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SUMMARY

The two planes of the lower surface of a caret wing are treated as though
they were infinite and swept, and the leading edge shock boundary layer inter-
action for each is investigated. It is found that the shock shapes are curved
near to the leading edge and the pressure there is higher than the design
pressure. However, in certain circumstances each shock may soom became parallel
to the design shock and the pressure near to its design value. In extreme
conditions this may never happen and for these cases it is concluded that the
design is not achieveds A tentative condition for the achievement of design

conditions is given.

*Replaces R.A.E. Technical Note No. Aero 2943 - A.R.C. 25840
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1 INTRODUCTION

Caret or Nonweiler1 wings have the property that there is an attached
planie shock at the base (see Fig.1), supposing the leading edges to be sharp;
after passing through the shock the air flow is everywhere parallel to the
ridge line. The leading cdge may, however, not be sharp and in any case the
growth of the boundary layer is such that the displacement surface is rounded.
Consequently, the shock in fact stands off from the surface, but it may still
be plane over most of the region of interest, in which case it may appear as in
Fig.2, anmd the basic mechanism of the design will still work. This, indeed has
so far been found to be the case in experiments, which have mostly been at
sufficiently low Mach numbers and high Reynolds numbers for the effect to be
confined to such a small region near to the leading edge as_scarccly to be seen.
The effect is krnown to depend on the peramcter ) equal to M /Ri%’ the boundary

layer interaction parameter. In the literature thc effect has been divided into
two parts, the so-called "strong" interaction which occurs near to the leading
edge and the "weak"interaction which ococurs a little further dowmstream. These
are asymptotic states characterized by K >> 1 and K << 1 where K = M9, in which
6 is the angle of turning through the shocke Nearer still to the lcading edge
there may be a region of flow with "slip" and nearer still a "free-molecule"
regime. We shall only consider here the weak and strong interaction regimes,
and indeed mainly only the weak interaction case. We shall suppose the flow to
be lariner throughout.

The simple caret wing has two plane surfaces underneath and, for simplicity,
in order to gain some idea of the effect, we shall suppose each of these plancs
to be extended so as to be semi-infinite, their leading edges being straight
extensions of that of the caret; these plates may have rounded leading edges.

We shall only consider their lower surfaces. These plane surfaces cannot of
coursc really act independently of each other, but we may expect the leading
edge effects to be independent if we are not too close to the apex, which is
excluded altogether from the analysis. We shall i'ind that the shocks at the
edges are in fact curved, as in Fig.2, but that near the middle they may become
parallel and it seems reascnable to suppose that they Jjoin up. On the other
hand there may be cases in which they never become parallel, and so there must
in such a case be an interaction between the surfaces, the nature of which it
is not possible to determinc at present. A better model might be to treat the
flow as conical (instead of oylindrical) but this renders the analysis difficult
or impossible to carry out at present.

So far in weak interactions it has only been possible to carry out the
analysis in two dimensions and for either the boundary layer displacement effect
on infinitely thin flat plates, or the thickness e¢ffect without the displacement
effect, It has not been possible to combine the two effects, tihough it has been
shown that, as far as pressures are conccrned, fair agreement with experiment
can be obtained simply by edding the pressures for the two cases independentlyz;
this has been done in the present work. Once the pressurc is known it is possible
to work out the shape of the shocke For strong interactions Cheng, Hall, Golian
and Hertzbergd have bcen sble to combine the two effects and obtain what they
call a zero-order approximation in (y - 1)/(y + 1). PFor the cases we are
considering here, which are highly swept, the method is not applicable, since
in our case the strong shock region is too near to the rounded nose far the
theory to apply.
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2 WEAK INTERACTION

If the leading edge is sharp and unswept but at an incidence a, the growth
of pressure is given b

b N
-E = 1 + "'L'_(.IE' (1)
pa Ra X

where the suffix a refers to inviscid sherp wedge conditions at incidence a,
that is, conditions bechind tne straight shock at the leading edge. In this
equation ba is given by

865 T_
b, = YE-)—E-—— + 0.166 (y = 1)] (2)

M- T
a a

where T is the wall temperature, assumed constant.

If the plate is now swept, the boundary layer growth should procecd in
approximately the samec way and equation (1) should still apply provided x is
measured along the section of the plate by a vertical plane containing the
direction of the oncoming flowe We should note that the independence principle
does not apply in these high supersonic flows.

If the plate is unswept and the leading edge is blunt with diameter or
thickness 4@ the pressure due to this is given by

2
B Bo U,
v Y s (3)

where B = (%)2/3, c=c (CC)2/3, QG being the drag coefficient of the leading
edge for flow normal to its and qY = 0,112 for air and 0.169 fur heliume

If the plate is now swept, equation (3) still applies, provided C, is
replaced by CD cos2 ¢, where ¢ is the angle of sweep. One must be careful here
sbout the definition of ¢; actually, its value is to be taken as (90° - tne
angle betwecn the incident direction of flow and the lcading edge). Creager
gives this factor as cosd ¢, but it can be shown that he is in error here.
(Indeed hLis experiments suggest that the power 5 is far too large and ought to
be replaced by 1, not 2 as given hecre on theoretical grounds. )

Finally, the combination of displacement end thickness effects are added.
There is no theoretical Jjustification for this, but apparently it gives results
in agreement with experimenth. Hence the pressure ratio p/gx can be found, the
full formula being



2

3
P, ¥ Bo M,
%i; a E;;{:1 + ba -EE-. } 4‘225%57573 (&)

where b is given by (2), B = (%)2/3, c = qy(QD cos® ¢)2/3, o, = 0.112 for air.

3 STRONG _INTERACTION

It can be shown that the approximate analysis of Cheng et al? still applies

to a swept flat plate at incidence. We measure everything streamwise and the
only difference is in the drag coefficient of the leading blunt edge. If the
unswept drag coefficient is G (denoted by k by Cheng et al.) we simply write

QD 0052 ¢ in place of QD’ as indeed we did in section 2. Then all the enalysis

will still apply and in particular we can find from their curves the value of the
pressure ratio. We have recamputed tlese curves so as to be able to plot them on
a larger scale and to extend their range.

In the work of Cheng et al. it is necessary for M_ & to be large, whilst o
should be small. In many cases there can be found a range of values of 0 between
which both these relations hold sufficiently well for the analysis to be valid.
Cheng et al. give a pair of inequalities which determinc this range. It is
found for the examples considered here that therc are no values of & which satisfy
both these inequalities simultaneously, and so we shall give no further details
here.

We have neverthecless described the modification to the analysis of
Cheng et al. which is required to take sweecp into account, since it is simple
and may well be applicable if models of less sweep are cever contemplated.

L THE SHCCK SHAPE

If the position of the shock at some point near to the leading edge is
known, and its streamwise slope is known at all points downstream the position
of the shock can be obtained by integration. For simplicity of description we
shall take the incident flow as horizontal, and then we take as "base plane" a
horizontal plane through P, the point of the leading edge under consideration.
Distance X is measured from P in this plane downstream and Y is measured
perpendicular to this plane. We must therefore find the streamwisc slope of
the shock at points downstream of P, knowing the pressure rise p/p_ across it.
This is a problem of three dimensional geametry, together with the shock
relations across an obligue shock and is discussed in Appendix 1. Provided
that %4 is small where & is the angle between the free stream and the tangent
plane to the shock, it cean be shown that the streamwise slope of the shock is
approximately tan & and so, if Ys is the Y co~ordinate of the shock, we have

X
Y =/ tan;dX+Yo (5)
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where (XO, YO) are to co—-ordinates of the starting point. Now & is found from
the shock relation A

2 2
M. sin™ Z ~ 1
= = Z (€)

end so we can find the position of the shocks

Near to the leading edge it may be necessary to use the more accurate
formula of Apperdix 1. In this region the direotion of flow after the shock is
no longer streamwise so the basic flow is not so nearly achieved. Consequently,
the greater aprparent eccuracy of the full formula may not have much justification.,

5 EXAMPLES

We shall consider two cases for which boundaery layer calculations were made
by Catherall®, the details being as shown below:-

TABLE 1
Case Height . 50 Yo | Ty R x i d/c T, M
1 | 200,000 £t [10.1 4.1° | 8 |600% |3.003x10° | 0.005 |25L%K | 7.065
2 1300,000 £t | 7.046°| 1.046°| 9 | 600% 3.68x10° | 0.005 |197% | 8.692

Each of these has a chord of 200 feet and so we are taking in each case a
leading cdge diameter d of 1 foot. Each has a ridge angle of 6° and the angle
E is 66,7° (Sec Fig.3,) The other angles concerned may best be calculated
fran spherical trigonometry and their wvalues ere shown in Fig., 3 which represents
the projection of the body on & sphere whose centre is the apex. The particular
features of these are that in case 1 the displacement thickness is very small,
and so is its slope over most of the body. In case 2 the displacement thickness
is very much larger owing to the much lower Reynolds number, armd it seems possible
that for this case the leading cdge effect might not be confined to a very small
region of the bodye We have assumed thet the wall is cooled sufficiently for its
temperature T to be constantly equal to 600%K in each case.

We use equation (4) to calculate the mressurc ratio at various points
downstream of the leading edge., This equation reduces to

£ @

where the constants a', b' and o' are given by
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TABLE 2

a! b! o!
Case 1 2,13 0.0507 0.0404
Case 2 1,42 0.593 0. 0468

The values of &' are in fact the amount of pressure rise if there were no
interaction effect. The term in b'! represents the displacement effect and that
in ¢! the thickness effect., We have taken QD‘= 2 as a reasonable value,

suggested by Cheng ct alh. It of ccurse varies with the shape of the leading
edge.

The results for pressure rise are given in Fig.4. Note that tPe scale

of x/c has been stretched near to the leading edge by plotting (x/c)? a8
abcissa. As the leading edge is approached the pressure ratio rises and

indeed tends to infinity as x/c tends to zero. This cannot happen really and
the error is due to the fact that the analysis is being extended to the region
of the bow shock where it does not apply. However it is possible to calculate
the maximum value that the pressurc rise through the shock cen have. The
tangent plane to the shock is swept and the maximum possible value of the normal
camponent is M _ cos ¢. From this the pressure rise can bc calculated. We have

therefore extrapolated the pressure curves to this value and adopted the
resulting relation as a means of calculating the shock positionm, provided that
this position is known at some point., We do not know this as it depends on the
stand~of f distance of the shocke. What we have done is started from a point not
too near to the leading edge end adjusted the value of Y there so that the
resulting curve passes smoothly through the leading edge. Actually it will
stand off a small distance further than this, but inaccuracies here scarcely
affect the overall picture.

Finally we have plotted the calculated positions of th¢ two shocks at
the trailing edges for each of the two cases in Fige5. It must be realised
that the shock is not conical in this figure. If we wish to find the shock
position at say half way down the body we must cut off the figure by two
vertical lincs half way out as shown dotted in the figure and exclude the
middle part, mcving the two outside parts towards each other until they mect.

6 RESULTS AND DISCUSSION

It will be seen that for case 1 the shocks are compatible over a large
part of the body. They are curved at the edges, but onc may well expect that
the design flow will in fact be achieved and design shock will be present,
though slightly displaced from its design position. The two sides will not
interact except very near to the apex.



On the other hand, we sece that in case 2 the shocks are not compatible
anywherc and the two sides must interaot cverywhere. It is possible that the
flow adjusts itself in such a way that there is one uniform rounded shock, but
at any rate it seems certain that the basic feature of the caret wing is not at
all closely achicved. There is a sideways pressure gradient everywhere inside
the wing which will make the surface flow curve inwards, so that the flow
pattern on which the calculation was based does not apply. This is in contrast
to case 1 where the pressure is constant over a large part of the surface. (It
should be remembered that in Fig.4 the part near to the leading edge has been
stretc?ed by the method of plotting. The pressures are correctly scaled in
Fig.h,

7 A CRITERION FOR CARET FLOW

On the basis of this work we suggest a highly tentative criterion for the
existence of the planned caret flow. The basic interaction parameter X is
given by

The constant Ca comes fram the Chapman Rubesin formula. Xy is what was called
Xorig by Hayes and Probsteins. It is generally taken that the effect of the
interaction is negligible in regions where the parameter X has a value less than

unity. We will suppose that if the effect only takes place in a region 5% of
the total chord from the leading edge the basic caret wing theory will work
reasonably well in practice. We give below the values of X for the two examples

at various values of x/o. It will be sufficient here to take C = 1.

TABLE 3

Case 1 Case 2
xfc | %, Xg
0.05 0.77 1445
0.1 0.54 10.3
0.2 0.38 T3
Ok 0.27 5.0
0.8 0.19 3.6
1.0 0.17 3.2




Thus we see that for case 1 the criterion ‘xa € 1 is satisfied at 5% chord

from the leading edge, whilst for case 2 it is nowhere satisfied. A glance at
Fig.5 suggests that we are being somewhat conservative in our choice of unity
far the maximum value of Xy and that possibly & larger value might be used.

For convenience it may be preferable to give the maximum allowable valus
of Xy based on the full chards We denote this by Xgo® The result is

‘X'GC = 'R-'E'_'I'z_ = 0.22 . (8)

For values greater than this one may have doubts as to whether the
design caret flow will be achieved.

One of the experiments of Sykee|8 was made at a Mach number of 10.3, with
a design value of ZD - GD equal to 5% There are two possible configurations
satisfying the design conditiorns for this model, one with ZD = 8°, 5D = 3° and
the other with & = 20°, 6, = 15°.  The Reynolds number of the tests was
1.4 x "05 per inch and there were two models, one with a sweep of 50° and length
4.3 and the other with a sweep of 70° and length 9.9".

For these models the results are:-

b X
{ 3° 50° 0.82
3 70°  0.54
{15° 50° 0.18
15° 70° 0.12

It will be seen that the maximum value of Xgo is exceeded for both sweep
angles for the weak shock case, that is when &D = 30, particularly for the model

with the least sweep. The experiments do in fact show some divergence fram
design for this incidence, and it is larger for the lower sweep angle. On the
other hand, for SD = 15°, X oo is below the criterion given here, and indeed

design conditions were well fulfilled for this case. It may be possible that
the value 0.22 in equation (8) could be raised a little without prejudicing the
design too much.

We mey note that for the caret wing tested by Squire7 (his model 2) the
value of Xgo W8 only 0,01.



Leading edge thickness has same effect on the results; we have taken a
fairly large value for this in our numerical examples, If it were thinner the
effect would be reduced although the value of X0 is not changed. Hence for a

thinner leading edge it may be possible to use a larger value of Xg0 than the

one suggested. It will be noticed, however, that the thickness effect does not
depend on Reynolds number. Consequently for the lower Reynolds numbers, as in
case 2, the thickness effect is almost entirely masked by the larger dlsplacement
effect as can be seen from equation (7) and Table 2, and gquite large changes in
thickness may be made without affecting the overall picture very much.

8 CONCIUSIONS

The analysis of this paper shows that if the interaction parameter
LA M(x/R2 is large enough the flow aimed at in the design of caret wings may

not be echieved. If each side is calculated independently thc shapes of the
shocks may be found approximately in places not too near to the leading edges.
The two shocks thus obtained may meet at an angle and cannot join up, so that
there must be same interaction between the two sides. What happens in such a
case carnot be determined by the simple methods adopted here, and the whole
flow must be considered afresh.

However, for smaller values of ¥, the two sides may well be considered to
be independent of one another, armd the two shocks merge properly, except for a
small region near to the apex., In this case the design is probably achieved
except near to the leading edges.

An attempt has becn made to estimate the conditions for which the design
flow may occur. If Ma is the caret design Maoh number after the shock is
passed and Rac the corresponding Reynolds number besed on the maximum chord, a
tentative value for achieving design flow is

M3

X
Xao= 7o ¢ 022

ac

and design flow may not be achieved if this value is exceeded.

In most of the tests so far mede xac has been well below the maximum value

suggested. In order to estimate the value of such a criterion it will be
necessary for tests to be made at higher values of Xoc® This may be difficult,

but it scems cssential if one is considering flight at very high altitudes such
as tnat suggested in case 2 of this paper, which fits into the suggested
corridor? for flight at great heights and large Mach numbers.

The value of % _ _ may well be an important consideration in deciding the

characteristics of aﬁy future wind tunnel which may be built to investigate
flight at large altitudes and hypersonic speeds.
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SYMBOLS

a',bt,c' constants in (7)

b given by (2)

B (1/2)%/3

c cY(GD)Z/3 in equations (3) and (4)

c maximum chord

C constant in relation H/p1 = C(T/T1)

o, constant (0.412 for air, 0,169 for helium)
QD drag coefficient of the nose

d diameter or width of the nose

M Mach number

P pressure

Rx Reynolds number based on distance x

T temperature

x streamwise distance along the surface

X streamwise distance along the base plane
Y distance from base plane

Z distance normal to the XY plane

v specific heat ratio

€ tan &y - tan g

) turning angle through shock

g angle between tangent plane to shock and incident direction of flow
B coefficient of viscosity

g angle between planes of caret and vertical plane
¢ angle of sweep

. w/R?
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Subsoripts

©0

HNo.
1

SYMBOLS (CONTD)

refers to conditions at infinity upstream

refers to conditions in inviscid flow after passing through the shock

refers to caret design condition

refers to quantities based on the centre-line chord o

refers to conditions on the wall
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APPENDIX 1

STREAMWISE SLOEE OF THE SHOCK

Assume for convenience of description that the incident flow is horizontal
and in the direction of the X exis, that OY is vertically downwards, and 02 is
normal to 0X, where O is the point where the incident ray under consideration
would reach the design shock of the caret. (See Fig.6.)

Then the equation of the design shock is Y = X tan éD. This sheck

contains the leading edge, which makes an angle 90o - ¢ with OX. Hence the
equation of the leading edge (expressed with the denominators as actual
direction cosines) are

X =a I-5b - Z~c
sin ¢ sin ¢ tan ;D (1 - sin2 ¢ - sin2 3 tan2 éD)%

where (a, b, c) are the co-ordinates of some point on the leading edge.

Ncw let
cos ¢ = tang tan,
ard the leading edge beccmes
X-a _ __Y=-b _ _Z=~c
sin ¢ =~ cos @ cos¢ ~ sina cos ¢ *

We now suppose that in fact the incident flow hits an oblique shock, the
equation of whose tangent plane at the point of impact is

X+mf+nZz =D ,

where &2 + m2 + n2 = 1, s0 that £, m and n are the actual direction ccsines of
its normal. Now the incident flow makes an engle & with its projection on the
planc of the shock, that is, 90° ~ & with the normal to the shock. Hence we

hove & = sin Z.

Again, in this infinite swept model, the leading edge must be parallel
to the tangent plane to the shock, that is, perpendicular to the normal to the
shock. Henoce

{sing + mcosacosg +nsinacos¢g = 0 (9)
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Now
m2 + n2 = 1 - &2 = cos2 Z .

Hence
m = -cos&cosP, n = ~cosZsinP ,

where B is angle to be determined. Equation (9) becames

sin Z sin ¢ - cos a cos B cos ¢ cos & ~'sina sin B cos ¢ cos & = O ,

that is
tan £ tang = cos(a - B) ,

ard so P can be found.

The section of the tangent planc to the shock by the plane Z = O is
€X+mY=D 3
and so the streamwise slope of the shock is equal to

sin & tan £
cos B cos &  cosla =(a - B)]

|
gl
f
i

tan §
= — . . (10)
cos {cos  (ten & tan $) - cos (tan &  tan ¢)}

This result can also be cbtained by spherical trigonometry, and to some
this may be a prefersble way of finding it, since by projecting the figure on
a sphere it is possible to see some of the directions of flow involved,
particularly that of the emergent ray.

We consider some point O on the shock, and take it as the centre of a
sphere (See Fig,7). Through O we draw (1) a line OA parallel to the lcading
edge, (2) a plane OIZ parallel to the "base plane", and (3) a plane ONAZ
parallcl to the design shock of the caret. These are projected on to the sphere.
The tangent plane to the actual shock, which passes through the line OA (for an
infinite swept plate) is also drawn. This produces the great circle AN's The
incident direction of flow is OI, and IOA = 90° - ¢ from the definition of sweep.
Now the planc containing the incoming and outgoing directions of flow is
perpendicular to the shock and so is represented by the linc IN', of "length" &,
the angle between the incident ray and the shocks The ray will emerge in the
direction 08', where IS' = 8, the turning angle, which may be calculated from
the shock relations, if £ is known. From the figure we sce that the strecamwise
slope of the shock must be tan IQ, If the design flow were achieved the
incident ray OI would emerge along 08, with IN = ;D and IS = §D’ 0S being

parallel to the ridge line. The actual emergent ray, being along O8', is no
longer parallel to the ridge line, so that the dircction of flow is changed by

- 1Y -



the change in the shocks Its direction is more "outwards" than befare, but one
might expect the outwards-inwards direction of the pressure gradient to help to
bring it inwards. However we are mainly considering a region where the shock
deflection (the angle NAN') is small, so that S and S' are not far from one
another.

FPram spherical trigonometry we have

tan IN
cos @ = To—qL = tanéD tan ¢
tan IN!
cos(a - B) = tn I © tan Z tan ¢
cos B = tan IN' _ tan &
T tan IQ T tan IQ *
Hernce we have
tan & tan &
tan IQ = 5B = cosla =(a - B)]
t
= an & ’ (11)

cos [cos—1(tan & tan ¢) - cos—1(t&n Z tan ¢)]

which agrees with the value (10).

Since tan LD is approximately equal to tan £ the denominator in (11) is

close to unity and we have
tan IQ = tan &

It is not necessary for & itself to be small; it must not differ very
much from Z“D , which implies that the angle NAN' is small.

3

If in fact we write tan & = tan Z’D + € and ignore e&” and highcr powers

we find that the denominator in equation (9) may be written

- 52 'tanz o) .
1 - tan® Zn tan® ¢ °

1

We note also from Fig.7 that the maximum possible value for & is equal to
IA, that is 90° - ¢« This was the valuc we used in extrapolating the pressurc
curves in Fig.4 to the maximun possible pressure rise across the shock.
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LEADING EDGE EFFECTS ON CARET WINGS

The two planes of the lower surface ¢of a caret wing are treated as
thaugh they were infinite and swept, and the leading edge shock boundary
layer interaction for each {s investigated, It i1s found that the shock
shapes are curved near to the leading edge and the pressure there is higher
than the design pressure, However, in certain circumstances each shock may
soon become parallel to the design shock and the pressure near to its design
value, In extreme conditions this may never happen and for these cases it
1s concluded that the design is not achieved. A tentative condition far
the achievement of design conditions is given,
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