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SUMMARY

Several compressibility correction rules that relate the sub-critical
velocaity on an aercfoil to the incompressible velocity are reviewed.
Theoretical and experimental values for velocity at the crest of symmetric
aerofoils at zero incidence are studied and a new compressibility correction
factor is derived using third-order small disturbance theory. When used
in conjunction with the incompressible Weber formuls, this new compressi-
bility factor is found to give good agreement with experiment.

* Replaces NFL Aero Report 1208 - A.R.C.28 868
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SYRBOLS

B general compressibiliaty correction factor.

By particular compressibility correction factor
(see Eq.30)

kK , K cqéfflciénts 1n second-order expression for
compressible flow velocity (defined by
Eq&. 16,17 and 18).

k , kg , ks coefficients in third-order expression for
compressible flow velocity (defined by Eq.27).

M Mach number.
o - Yt
e A
(1)
s (x) thickness term in Weber formula for velocity on
an aerofoil (see Ref.5).
U non-damensional total velocity (=1+u) .
u non-dimensional perturbation velocity.
b1 first-order perturbation velocity.

second-order contribution to perturbation velocity.

Us third—~order contrabution to perturbation velocity.
P static pressure.
p density.
PP,
c pressure coeffaicaent (:: ———*-—-> .
1
: ze 1
X, 2 rectangular cartesian co-ordinates, x neasured in
free stream darection.
ﬁ = '1_@

ratio of specafic heats of air (taken to be 1.4).

Y

A pardieter that defines B .

Mo M ’ coéff1c1ents in third-order solution for A (see Eq.28).
) perturbation velocity potential function.

fL 5 P2 fiéét— and second-order contraibutions to ¢ .

T ax1s ratio of an ellipse.

Subscripts

- free stream conditions.

1 incompressible-flow value.



1. Introduction

It 1s useful first to outline the dominant changes that occur in an
aerofoill pressure distribution as Mach number increases. Over the major
part of the aerofoil.surface, where the slope 1s small, the pressure decreases
a8 Mach number increases; a region of supersonic flow eventually develops
and 1s usually terminated by a shock wave. This overall effect s 11lus-
trated an Fag. 1., which shows experimental pressure distributions for a
NACA 0012 aerofoil at zero incidence. The reduction of pressure as Mach
number increases 1s predicted by small disturbance theory, which shows that
the perturbation velocity at the surface can be obtained by applying a Mach-
number dependent compressibility factor to the perturbation velocity for
incompressible flow. The accuracy of the theoretical results, in the region
of small surface slope, depends more upon the order of accuracy of the theory
that 1s bualt on the basic assumption of small dasturbance than upon the basic
assumption 1tself.

In the region of large surface slope, the situation is somewhat different,
as here the pressure increases as Mach number increases. Obviously, at some
intermediate value of slope there must be a neutral point where the pressure
for some free stream velocity is the same as for the incompressible case.

If 1t were possible in thas region to express the perturbation velocity simply
a3 a compressibility correction applied to the incompressible value, then there
would be one single neutral point for all values of free stream Mach number.
This common neutral point would of course be the point at which the perturba-
tion velocity was zero (i.e. where the pressure coefficaent C_ = 0). That
this 1s not so0 1s evadent an Fig. 2., which shows that pairs o% pressure
distributions intersect at different points,and that the neutral point varies
with Mach number. Thus 1t is evidently not sufficient to apply a compressi-
bility factor to an accurate ancompressible perturbation velecity, but for
realistic results some allowance must be made for the way in which the influence
of surface slope varies with Mach number.

Apart from the compressibility effects that are associated with a symmetric
aeroforl at zero incidence, the mamner in which camber and incidence induced
velocities vary wath Mach number should alsoc be studied. This, however, must
be deferred until better data are availlable for assessing the results. No
exact theoretical solutions are so far available and the use of experimental
data is complicated by the viscous effects on circulation - which arise from
the fact that the differential boundary-layer growth on the two surfaces
distorts the effective camber and incidence. For the present, therefore,
attention will be confaned to thickness-induced perturbation velocities as
deduced for symmetrical aerofoils at zero incidence, for which the significant
effects of boundary layer growth are confined to the rear part of the aerofoil.

The theories that wall be discussed here are based on the isentropic
equations of motion and camnnot be called upon to represent flows that include
a region of supersonic velocity with a terminating shock wave. Thus, in the
main, only sub-critacal flows will be considered.

Several existing compressibilaty correction rules will be reviewed and
their results compared with experiment at the crests of various aerofoils.
It will be shown that none of these rules can be considered accurate for the
whole range of sub-critical Mach numbers, and that there i1s a need for an
amproved theory. Wath the antention of satisfying this need, a compressibilaty
correction based on third-order theory will be presented and the resulting
theoretical pressure distributions compared with experiment. In the deraiva-
taon of thas correction, particular emphasis is placed on its incorporation
within the framework of the Weber forrula because this 1s so convenient and so
widely used.

/2.
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Compressibility Correction Laws

2.1. Prandtl-Glagert Law

Glauert(1) and Prandtl(z) derived an expression for the compressible
perturbation velocity from the linearised form of the velocity potential
equation,

(1) ¢pp + #,, =0 (1)

Their solution of this equation gives the perturbation velocity u an
the free stream direction as

1
u::-ul »
I
where B = "1-M1 , (2)

and the suffix denotes the incompressible value. This being a small
perturbation theory, transverse velocity perturbations are neglected
and the non-~dimensional disturbed total velocaty 1s given as

U=1+u.

Although derived as a velocity rule, the Prandtl-Glauert Law 1is
usually used in its pressure coefficient form

C.=- C. , (3)

which comes from substituting Eg. 2 1n the linearised expression for
Cpe
p

Due to the approximations involved, this law is valid only for thin
aerof'oals at low subsonic Mach numbers.

2.2, Karman-Tsien Law

The Karman-Tsien Law was originally derlved(j) using the hodograph
method which produces a pressure law,

C = PR (4)

Sprelter(a) shows that this result can also be deraved from the velocity
potential equation if it 1s wratten in the simplified second-order
form;

(1998) $oe + 65 = 0 » )

z

where M is the local Mach pumber. On setting y = -1 , a simplified

/expression
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expression for M an terms of M leads to the solution
L4

1 -

Substitution of this in the linearised equation for C_  gives the
usual pressure law of Eg. 4. It should, however, be P noted that the
above velocity rule used an conjunction with the exact expression for
Cp gives a less accurate result than Eq.k.

2.3. Spreiter's Law

A slightly more rigorous solution of Eq. 5 is presented by
Spreiter and Alksne ( but again a simplifying assumption 1s made.
The local Mach number M is expressed in terms of M and Eq. 5
becomes -

| e 8y [ 4y = o ©

The coefficient of ¢xx is temporarily assumed constant to give

I
u,
1

R , (7)
198 (1 B u

and with the same assumption maintained, Eq. 7 is dafferentiated
with respect to x. The resulting equation is then treated as a non-
linear differential equation 1n u , which is solved to give

. z;:zs;f“{ e -2

Using the linearised equation for ¢

[A

2/
(1) 28w, | }} (6)

p ? this gives

2/
+1) P
2 () - S, | }}(so

This theory does not give real results for velocities greater than
the predicted critical value and is not reliable for velocities that
are just sub-critical.

2
e}
1]
|
~~ 1
~ |
+ i
-}
|
= |
1
@
|
R
+
(L)

2elie Kuchemann-Weber Formula

Kuchemann and Weber( ) derive a compressibilaty factor that can
be applied to the incompressible soluiion for velocity on en aercfoil,
as given by Weber (7). They start with Eg. 4 and cbtain an approximate
expression for local Mach number so that the velocity potential
equation can be written,

/[Hf
[ -]
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[1—1@(14-2 ¢x)] by + B, = O (10)

This is seen to be the equation solved by Spreiter, when y=1 .
In order to obtain a simple solutaon to Egq. 10, the coefficient

of ¢xx must be constant and this conditaon 1s satisfied by writaing

2¢'x=-0pl s
where CPl 1s taken to be some suirtable mean value. The solution

then follows the same arguments as the first order solutaion and gives
the perturbation velocity as

1
U = —————————— .
1_¥1(1_Cp1)

If the compressibility factor found an this equation 1s applied to all
terms in the ancompressible Weber formula (Ref. 5) that involve =z ,
then the velocity on a symmetric aerofoil at zero incidence is,

(1)
1
U = propz=n- {1 I C) T B (11)
‘} q El axa— ) B
{'———"——
where B = 1—1@(1—%1) , (12)
(1)
and S is a function of the thickness distrabution. Usually
the local value of G is used rather than a constant mean value

P
and it is suggested that B should be taken to be [ when CP > 0 .

Fanally, the pressure coefficient C_  1s calculated by substatuting
Eq. 11 in the exact 1sentropic expression

¢ = -2- [[1+X:1M°(1-1P):| ;f? -1} :

P- [
y i 2

Thas is the fairst theoretical result that allows for the mamner
1n which the non-linear influence of surface slope varies with Mach
number, and which was shown above to be a pre-requisite for accurate

results.

/2.5.



2.5. Second-0rder Theory

Suppose that the velocity potential function is expressed as
the sum of the first-order solution and a second-order term, that
is

¢ =t da . (13)

The first-order solution ¢ 1s obtained by solving the first-order
potentiel equation with boundary ceonditions satisfied on the z = o
plane, but to find the second-order term it is necessary to solve the
second-order potential equation with boundary conditions satisfied on
the aerofoil surface. Because of these differences in procedure, the
compressibility correction to the second-order term will differ from
that applicable to the first-order soluf n. Expressing the velocity
potential in the form of Eg. 13, Hayes 78 solves the equation

() + 95, = EE 0 (07 08 Es (1—mf,)¢;] ,(14)

which includes all the second-order terms of the full potential equation.
Hayes then shows that the ratio of the second-order term to the first-
order term, for velocity on the surface of an aerofoil, is

t ]
_______ 5 [ e v 2(1ae ):l
2 -

where t 1is a measure of the aerofoil thickness.

This result is used by Van Dyke(B) who shows that if the
incompressible velocity is given by

U =1+u +w, (15)

where 1y contains linear terms in thickness, camber and incidence,
and w their squares and products, then in compressible flow the
velocaty is
K -1
=1+ Khuw +Kw + —- w? o, (16)
2

where K = 1 (17)

B8
and ¥a = £Z+1) NE’ * W (18)
15

This second-order solution is the most rigorous of the theories
so far discussed, with its accuracy dependent only uponn the convergence
of the series solution for velocity.

Velocity at Aerofoil Crest

3.4. Assessment of Second-Order Solutions

The crest of an aerofoil is the point at which the tangent to the
surface is parallel to the free stream direction, and for a symmetric

Jaerofoil
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aerofoil this is the point of maxamum thaickness and zero surface
slope. The velocity at the crest forms a convenient basis for the
comparison and assessment of exastang correction factors - and the
initial derivation of an improved factor - because the terms related
explicitly to surface slope duisappear there. These latter terms are
of course very important and must be considered at some stage of the
assessment of a compressibiality correction rule.

Each of the laws discussed in the previous sectlon provides a
different expression for crest velocity as follows:

u
Prandtl-Glavert U= 1+ -2 (19)
[~
u,
Karman-Trien Us {4 =—oedee (20)
B-(16)vy
£ 18- 2yet) 1 u ] ¥
Spreiter U= 1 + - ——— 2 (21)
(y+1)
" ui
Kuchemann-Weber Us 1 + =———ceerma——— (22)
.J_‘—'—-—_-—n.
1—M:(1—Cpi)
u (1"0.&- }.f)
Van Dyke U= + = 4+ =eee——— - M:, uiﬂ (23)
g 25t

Eq. 23 comes directly from Eq. 16 if it is assumed that w = o .

This is exactly true for an ellipse and in general 1w is found to be
negligibly small, even compared with w?® , for most practical section
shapes; +this explains the high acouracy of the Weber formila (5) for
incompressible flow. Thus, if will be assumed that Eq. 23, which is
certainly valid at the creat of an ellipse, is valid also at the crest
of a general symmetric aerofcil.

Now Van Dyke's solution can be thought of as the firat three terms
of a series in gscending powers of u o, and if Eq. 23 is re-arranged
to give

then the terms: ¥n=the square brackets are the first two terms of a
power series in u, . As

(1-0.4 M)
---------- u
P w 4
is small compared with unity they can, to second order, be replaced
by \f )
%
|:1 - (1-0.4 M:) ;‘3 ui:l ,

/The
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The velocity can thus be written in the form

u
U=1+ -3: 2 (21")
B
where B = '1-8(1 4+ u) (25)
1-0.4 M
and = e = (26)

The second-order solution is now expressed in the same form as
Egs. 19, 20 and 22, making possible a direct comparison of existing
compressibility correction factors.

As a check on the approximations made in going from Eq. 23 to
Eq. 24, values of velocity given by these two equations are compared
in Fig. 3 for the particular case of u, = 0.2. (This, of course, is

equivalent to the crest velocity on a 20% thick ellipse). Included in
the figure are the results given by Karman-Tsien (Eq. 20) which is an
approximate second-order solution. It is seen that the Kérman-Tsien
velocity is close to the Van Dyke solution but a little helow, and that
Eq. 24 gives velocities that are slightly higher than the Van Dyke
solution., The latter observation indicates that the third and higher
order terms implied by Egs. 24 and 25 are very small.

In Fig. 4 the second-order result (Egs. 24 to 26) is compared with
Spreiter (Eq. 21) and Kuchemann-Weber (Eq. 22). The two latter laws
are found to agree fairly well until just below the critical Mach number,
and both give considerably higher values of velocity than those given
by second-order theory. That such significant differences can occur
points fairly clearly to the need to examine a thard-order solution.

3.2. A Third-Order Solution

A third-order sclution is given by Hantzsche(9) for the maximum
velocity on an ellipse at zero incidence. If the axis ratio of the

ellipse is v then w, =T and Hantzsche shows that the compressiable

velocity is given by

U=1+k4ui+kgui° +]qui3 R (27)
where kK = i ,
B
(1-0.4 M)
B = - L ’
25
W n n 1 3 1
and h=;[7£l:1+'(1+§) (B-Mfo)-(§+£n+3rf):]},
4 4
with n = Y+ :

2 £
/It
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It 13 seen that the first three terms of Eqg. 27 give Van Dyke's
second-order solution (Eq. 23) which, 1t has been argued, can be assumed
to be valid at the crest of a general symmetric aerofoal, and 1t will be
assured here that the third-order term in Eq. 27 is also valad for a
general symmetric aerofoil.  Thus, Eq. 27 will be taken to be the third-
order solution for the velocity at the crest of a symmetric aerofoil.

Now it would be convenient if it were possible to rearrange Eq. 27,
in the same way as was done for the second-order solution, to the form
of Eg. 24k. To do thas, we require the expansion of Y,  to give not

B

only the correct first and second-order terms but also the correct third-
order term. This can be achieved by writing

B = "1-»@[1%(1% ul)u;] s (28)

where A will be given by equating the coefficients of 15? s 1n the
expansion of o s, to g . It is found that

B
k3
Mo=o- --8 k.
I 2

Values of the coefficients g , kn , ke, M and X are tabulated
in Table 1 for various values of Mach number.

The only lamitation on the accuracy of this third-order solution is
set by the convergence of +the series that 1s used to express velocity.
In Fig. 5 the first, second ard third-order solutions are plotted against
M  for several values of us and it is seen that the results converge

quickly at low to moderate sub-critical Mach numbers. Convergence becomes
less rapid as critical Mach number is approached and eventually breaks

down a1n the super-critical region. As a result of this rather slower rate

of convergence near critical conditions there is probably a further

advantage, in addaition to convenience, i1n expressing velocity according to
Egs. 24 and 28 as the implied fourth and higher-order terms may give

improved accuracy. The effect of these extra terms on the predicted velocity
is shown in Fag. 5.

In Figs. 6,-7, 8 and 9, experaimental values of crest pressures are
compared with’seddﬁd‘and third-order theory and with Kuchemann-Weber theory
for four different-aerofoils. The experimental results for NACA 0015
section were taken-from Ref. 10 and the results for the other three
sections are from wipublished NFL results. All cases show very good
agreement beﬁygéiégg&gd—order theory and experiment, and also show that
the Kichemann=Weber" correction tends to overestimate velocity. The other
compressibility.dorrection that is widely used is the Kdrmdn-Tsien rule
which gives rgsu;§§2§hat are very close to second-order theory (see Figa 3)
which agrees well with experiment in the lower Mach number range but
underestimates velocity at the hagher Mach numbers.

/3.3,
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3.3. Simplified Representation of Third-Order Theory

For convenience we will write the compressibility correction
as

B = ‘foo (1 +2 ul) . (29)

with A = 7\4_(14-7\9111) beang the third-order sclution. Thas

expression for A 1s rather complicated for use in guick computation
and a simplified expression would be much more convenient.

At an early stage in this investigation of compressibility correc-
tions it was found empirically that good resulis were given by using
the factor

v
B=B = '1-M{xuc ) . (30)
oo mpl
This is equavalent to putting
C
A= -M 1 ,
“ u
1

in Eq. 29, and thas expression for A 1s compared with others in
Fig. 10. Remembering that the Prandtl-Glavert rule is equavalent to
A = o , that the Kuchemann-Weber rule is equivalent to

C
A= - e (#2) , and that the results given by these two rules daffer by

u.
1

a very small amount when Mach number is less than 0.4, we see from

Fig. 10 why thas empirical expression was found to work so well, and why
at can be used as a simple approxamation to the thard-order solution.

It wall be realized that for M < 0.4 a varzation of A Dbetween the
values O and 2 produces only very small changes in the value for
velocity and that the exact value of A (provided 1t lies between

0 and 2) 1s thus of little importance in this low Mach number range .

Aerofo1l crest pressure coefficients that are obtained when Eq. 30
is used as the compressibilaty correction are shown in Figs. 6 and 7,
and are seen to differ from those given by Egs 24 and 28 only at super-
critical Mach numbers. For the cases illustrated in Figs. 8 and 9, the
use of Egq. 30 produced a negligible dafference for Mach numbers below
0.8. Thus, Eq. 30 seems to provide an acceptable samplafication for
sub-critical Mach numbers.

Applicataon_of Simplifaed Third-Order Law to Complete Velocity
Distrabutions

a symmetric aerofoil at zero incadence in incompressible flow,

Weber 55 gives the velocity on the aerofvil surface as

U, = \_l:___.é;__- [1 + s (x)J (31)
\dxj

/where



- 14 -

(1)
where S (x) 215 a function of the aerofoil thickness distribution.
This formula has proved extremely flexible and 1s widely used, for example,
in the direct aerofoil design problem, 1n methods for incorporating viscous
effects in aerofoal velocity prediction, and in prediction and design methods
for swept wings. It is thus desirable to incorporate the revised compressi-
bility correction into this equation for the velocity at all points on the
aerofoil.

In order to simplafy the argument we will again consider the case of
an ellipse whose axls ratic is T. Over the major part of the chord the

d
surface slope 2z 1s small and Eq. 31 can be writien approximately as
dx

U = (1+7) :1 - ;(g&)a + :I

(1+71)]1- % E;-%%%i}ji + ......:]

1+T-1 g%:lf -"‘IB
8 x(1-x)

) (32)

1f terms that are of third-order an T are ignored. Following Van Dyke's
second-order compressible flow theory, the compressible velocity can now be
written as
K -1 (2x-1)
U= 14+K T+ — 7 oK ———o 7 . (33)
2 8x(1-x)

Suppose now that we wish to express the compressible velocity in the form
1 T
U= [1+-—] , (34)
o
[GF -
B

i.e. U= 1+ - - 1 &25:1)? fi approx. (35)

B 8 x(1-x) R®

Now we have seen that the first three terms of Eg. 33 are represented

by the first two terms of Eq. 35 1f B, 1s gaven by Eq. 25, or even better,
by the third-order result in Eq. 28. Thus, comparing Egs. 33 and 35 we
have that

R = L, (36)
fa

It has been general practice, when using the Kuchemann-Weber formula,
to take By and B to be the same (both given by Eq. 12). This is based
on the principle that the formula gives the velocity in incompressible flow
on the surface of an aerofoil whose ordinates are those of the aerofoil in
question davided by the compressibality factor. Thus, any term that as
linear in 2z 1s divided by the correction factor B (see Ref. 6). TFrom
the practical point of view, 1t is much more convenient to be able to use the

/same
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same compressibility factor throughout the equation, and with this possi-
bility in mind j__'l_ 1s compared with B, 1in Fig. 12, for variocus values
Ka

of CPl » over the range of Mach number that is of interest. The chosen
values of CPl correspond to certain points on the surface of a 15% thick

ellipse, and thus help to show that B, and B are very close in value in
the region for which the derivation of B 1is valid (that is, the region of
small surface slope). Thus, for the major part of an aerofoil surface we
can, in fact, take B +to be equal to B .

In the absence of a valid theoretical solution for the region of large
surface slope we will put B = B everywhere and compare the resulting
theoretical results with experiment. Such a comparison is made in Fig. 3
for the leading-edge of a 10% thick elliptic sercfoil, and velocity is plotted
there against surface slope. It 1s seen that the use of the same factor
for slope term and thickness term gives good agreement with experiment, and
that even better agreement i1s obtained when B 1s put equal to £ for
Cp, > o. This is a procedure that 1s recommended for the Kuchenann-Weber

formila. -
If we again assume that what 1s valid for an ellipse 1s also valid for

g general symmetric aerofcil, then we can write the velocity on the aerofoal
surface as

S [1 . §(_]_:.£§l] , (37)

v for ui>o
1 -8 (1 +xw)
(-]
where B =
1 - for u1< o .

(1)
A procedure for calculating the function S8 (x) is given by
Weber (Ref. 5).

Pressure distrabutions for four aerofoils at zerc incidence are shown
in Figs. 14, 15, 16 and 17. The farst two aerofoils are Nieuwland aero-
foils, and his exact theoretical solutions are compared with those obtained
from Egq. 37. For the third and fourth cases, theory is compaced with
experament. It is seen in each case that Eq. 37 gives very good results
when

A= -y 22,
- -]

or B=h =4/1‘”f°("‘M.°Cpl) . (38)

The Nieuwland aerofoils do not have entirely sub-critical pressure
distributions as they have regions of local supersonic flow. However, they
are calculated to have isentropic compressions in inviseid flow at the

particular Mach numbers indicated in the figures, and thus give a good

/basis
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basas for comparison with the present approximate theory. A further point
concerning the second Nieuwland aerofoirl is that this has an unusually thick
leading-edge and it 1s suspected that the incompressible Weber formula will
overestimate velocity near the leading edge. Any such errors wall of course
be magnified in the pressure distributions of Fig. 15.

5e Conclusions

0f the methods for calculating aerofoil velocity distributions that
have been considered here, the most accurate is a compressible form of the
Weber formula (Eq. 37), with a compressibility correction based on third-
order thecry. Third-order theory provides the compressibility factor given
in Eq. 28, but for most practical purposes this can be replaced by the
simplified factor given in Eq. 30.

Attention has been restricted here to the case of symmetric aerofoils
at zero incadence, but the effect of compressibilaty on the contributions to
velocity due to camber and incidence are being considered in order to extend
the study to lifting aerofoils.

BMG
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M 1 . ks As Aa
g

o4 1.09 105 101 1.020 0.856

5 1.155 . 200 <255 1.035 1.015

.6 1.250 375 .666 1.070 1.41

.7 1400 . 760 2.2% 1.123 2.10

.8 1.667 1.825 10.55 124 L.t
TABRLE 1. COEFFICIENTS IN THIRD-ORDER VELOCITY EQUATICNS
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