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SUMMARY 

Several compressibikty correction rules that relate the sub-cntwel 
velocity on an aerofoil to the incompressible veloczty are reviewed. 
l'heoretlcal and experimental values for velocity at the crest of symmetr~o 
aerofoils at zero incidence are studied and a new compressibility correctxm 
factor is derived using t&d-order small disturbance theory. when used 
m conjunction with the incompressible Weber formula, tkrs new compressl- 
bdity factor is found to give good agreement mth experment. 

* Replaces NT'L Aero Report 1208 - A.R.C.28 888 
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general compresslbx.llty correction factor. 

partxalar compresslbdity correctIon factor 
(see Eq.30) 

co$ffui%d.s 111 second-order expression for 
compressible fiow velocxty (defined by 
Eq3. 16,17 and 18). 

coeffxients 3.n third-order expressmn for 
compressible flow velocity (Ceflned by Eq.27). 

Mach number. 

r+l !! 
26 

tbxkness term 111 Weber formula for velocity on 
an aerofozl (see Ref.5). 

non-dz.mens~ona.1 total velocity (=l+u) . 

non-duaens~onal pertwbatlon velocity. 

first-order pertwbatux velcclty. 

second-order contribution to perturbatxon velocity. 

third-order contnbutxon to perturbation velocity. 

static pressure. 

aens3.ty. 

pressure coefflclent (= ;;L) . 

Dam 

rectangular cartesudl co-orbnates, x measured in 
free stream aTLrectJ.on. 

ratio of specific heats of air (taken to be 1.4). 

pa&&ter that defines B . 

coeffxznts in thnd-order solution for h (see Eq.28). 

perturbation velocxty potential function. 

first- and second-order contnbutuxx to $ . 

ax3.s rat.10 of an ellipse. 

free stream con&tlons. 

incompressible-flow value. 
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1. Introduction 

It 1s useful first to outl_me the dormnant, changes that occur in a 
aeI'ofol1 pressure tistrbutlon as Mach number moreases. Over the ma,~or 
Part Of the aerofoll.surface, where the slope 1s small, the pressure decreases 
as Mach number mcreases; a r%WJn of supersoruc flow eventually develops 
and 1s usually terminated by a shock wave. ThX+ overall effect 1s Illus- 
trated 111 Fig. I., which shows experimental pressure tistnbutlons for a 
NACA 0012 aerofod at zero mcdence. The reduction of pressure as Mach 
number Lncreases 1s predicted by small disturbance theory, whi0h shows that 
the perturbation velocity at the surface can be obtmed by applying a Mach- 
number dependent compressiblllty factor to the perturbation velocity for 
incompressible flow. The accuracy of the theoretical results, zn the region 
Of small surface slope, depends more upon the order of accuracy of the theory 
that 1S bwlt On the basic aasumptlon of small &.sturbance than upon the basic 
assumption Itself. 

In the region of large surface slope, the sltuatlon is somewhat different, 
as here the pressure Increases as h:ach number mcreases. Obviously, at some 
mtermed.%te value of slope there must be a neutral pornt, &ere the pressure 
for some free stream velocity is the same as for the lncompresslble case. 
If It were possible in this region to express the perturbation velocity simply 
as a compresslbillty correctIon applzed to the lncompresslble value, then there 
would be one smgle neutral point for all values of free stream Mach number. 
This common neutral point would of course be the point at whoh the perturba- 
tlon veloczty was zero (i.e. where the pressure coefficient C - o). That 
this IS not so 1s evdent zn Fig. Z., wlvch shows that pars o F- pressure 
tistnhutlons intersect at drfferent pomts,and that the neutral point varies 
mth Mach number. Thus It is evdently not sufflolent to apply a compressl- 
billty factor to an accurate lncompresslble perturbation velocity, but for 
reallstlc results some allowance must be made for the way in whhloh the influence 
of surface slope varies with Mach number. 

Apart from the compresslbdlty effects that are associated with a symmetric 
aerofoll at zero Incdence, the manner zn whch camber and lncdence induced 
velocltles vary lath Mach number should also be stutied. This, however, must 
be deferred untit better data are available for assessrng the results. NO 
exact theoretical solutzons are so far avadable and the use of expenmzntal 
data is complicated by the VEXOUS effects on circulation - which arise from 
the fact that the dzfferentral boundary-layer growth on the two surfaces 
distorts the effective camber and mcdence. For the present, therefore, 
sttentlon wiL1 be confined to thckness-mduced perturbation velocltxes as 
deduced for symmetrical aerofoils at zero mcdence, for which the signlflcant 
effects of boundary layer growth are confined to the rear part of the aerofoii. 

The theorzes that pnllbe discussed here are based on the lsentropX 
equations of motion and cannot be called upon to represent flows that include 
.s region of supersonic velocity with a termrnatrng shock wave. Thus, III the 
main, only sub-critical flows will be consrdered. 

Several exlstlng oompresslbillty correotlon rules will be revlewd and 
the= results oomp~ed with experioent at the crests of VarloUS aerofoils. 
It wii.1 be shown that none of these rules can be considered aCCu??ate for the 
whole range of sub-cntlcal Nach numbers, and that there 1s a need for an 
improved theory. Wdh the rntentlon of satzfyrng this need, a 0ompresslblLty 
correction based on third-order theory will be presented and the resd.tmg 
theoretIca pressure dlstributlons compared with experiment. In the derzva- 
tlon of ths correction, particular enphasls is placed on its mcorporation 
tmthm the framework of the Weber fomula because thz 1s so convenient and so 
wdely used. 

/2. 

. 



-J- 

2. Cmpresslbzlity Correctmn Laws 

2.1. Prandtl-Glmert Lam 

Glauert(') and Prandtl(2) derived an expression for the compressible 
perturbatmn velocity from the lmear~ed form of the velocity potentxd 
equatxm, 

(1) 
Their solutzon of thxi equatwn gives the perturbation velocity u m 
the free stream tirectmn as 

where (2) 

and the sdfix denotes the xmxnpresslble value. This being a small 
perturbation theory, transverse velocity perturbations are neglected 
and the non-cl.~mens~~~J bsturbed total velocity 1s given as 

U=l+u. 

Although derived as a velocity rule, the Prandtl-Glauert Law IS 
usually used in its pressure coeffxxent form 

(3) 

which comes from substltutrng .Eq. 2 m the linearised expression for 

Due to the approxlmatlons mnvolved, this law is valid only for th3.n 
aerofoils at low subsonic Mach numbers. 

2.2. lib&n-Tsien Law 

The I&m&-Tszen Law was orlglnally derived (3) using the hodograph 
method which produces a pressure law, 

cp = -.L- (4) 
8+m-PNp, 

Sprelter(') shows that this result can also be derived from the velocity 
potential equation if it 1s wrztten 3n the simplrfxd second-order 
form; 

(5) 

where M is the local Mach wmber. On setting y = -1 , a simplified 

/expression 
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expression for M ~fl terms of M leads to the solution .a 
u 1 u = --- --_ --_ . 

P-(Wq 
-, 

Substitution of this in the llneansed equation for C gives the 
usual pressure law of Eq. 4. It should, however, be ' noted that the 
above velocity rule used in cCnJmctzon with the exact expression for 
C 
P 

gives a less accurate result than Eq.4. 

2.3. &rater's Law 

A sllgktly mcne r'gorous solution of Eq. 5 is presented by 
Sprelter and Alksne (4$ but again a, sunpllfylng assumption 1s made. 
The local. Mach number M' is expressed u terms of M and Eq. 5 
becomes m 

1 
1-qv+y tJx 1 #=+ #ez = 0 (6) 

The coeffxient of $M( is temporarily assumed constant to give 

u. 
u = -------‘-------- , 

"l-by+, ,hF- u 
(7) 

and with the same assumptux maintamed, Eq. 7 is differentiated 
With respect to X. The resulting equation is then treated as a non- 
linear differentwl equation 111 u , whhlch is solved to give 

u = (y-fj-&- p -[p - ; (y+l) “f, (8) 
+ 

m 

Using the linearxed equation for Cp , this gives 

2/ 
cp = - ----:--- 9 - 

c [ 
/? 

(y+l )M’, + 2 (y+l) Pe cp. 
4 1 1’3 (9) 

This theory does not give real results for veloczt~es greater than 
the predicted crltxal value and is not reliable for velocltles that 
are just sub-cntxal. 

2.4. KLcheman-Weber Formula 

K;lchemann and Weber (6) derive a compresslbillty factor that can 
be applied to the incompressible solution for velocity on an aerofoil, 
BS @ven by Weber (7). Th ey start lvlth Eq. 4 and cbtaln an approximate 
expressxon for local Mach number so that the velocity potential 
equation can be wnttea, 

/'[-fw . . . . 

. 



This is seen to be the equation solved by Spreiter, when y=l . 

In order to obtain a simple solution to Eq. IO, the coefficient 
of $xx must be constant and this condi~on is satisfied by writing 

where cPl is taken to be some suitable mean value. The solution 

then follows the same arguments as the first order solution and gives 
the perturbation velocity as 

u 
3. u = __-__-_-__- . 

31-q1-cpl) 

If the compressibility factor found in this equation is applied to all 
terms in the incompressible Weber formula (Ref. 5) that involve s , 
then the velocity on a symmetric aerofoil at zero incidence is, 

u = .-1--e 
J-T-+ 

s a , + c:u-- 
1 EG B 1 , (II) 

where B = vl-q~-cpl) > (12) 

and s(l) is a function of the thickness &stribution. Usually 
the local value of Cpl is used rather than a constant mean value 

and it is suggested that B should be taken to be p when Cp > 0 . 
Fmally, the pressure coefficient C 

8 
is calculated by substituting 

Eq. 11 in the exact isentropic expre smn 

This is the first theoretical result that allows for the manner 
in which the non-linear influence of surface slope varies with Mach 
number, and which was shown above to be a pm-requisite for accurate 
results. 

/2.5. 
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Suppose that the velocity potential function is expressed as 
the sum of the first-order solution and a second-order term, that 
is 

$=&+#a * (13) 

The first-or&r solutzon h 1s obtamed by solving the first-order 
potential equation with boundary conditions satisfied on the s = o 
plane, but to fmd the second-order term it is necessary to solve the 
second-order potential equation with boundary oondztlons satisfied on 
the aerofoil surface. Because of these differences in procedure, the 
oompressxbdlty oorreotxon to the second-order term mll differ from 
that applicable to the first-order Expressing the velocity 
potentzd m the form of Eq. 13, Hayes solves the equation 

which includes all the second-order terms of the full potential. equation. 
Hsyes then shows that the ratlo of the second-order term to the first- 
order term, for velocity on the surface of an aerofoil, 1s 

_ -----_ (,-p;)37i [ y;i “4”, + 2(1-aB_) 1 > 

where t is a measure of the aerofoil thrrokness. 

Thu result is used by Van Dyke (8) who shows that ti the 
incompressible velocity is oven by 

ui = I+ xl& + IA , (15) 

where a oontams linear terms in ttiokness, camber and inoldenoe, 
and Q their squares and products, then in compressible flow the 
veloolty is 

& -1 
lJ=l+&Lk +%w +---- kg , (16) 

2 

where &= 1 (17) 
B 

This second-order solution is the most rigorous of the theories 
so far discussed, with its accuracy dependent only upon the convergence 
of the series solution for veloolty. 

3. Velocity at Aerofoi?L Crest 

3.1. Assessment of Second-Order Solutions_ 

The crest of an aerofoil is the pomt at whoh the tangent to the 
surface is parallel to the free stream tireotzon, and for a symmetrlo 

/aerofod 

. 
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aerofoil this is the point of maxxnum thxkness and zero surface 
slope. The veloolty at the crest forms a convenient basis for the 
comparison and assessment of exlstang correction factors - and the 
initial derivation of an xnproved factor - because the terms related 
explicitly to surface slope tisappear there. These latter terms are 
of course very important and must be considered at some stage of the 
assessment of a compressability correotlon rule. 

Each of the laws tisoussed. in the previous section provides a 
tiferent expressaon for crest velocity as follows: 

u 
Prsndtl-Glavert II= ,+ -5 (191 

B 
u. 

Karman-Trien u= I+ ---1-o 
a-(l-ah, 

(20) 

Spreiter U I I + 
p -[a’- i(y+l) ti u 1 *'3 
------------"-2 

(y+l) "6: 
(21) 

K&hem-Weber u= I+ % --_________- 
4 

l-<(+cpi) 
(22) 

(23) 

Eq. 23 comes directly from Eq. 16 if' it is assumed that & = o . 
This is exactly true for an ellipse and in genersl II, is found to be 
negligibly small, even compared with ~.a for most practical section 
shapes; this explains the high aoouraoy OI! the Weber formula (5) for 
incompressible flow. Thus, if w111be assumed that Eq. 23, which is 
certainly valid at the crest of an ellipse; is valid also at the crest 
of a general symmetric aerofoil. 

Now Van Dyke's solution can be thought of as the first three terms 
of a series in ascending powers of ui , and if Eq. 23 is re-arranged 
to give 

u= I+“’ 
B L- 

1 + !I-“_-432 sip -&- /i], 

then the terms-~&xthe square brackets are the first two terms of a 
power series in ui . As 

is small compared with unity they csn, to second order, be replaced 
by b? 

1 - (l-0.4 "p,, -"- Ui + , 
B' 1 
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The velocity can thus be wrltten in the form 

u 
U=l+--l , 

B 

where B = 'l-tis(t + & uiy 

l-0.4 mB 
and ha= ------F 

(25) 

(26) 

The second-order solution is now expressed in the same form as 
Eqs. 19, 20 and 22, making possible a direct comparison of existing 
oompresslbillty correction factors. 

As a check on the approximations made in going from Eq. 23 to 
Eq. 24, values of velocity given by these two equations are compared 
in Fig. 3 for the partmular case of ui = 0.2. (This, of course, is 
equivalent to the crest velocity on a 20% thick ellipse). Included in 
the figure ere the results given by K&&n-Tsien (Eq. 20) which is an 
approximate second-order solution. It is seen that the K&m&-Tsien 
velocity is olose to the Van Dyke solution but a little below, and that 
Eq. 24 gives velocities that are slightly higher than the Van Dyke 
solution. The latter observation mtioates that the tLrd and higher 
order terms implied by Eqs. 24 end 25 are very small. 

In Fig. 4 the second-order result (Eqs. 24 to 26) is comparedwith 
Spreiter (Eq. 21) and K&hemnn-Weber (Eq. 22). The two latter laws 
are found to agree fairly well until just below the critical Mach number, 
andboth give oonsderably hl&er values of velocity than those given 
by second-order theory. That such slgnifiosnt differences can occur 
points fairly clearly to the need to examine a t&d-order solution. 

3.2. A Third-Order Solution 

A third-order solution is given by Hantssche (9) for the maximum 
velocity on an ellipse at eero incidence. If the axis ratio of the 
ellipse is T then ui = T and Hentesche shows that the compressible 

velocity is given by 

u = I + 'kui + keui= + kaui= , (27) 

where k&z 1) 
B 

k= 
(l-0.4 <I ~ , 
---------- 

zo' - 

3 
and _ 1 + "- (I+;) (8-9 - (; + i; n + J ‘2) , 13 
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It 1s seen that the fxst three terms of Eq. 27 gxve Van Dyke's 
second-order sclutlcn (Eq. 23) whzch, It has been argued, cs,n be assumed. 
to be vsld at the crest of a general symmetrx aercfcll, and. It will be 
assumed here that the third-order term m Eq. 27 is also vald for a 
general symmetric aercfcil. Thus,.Eq. 27 wLU. be taken to be the thud- 
order sclut~cn for the velcclty at the crest of a symmetric aercfcd. 

NOW it would be convenient if it were pcsslble to rearrange Eq. 27, 
in the same way as was done for the second-order sclutlcn, to the form 
of Eq. 24. To do this, we require the expanslcn of yL to give not 

B 
only the correct first and second-order terms but also the correct thz.rd- 
order term. This can be achrteved by writing 

B = ".I-$l+h, (l+x"u&;] , (28) 

where hp will be g=ven by equating the cceffxients of us , zn the 
9 

1 
expans1cn of , to k4 . It is found that 

B 

h, ='" 
3 

k3 -2 kc4 - 

Values of the coefficients lo , k~ , 16, hi and ?.a are tabulated 
in Table 1 for varlcus values of Mach number. 

The only llrmtatxcn on the accuracy of ths third-order solutlcn is 
set by the convergence of the series that 1s used to express velcclty. 
In Fig. 5 the frost., second ad t&d-order sclutlcns are plotted against 
M for several values of ui and it is seen that the results converge 

quickly at low to moderate sub-cntxsl Mach numbers. Convergence becomes 
less rapd as critwsl Mach number 1s approached and eventually breaks 
down 111 the super-cntxal reglcn. As a result of this rather slower rate 
of convergence near critxal ccndlticns there 1s probably a further 
advantage, m adbticn to ccnvenlence, m expressing velcclty acccrLng to 
Eqs. 24 and 28 as the lmplled fourth and hugher-order terms may g=ve 
improved accuracy. The effect of these extra terms on the predicted velcclty 
is shown in Fig. 5. 

III ~zgs. 6,-7,.8 and 9, experzmental values of crest pressures are 
compared with-se&id-and t&d-order theory and wxth Kiichemann-Weber theory 
for four diffe~&t~~ercfc~ls. The experimental results for NACA 0015 
section were takenLf@m Ref. IO and the results for the other three 
sectxcns are from @ipublished NPL results. All cases show very good 
agreement betw&&%3+@-crder theory and experxnent, and also show that 
the K~cheniali;l~~~~~~~~~rrec~cn tends to cverestlmate velcclty. The other 
ccmpressibllity.&-&ticn that is widely used is the K&m&-Tslen rule 
which giv?s resul%&$hat are very close to second-order theory (see Fig. 
which agrees iesw$h experiment m the lower Mach number range but 

3) 

underestimates v$L&%ty at the -her Mach numbers. 

/3.3. 
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3.3. Simplifxd Representation of T&Cl-Order Theory 

For oonvenzenoe we will wr1t.e the compressibility correction 
as 

B A-M== (1 +x 9) , (29) 

with X = h(l+hpul) being the thud-order solution. ThlS 
expressIon for h 1s rather complicated for use zn quick computation 
and a slmpllfled expression mould be much more conven=nt. 

At an early stage zn this investigation of compressibility correc- 
tions it was found empirically that good results were gz.ven by using 
the factor 

B = & = J1-h?m(l-MmCpl) , 

This is equivalent to putting 

(30) 

in Eq. 29, and thu expressIon for h 1s compared with others in 
F1g. IO. Remembering that the Prsndtl-Glauert rule is equvalent to 
x=0, that the Kiichemann-Weber rule IS equivalent to 

and that the results gxven by these two rules tifer by 

a very small amount when Mach number is less than 0.4, we see from 
Fzg. 10 why this empiric&. expression was found to work so well, and why 
It can be used as a sxnple approxlmatlon to the thrd-order solution. 
It wfi be realxed that for M < 0.4 a varlatlon of h between the 
values 0 and 2 produces only very small changes in the value for 
velocity and that the exact value of h (provded It lies between 
oana 2) IS thus of lxttle xnportance m this low Mach number range . 

Aerofoil crest pressure coefficients that are obtained when Eq. 30 
is used as the compressxbillty correction are shown m Figs. 6 and 7, 
S,TI~ are seen ta differ from those g1ve.n by Eqs UC and 28 only at super- 
crltxal Mach numbers. For the oases illustrated m Figs. 8 and 9, the 
use of Eq. 30 produced a negli@ble tifferenoe for Mach numbers below 
0.8. Thus, Eq. 30 seens to provde an acceptable sxnplrfioation for 
sub-cntxsl Mach numbers. 

4. Application of Slmplifled Third-Order Law to Complete Velocit.~ 
Dlstrlbutlons 

a symmetrx aerofod at zero lncdence in incompressible flow, 
gives the velocity on the aerofoiL surface a8 

. 

(31) 

/where 
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where S(')(x) 1s a function of the aerofoiL th~kness distrzbutun. 
This formula has proved extremely flexible and 1s md.ely used, for example, 
in the direct, aerofoil design problem, 111 methods for lnoorporatug viscous 
effects in aerofoil velocity pretiction, and in pretictlon and design methods 
for swept wings. It is thus desirable to incorporate the revued compressi- 
bility correction into thu equation for the velocity at all points on the 
aerofoil.. 

In order to simpllry the argument we till again consider the case of 
an elhpse whose sxu ratio is T. Over the mador part of the chord the 

as surface slope - 
dx 

1s small and Eq. 31 can be written approximately as 

ui = (1 +$I - qj’ + . . . ...] 

= (1 + T) [, - ; ~-~f55;" + . . . . . . ] 

= , + 7 - 1 12x:!? 
8 x(1-x) 

If terms that are of third-order m T 
second-order compressible flow theory, 
written as 

%-I _ 

p , (32) 

are ignored. Follow- Van Dyke's 
the compressAble velocity can now be 

(&-l)P . 
u = , + & T + ---- f - & ------- p . 

2 8x(1-x) 

Suppose now that we msh to express the compressible velocity in the form 

i.e. 

u = --~L-~-~~ JT L1 + 3 ’ 
u = , + L - - ---- 1 1-r ?f approx. 

& 8 x(1-x) ha 

Now we have seen that the fu-st three terms of Eq. 33 are represented 
by the first two terms of Eq. 35 rf & IS given by Eq. 25, or even better, 
by the thud-order result III Eq. 28. Thus, comparing Eqs. 33 and 35 we 
have that 

&a = !- . (36) 
16 

It has been general practloe, when using the Kkhemsnn-Weber formula, 
to take 75s and El to be the same (both gzven by Eq. 12). Thu is based 
on the principle that the formula gives the velocity 111 ucompresslble flow 
on the surface of an aerofoil whose ordunates are those of the aerofoll in 
question kvded by the compresslbillty factor. Thus, any term that 1s 
llnearin e 1s divuied by the correction factor B (see Ref. 6). From 
the practuLl point of view, It is much more convenient to be able to use the 

/ same 
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same compressibfilty factor throughout the equation, and tith this possi- 
bilityinuind 'i 

J 
ii 

IS compared mth B, XII Fig. 12, for various values 

of cp, 3 over the range of Mach number that 1s of interest. The chosen 
values of Cp, correspond to certain points on the surface of a 15% thick 
ellipse, and thus help to show that & and b are very close in value in 
the region for whxh the derivation of b 
small. surface slope). 

is valz3. (that is, the region of 
Thus, for the maJor part of an aerofoil surface we 

can, in fact, take Z?Q to be equal to & . 

In the absence of a valxd theoretxal solution for the region of large 
surface slope we will put B, = & everywhere and compare the resulting 
theoretxal results with experiment. Such a comparxon is made II~ Fig. 3 
for the leading-edge of a 10% tbok elliptx aerofoil, and velocity is plotted 
there against surface slope. It 1s seen that the use of the same factor 
for slope term and thxkness term gives good agreement w~.th experiment, and 
that even better agreement 1s obtained when B 1s put equal to fi for 
cp, > 0 . This is a procedure that 1s recommended for the Kiichemann-Weber 
formula. , 

If we aga;Ln assume that what 1s vald for an ellipse 1s also valid for 
a general symmetric aerofoil, then we can write the veloolty on the aerofod 
surface as 

, (37) 

i 

for ui> 0 

where B = 

5-z co for ul< 0 . 

A procedure for oalculat~ng the function iA) (x) is given by 
Weber (Ref. 5). 

Pressure tistnbutlons for four aerofolls at zero rnoidence are shown 
111 Figs. 14, 15, 16 ana 17. The first two aerofolls are N~~wland aero- 
foils, and hx exact theoretIcal solutions are compared vnth those obtained 
from Eq. 37. For the thrrd and fourth oases, theory is compa;ed mth 
experiment. It is seen 111 each case that Eq. 37 gives very good results 
when 

cP h=-M-& , 
=u 1 

or B=& =,,/m). (38) 

The Nleudand aerofods do not have entirely sub-critical pressure 
clxztrbutlons as they have regions of local supersonlo flow. However, they 
are calculated to have isentropIc compressIons in mnvxwd flow at the 
particular Mach numbers lnticated in the figures, and thus Qve a good 
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. . 

basu for compsrxon with the present approximate theory. A further pout 
concerning the second Nxuwlsnd aerofod is that thx has an unusually tick 
leading-edge and it 1s suspected that the incompressible 'Fleber formula will 
overestimate velocity near the leadug edge. Any such errors wdl of course 
be magnrfled in the pressure dutrlbutuns of Fig. 15. 

5. Conclusions 

Of the methods for cdculatxng aerofoil velocity dzstributions that 
have been considered here, the most accurate is a compressible form of the 
Weber formula (Eq. 37), Pnth a compresslblllty correction based on thud- 
order theory. Thud-order theory proudes the compresslbdlty factor given 
in Eq. 28, but for most practxal purposes thu can be replaced by the 
slmpllfxd factor given in Sq. 30. 

Attention has been restrxted here to the case of symuetnc aerofoils 
at zero uxldence, but the effect of compres.sibiLxty on the contrzbutlons to 
velocity due to camber and ucxdence are being consdered U-J order to extend 
the study to lifting aerofods. 

BMG 
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.4 

.5 L .6 

.7 

.a 

1 
16 k3 f Ai x2 

B 

1.09 .I05 .I01 1.020 0.856 

1.155 .200 .255 1.035 1.015 

1.250 .375 .696 1.070 1.41 

1.400 .760 2.21 1.123 i 2.10 

1.667 1.825 IO.55 1 1.24 / 4.14 

TABLE 1. COEIFFICiXNTS IN MIRD-ORDEEt VELOCITY EQUATIONS 
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