtained directly from the frequency of the longitudinal oscillation

(1}
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and requires only small corrections for change of c.g. position for the various
models) and there is little scatter between the results. A striking difference
between experiment end theory occurs in the transonic region, for which no
explanation can be given. At subsonic speeds, the same trend with Mach number
is given by experiment and t‘neory23, but the experimental results for -m_ are
about 0.025 greater than the theoretical curve, even when the increment,

LA m_ = -0.015, due to non-linear incidence effects is included. At M = 1.0,
the measured m  is 50% greater in magnitude than estimated, but experiment and
theory converge as M increases supersonically until agreement is reached at
about M = 1.7, ‘

A constant increment of Amw = ~0.022 due to thickness has been included
throughout the speed range, and corresponding remarks to those in Section 5.2
about the possible wvariation of thickness effects with Mach number alsoc apply
to the estimation of m .

5.4 Damping-in-pitch derivative mg = m o+ Ty, Fig.18

Supersonic linesrised t:hec::':-y-l 733 for the cropped delta planform and lift-
ing surface theory for the mild gothic planform16 overestimate the damping, the
errcr increasing as M increases. Part of this may be due to thickness effects,
which can besignificant, but again the only method of estimation is to use
strip theory with the aerofoil theories of either Ref.28 or 38, An increase in
damping is indicated at M = 1.4 (A my = -0.02), with a slight decrease at M = 1.8
and 2.2 (A nmy = 0.005 and 0.007 respectively), but these increments have not been
included in the theoretical curve in Fig.18 as the application of strip theory
to slender wings does not seenm justified,

The theory of Ref.16 is essentially osc¢illatory for the estimation of the
damping, and so no comparison can be made with steady results at supersonic
speeds. At M = 1.0, where frequency effects are important, slender body theory27
gives my = -0.51, independent of frequency, whereas oscillatory theoryj 7 at sonic
speeds gives my = -0.54 for we/V = 0.11, the experimental frequency. It is
difficult to establish absolutely the trend of the experimental results in the
sonic region, but all the theoretical estimates appear to be too large in magni-
tude. Although the interpolations made on the results given in Ref.34 do indi-
cate lover values of damping subsonically, the value at M = 0.8 does not agree
with the lifting surface calculation, Ref.22.
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5.5 Sideforce due to sideslip Y Fig.19

The theoretical estimate of ¥y, egrees very well with the experimental
results throughout the supersonic speed range. The lift curve slope of the
cropped delta "equivalent" to the fin planform has been used for the supersonic
and subsonic regions (Refs.17 and 23), and that of the mild gothic (Ref.20) at
low supersonic speeds. Yy is possibly overestimated slightly for 1.0< M< 1.2,
and for M> ebout 1.7, but the error is not significant.

5.6  Yowing moment due to sideslip, n ., Fig.20

The same theories have been used for estimating n, as for y i~ and the
“results egree quite well with experiment, indicating the transonic increase in
Bs end the decrease (i.e. loss of directional stability), as M increases
further. At supersonic speeds, the experimental results exhibit differences
due to the different fin shapes under test. One of the early models (5) had an
actual cropped delta fin, and the results obtained are shown by the triangular
symbols. These are seen to be gbove the results from models with the fin with
rounded tip, and the loss of nv' as M increases is greater. The corresponding
theoretical estimates are showm by the dashed and full curves respectively, and
the difference camsed by the change of fin shape is seen to be opposite to
that found experimentally. This suggests that a different choice of "equivalent"
cropped delta for the fin with rounded tip might give closer correlation between
experiment and theory, as the variation with Mach pumber agrees well, there
being a constant difference of 0,017 between theory and the experimental mean
curve, However, no attempt has been made to adjust the theoretical estimate on
this basis. The difference in the varigtion with M for the results of model 5
is probably due to tip loss effects on the actual cropped delta, which cannot
be accounted for theoretically, and which are eliminated experimentally by
rounding the tips. ;

The experimental results at transonic speeds are greater than the theoreti-
cal curve, implying that the centre of pressure on the fin is further aft than
calculated. A similar difference was noted in the comparison of experimental and
theoreticel results for m eand static mergin {paras, 5.2 and 5,3).

5.7 Rolling moment due to sideslip, £ ¥ Fig.21

. .k
Theoretically, the two major contributions to Lv are of opposite sign 5 s

and comparable magnitude, and the estimates are plotted separately in Fig.21(b)
and combined in Fig.21(a) for corparison with experiment. The fin contribution

L1
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is negative, vwhile the induced pressures on the wing give rise to a positive
rolling moment, both contributions decreasing in megnitude as M increases,

(The dashed part of the curve is that obtained by neglecting wing tip effects

on the induced pressures (see Section 4,4.3), and is an overestimate of the
wing-fin interference effect.) The resultant estimate of zv gives the correct
variation with M, but there is an almost constant difference of about 0.008
between experiment and theory. However, an error of this magnitude is not
significant when coasidered relative to the magnitudes of the separate contribu-
tions., Slender body 1;heoryl'u‘L gives iv = +0,0083 at M = 1, which is in reasonable
agreement with the experimental results.

For the test flight which established the experimental variation of ﬁv
between M = 1.2 and 1.6, the model flew at a small negative trimmed Cy, st the
lower supersonic Machnumbers (e.g. CL = -0,004 at M = 1.2 and CIl = -0.002 at
M = 1.4), and so the increment in £v due to incidence is also indicated on
Fig.21. The estimated increment for the test flight under consideration is
shown in Fig.21(b), end the constant increment for CL = -0,004 is shown in
Fig.21(a).

5.8 Damping-in-roll derivative, LR Fig.22

The theoretical est:i.ma.te]8 of the damping in roll of the egquivalent cropped
delta planform is about 1C% greater than that obtained experimentally from the
steady rolling tests at supersonic speeds, showing little variation with Mach
number between M = 1.2 and 2.3 (see Fig.22(a)). The experimental results obtained
from the oscillatory tests possibly indicate a reduction in damping as M increases
above about 1.6, but the trend is not sufficiently established to warrant any
revision of the theoretical estimate®. No explanation can be given of the
experimental reduced damping at low supersonic speeds {M = 1.07 and 1.15). At
M= 1.0, sonic theory21 and the experimental results from the steady rolling tests
agree well, bul subsonically the estimate based on incompressible flow theory35
is below the experimental curve.

The theoretical fin contribution to the damping is Lp = -0,0044, indepen-

F
dent of M, which agrees well with the experimental results shown in Fig.22(c) for

¥ Values were obtained from lifting surface theory]6 at M = 1.4 and 2.0, which
did show a reduction in damping at the higher Mach number, but it was not possible
with the present Mercury programmes to increase the number of spanwise points in
the calculations sufficiently to confirm the results.
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wing alone and wing with two fins, above and below the wing, where the experi-

mental increment must be compared with 2 zp
F
5.9 Dampling-in-yaw derivative n, - ns, Fig.23

L]

The estimate based on the oscillatory damping of the fin19’55 glves greater

demping than the approximate values obtained from the sideslip derivatives, and
is in better agreement with the experimental results at the low supersonic speeds.
At the higher supersonic speeds, the two estimates converge, and are close to the
experimental values. At sonic speeds, the result from slender body theory27 is
in agreement with the experimental trend, which ind;iates increased damping in

the sonic region. The theoretical subsonic results” are shown for completeness

although there are no experimental results for comparison,

6 CONCLUSIONS

Free-flight experiments have ylelded values of the longitudinal and
lgteral stability derivatives for a slender wing-plus-fin design. The results
were obtained at near-zero lift conditions throughout the speed range, M = 0.8
to 2.4, and are compared with the theoretical estimates.

The experimental values obtained from the verious models are consistent, v
with little scatter in the results for the derivatives due to incidence and
sideslip. The damping dexrivatives are more difficult to analyse from the .
experimental data, so thet greater scatter is evident, but the variation of the
derivatives with Mach number is clearly defined. The danping-in-roll has also
been obtained from steady rolling models, and the results asgree well with those
obtained from analysis of the Dutch-roll oscillation and the roll subsidence
damping, except in the transonic region.

The theoretical results are based on existing methods of estimation. In
principle, it 1s possible to calculate the major contributions to all the
derivatives using lifting-surface theories, some of which have been programmed
for digital computers, and theoretical results are given for some specific Mach
nurtbers and frequencies. Hovever, these programmes are lengthy, so two further
sets of theoretical results have been evaluated in order to check the validity
of the mors simple theories. First, for supersonic speeds, not-so-slender ’
theory and the lift-cancellation technique have been applied, for small
incidences, to a "mild gothic" plenform, which is very close to the actual .
planform of the models, so that the range M = 1,0 to 2.0 has been covered for

"

the derivatives due to incidence and sideslip. Second, an "equivalent” cropped
delta planform has been chosen for which algebraic expressions or charts exist

for most of the derivatives throughout the speed range. Vhere comparison
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between the verlous theoretical results is possible, the agreement is good, and
the difference is usually less than the experimental scatter.

The esgreement between experimental aend theoreticel results is reasonable,
although the difference in manoeuvre margin at transonic speeds is appreciable,
even when the non-linear contribution due to the trimmed angle of incidence is
ineluded. The experimental values of all the moment derivetives (except ZV)
also indicate greater dependence on Mach number, for M greater than about 1.6,
than is given by the theoretical results, but this may be due to the fallure of
existing theories to account for thickness effects at such speeds. However, the
overall egreement is sufficiently good to eneble one to estimate derivatives for
similer slender wing designs with a fair degree of confidence, by applying
correction factors, obtained from the present comparison, to the theoretical

results.

It should perhaps be reiterated here that the model design tested was
purposely chosen to be a simple wing-plus-fin, so that the basic theories could
be checked, FPFurther tests will enable comparisons to be made for a lifting wing,
when non-linear incidence effects may become important, and larger interference
effects of the wing on the fin could be expected, These effects are more diffi-
cult to estimate theoretically, but are essentially added contributions and

corrections to the linear theories considered here.
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Table 1
Model data
Geometry

Ving: ZPlanform area
Aspect ratio
Planform parameter, P
Span/length ratio
Geometric mean chord, c
Volume
Thickness/chord ratio on centre line
Newby area distribution
Zero cember and twist

Fin: Area (gross)
Aspect ratio
Geomeiric mean chord, EF

Centre of gravity

Typical weight and inertias

Vieight

Inertia in roll, Ix
Inertia in piteh, Iy
Inertis in yaw, I
Product of inertia, Ixz

12,813 ft2

0.865
0.578

0.5

3.853 £t
1.926 £t
0.065

gt x (1-x)

1.281 ft2

0.695
1.379 ft

0.50 c,

208 1b
1.0 slug £t
16,78 siug £t
16,96 slug rt
0.136 slug ft

(RO \S T A% N )
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SYMBOLS

aspect ratio

coefficients in series (equations (13) and (5))
lateral acceleration at the centre of gravity, ft/32
span

1ift coefficient, I/EpV° s

root chord

geometric mean chord

geometric mean chord of fin
= - ;xz/Ix
= T ;xz/Iz
2
acceleration due to gravity, ft/s
position of aerodynamic centre on c
position of centre of gravity on c
moments of intertie in roll, pitch and yew, respectively
2
slug ft
product of inertia, siug ft
2
= Ix/mso
2
Iz/msO

darping index of roll subsidence mode
1lift

reiling moment
rolling moment derivatives, e.g. L, = dZ/dp

Lp/%;pvs,b2
L/3pV s b
L/ZpV 8D

Mach number

2

]

n

pitching moment
pitching moment derivatives, e.g. M, = dffaq
mass of model
-2
M/psve

M/psve
Mﬁ/p s &2

m_ o+ me
(v} W

Yawing moment

L}

yawing moment derivatives, e.g. Nb = dNfdp

35
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SYMBOLS (Contd)

= Np/%pv s b2

N/ipV S0
N/ZpV 8D
N‘./%ps b2
planform parameter, S/bco
rate of roll, rad/s

rate of pitch, rad/s
Reynolds number

2

1]

ratio of amplitude in Dutch-roll mode (e.g.

rate of yaw, rad/s

defined in equation (8)

wing area

fin area

wing semispan at trailing edge

height of fin

local semispan of wing

locel height of fin pased on ¢, =

unit of eerodynamic time, mfp S V
velocity along flight path
lateral perturbation veloelty
normal perturbation velocity
chordwise coordinate, with ¢, = 1

R

amplitude in a
ap “ amplitude in B

distance between centre of gravity and centre of pressure of

fin

distance of centre of gravity aft of wing apex, with co =1

gideforce

sideforce derviative due to sideslip, Y = 0Y/dv

= Y /psv
lateral coordinate
normal force

normal force derivative due to normal velocity, Z, = dZ/dw

= Zw/pSV
normal coordinate
height of centre of pressure of fin
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Suffixes

F
R
1l
W+ P
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SYMBOLS (Contd)

angle of incidence, rad (= w/V)
_{ angle of sideslip, rad (= v/V)

.}M? - 1 in section 4.2

gama function

spanwise parsmeter, equation (13)

local apex angle of diamond cross-section at the leading edge
sweepback angle of leading edge

taper ratio

total damping of longitudinal short-period and Dutch-roll
oscillations respectively

relative density perameter, m/p Ss_

frequency of longitudinal short-period oscillation, rad/s
frequency of lateral (Dutch-roll) oscillation, rad/s

= v,/2x, cfs

= v2/2n:, ¢fs

air density, slug/f“t3

sidewash angle, rad

phase sngle (e.g. ¢rp is phase advance of r relative to p)

velocity potential
undamped natural frequency of lateral oscillation, rad/s

fin

reflected fin

wing contribution
wing-plus-fin contribution
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