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SUMMARY 

An appropriate form of the boundary layer stability equation is 
developed for the condition where the fluid is in contact with an isotropic 
and homogeneous elastic medium, and various approximate analytical solutions 
obtained for certain types of surface, so as to reveal at least qualitatively 
the origin and characteristics of neutral oscillations. In the worked 
solutions the elastic medium is treated as non-dissipative, and the interior 
boundary is supposed either fixed, or free of stress, or exposed to fluid: 
the boundary layer, also, is treated as that over a flat-plate in an 
incompressible fluid. 

s 

. 

The results obtained show that the presence of such a resiliant 
surface introduces the possibility of a number of other modes of oscillation 
(over the complete Reynolds number range) apart from those of 
Tollmien-Schlichting waves. Most of these modes have speeds of propagation 
determined largely by the properties of the elastic material, and their 
presence may well be effectively a matter of 'non-viscous flow stability - 
a subject not treated here. The Tollmien-Schlichting mode has its minimum 
Reynolds number increased by the presence of the surface, but if the interior 
boundary is free there may be an upper limit as well. Indeed, a sufficiently 
thin free surface, or one of low rigidity, apparently eliminates neutral 
oscillations of this mode altogether, only at the expense, however, of the 
introduction of a mode of flexuralwaves. 
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1. Introduction 

The theoretical study of the stability of the laminar boundary 
layer in contact with a flexible surface is a problem of current interest, 
but is one, beset by considerable difficulties. Even in the absence of 
surface elasticity, there are still perhaps certain aspects of the standard 
treatment (described, for example, in Ref.1) which are not completely 
satisfactory, and numerical solutions involve a great deal of laborious 
calculation. It is not to be expected, therefore, that a theoretical 
understanding of the same problem complicated further by the presence of 
surface elasticity will be readily obtained. Enthusiasm for the task is 
also moderated by the suspicion that the experimental evidence concerning 
the effect of a flexible surface in reducing skin friction, whilst of great 
significance, need not necessarily be due to enhanced stabilisation of the 
laminar boundary layer: it could be that turbulence is present, but that 
the surface modifies it to such an extent that its usual consequences are 
substantially alleviated. We shall not remark upon the merits of this 
argument; we draw attention to it because, although it helps to present 
the need for theoretical work. it also justifies endeavours such as that of 
Ref.2, and that which we attempt here, to examine the qualitative - rather 
than the quantitative - nature of the solution, before embarking on long 
calculations which may not be relevant. 

Another reason for eschewing at this stage too detailed a survey 
is the vast number of variables which may be of sOme significance. With 
an inflexible surface, one has to consider the Reynolds number and some 
parameter indicating the velocity profile of the boundary layer as 
variables, - at least, if one excludes compressibility effects, and 
restricts the consideration to two-dimensional flow, and postulates only 
the existence of neutral oscillations. But even with an isotropic, 
homogeneous and non-dissipating elastic surface, there are two additional 
independent parameters denoting the elastic behaviour of the solid surface 
together with a third, denoting the magnitude of elastic stresses corn;iored 
with aerodynamic stresses - say, the ratio of the density of the fluid to 
that of the surface material (o). If one were to include damping, a simple 
treatment might require the use of two more independent variables, and if' 
one were to consider non-isotropic materials one might be forced to employ 
as many as 36 independent elastic constants for a single material! As well 
BS this, one is faced with a variety of possible conditions to be applied at 
the boundary between the elastic skin and the effectively inelastic structure 
to which it is attached. Yet it may well be, in practical applications, 
that inhomogeneity, anisotropy, dissipation, and the precise form of the 
interior boundary condition all play an important r&e. 

It need hardly be pointed out, therefore, that the enormity of the 
problem forces one to simplify it - perhaps to the extat that it loses its 
practical significance, though one can only hope not. What we try to do 
here, therefore, is to examine qualitatively the existence of neutral 
oscillations in the two-dimensional flat plate boundary layer in ccmtact with a 
homogeneous and isotropic, non-dissipating surface, an3 in doing so we allow 
the density ratio between surface and fluid, and the two elastic constants of 
the surface material, to vary over the complete physical range. These elastic 
constants are most conveniently described by the ratios to the free-stream 
speed (~6) of the speeds of compression waves (c,> and shear waves (c,) in the 
material; there are occasions where it is more convenient to use the speed 
of propagation of 'Rayleigh' surface waves (c,), or the speed of longitudinal 
waves on an extensive thin plate (c,), but these speeds, itwill be appreciated, 
can be related to c1 and ca. We also hypothesise four simple interior 
boundary conditions, one the obvious concept of an elastic sheet of uniform 
thickness rigidly attached to a fixed structure, and another the less 
practical but 'opposite' notion of a surface of uniform thickness free of 
stress at its interior surface; the other two relate to a surface in contact 
with fluid at its inner boundary. We are then presented with four similar 
problems, involving 3 non-dimensional physical parameters which affect the 

functional/ 



functional dependence on Reynolds number (R6) of the speed of propagation 

(4, and the wavelength (proportional to vv Y of neutral oscillations. 

The preliminary paragraphs (2, 3 and 4) are concerned with the 
establishment of a suitably modified form of 'stability equation', like that 
for an inflexible surface, but taking account of the feed-back between the 
elastic deformation of the surface, caused by fluid stresses, and the 
structure of the fluid oscillation. This stability equation is merely a 
convenient form of statement of the Eigen-value problem which allows us to 
find discrete values of c and 6 for the hypothesised neutral oscillation 
at any chosen Reynolds number, and its form for an inflexible surface is 
familiar. In deriving it, since we are interested in how the inflexible 
surface solution is changed, we must make similar simplifications to those 
employed for the inflexible surface 
that l/R&, c/u6 and 6, 

- which are based on the assumptions 
or some combination of them, are small quantities. 

However, one of the less satisfying, but perhaps more provocative, of our 
deductions is that our analysis yields results implying the existence of 
neutral oscillations whose speed is, for instance, close to a natural wave 
speed of the elastic medium, even where this implies large values of chg. 
.Although one should not attach credence to such deductions, because values 
of c/u6 around unity - let alone higher values - are quite outside the 
scope of our approximations, nonetheless one is tempted towonder whether 
such fast oscillations may exist, and the only way of finding this out would 
be to start afresh the formulation of a stability equation with approximations 
introduced to suit such a possibility. An exact form of the stability 
equation cannot, of cowse, be obtained for an inflexible surface, so any 
hopes of an all-embracing form for the flexible surface problem are perhaps 
too ambitious. 

Having established this equation in a general form - suitable for 
boundary layer velocity distributions other than flat plates, for amplified 
or attenuated oscillations and for dissipating surface materials - we 
particularise it to our problem, and then proceed in paragraph 5 to 
introduce further and coarser simplifications (which would seem adequate 
for a merely qualitative interpretation) so as to evaluate the terms of 
this equation depending on the boundary-layer characteristics. Again in 
paragraphs 6, 7 and 8 we introduce certain simplifications to deal with the 
terms of the equation involving the elastic constants - as they are in 
general too complicated to display a qualitative solution; paragraph 6 
deals with the application of the boundary condition of rigidity at the 
interior surface, and the next paragraph reproduces the work for a freely 
mounted surface. They are both detailed discussions of the algebraic 
solution of the stability equations for a number of extreme ir~tances in 
which the expression for the elastic constants simplifies - for very thick 
or very thin layers of the surface material, and for oscillations 
propagated slowly or rapidly compared with the speed c,. Prom the form 
of the algebraic equations thus produced, it is usually possible to deduce 
the qualitative behaviour of the solution for neutral oscillations as it 
appears, for example, on diagrams of (c/u& or 6 versus Rg. 

Paragraph 8 makes a brief reference to two other particular 
instances in which the inner boundary condition has a simple form, 
supposing this boundary to be exposed to a fluid which has extreme (large 
or small) values of density and viscosity. A detailed summary of these 
solutions is presented in paragraph 9 together with a key to the few 
quantitative results which thrust themselves out of the analysis. 
However, it is not intended that this discussion should be a substitute 
for numerical results: rather it is hoped that it may be an aid in showing 
the areas inwhich solutions may exist and have some particular interest. 
Numerical work, if attempted, would be.built on'the results of paragraph 4: 
only the introduction to the sections 6, 7 and 8 - where unsimplified 
expressions for the elastic constants are stated - would be of relevance. 

2./ 
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2. Equations for the Displacement of the Solid 

. 

We suppose that the material of the solid is isotropic and 
subjected to small steady stresses superposed on which are oscillatory 
stresses a&so small compared with the modulus of the material. We may 
thus consider the latter as independent of the former in their effect on 
the material's displacement. In the absence of the oscillatory stresses 
we suppose that the surface of the solid is exposed to a fluid at the 
plane y= 0, the x-axis being taken in the downstream direction and y 
being measured positive into the fluid. If X and Y are complex 
functions of x and y whose real parts denote the displacement parallel 
to the x- and y-axes of the material particle at (x, y) resulting from the 
oscillatory stresses applied by the fluid at the surface, then we can write 
the boundary condition at this surface as 

ax aY 

( )I 
- 

[$ (f + g++J$=; : 

Teia(x-ct) 

I 

aj,i+-4 

. . . (2.1) 

where G is the modulus of rigidity, h is the modulus of elongation, aid 

GTeia(x-ct) ) Gpeia(x-ct) 

are complex functions whose real parts are the oscillatory shear and normal 
stresses on the surface ias. the directions of the x- and y-axes respectively. 
Here a is a real constant denoting the wave number, and c is a ccmplex 
number denoting in its real part the speed of the disturbance along the 
surface, and its imaginary part determining the degree of amplification or 
attenuation with time t. Throughout the present work we shall, however, 
treat c as real, which is equivalent to restricting our considerations 
to the existence of neutral oscillations. 

Supposing that the material is bounded on the interior at the 
plane y = -4/a, say, there will be two additional equations to denote 
conditions at this interior boundary: these conditions will be later 
stipulated to suit the problem considered. A solution of the equations 
of small non-dissipative elastic displacements whose form allows these to 
be satisfied together with the two equations of (2.1) is given by 

aXe-ia(x-ct) = <A.Jrs )sti r,v+A, cash r,q+A, cash r,q+rsA, sinh r,? 1 
iaYe-ia(x-ct) = A,cosh r,rl+(f+.Jr,) sinh r,tl+r$&nh 

where a rL = 1 - (c/c,)', ri = 1 - (c/c,>", 

a 
Cl = (h + ~G)/P, c; = %bs 

rin+A, cash r,q I 

. . . (2.2) 

tl = aY 

3 
. . . (2.3) 

and where P, is the density of the material. Thus substituting from 
(2.2) in (2.1) we find that 

241 + (1 + $)A, = T 

3 
. . . (2.4) 

2Aa + (1 + ri)A, = i@ 

ana/ 
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and application of the interior boundary conditions will generally yield 
two other equations enabling the A-coefficienfsof (2.2) to be determined 
in terms of the surface stresses. 

If the material exerts some dissipative effect, then the 
equation (2,2) may still be applied if we suppose that this effect can be 
represented as for a tVoigt-Solid,5 by expressing the stress tensor in the - 
form 

rim = 
L- 

h + (LQ-20,) a 1 
axj 
- 

at ax. 
J 

with cc, and $, suitably chosen 
sre respectively the displacements 
unless n = m, when it is unity. 

constants. In this expression 
and the co-ordinates, and 6nm 

xn, xn 
is zero 

Evidently cc, and fla are 'coefficients 
of viscosity' for the material, and further /.$ = 4p,/3 if the mean normal 
stress is independent of the of dilatation. 
are not both zero, the equation 

If' Y, and c! 
some modification in order that' 

(2.2) should satisfy the equations of displacement: we find in fact that 

. . . (2.5) 

a 
cl = (X + 2G - iacl,c)/ps, ci = (G - iapac)/ps , . . . (2.6) 

This is the only modification needed, and equation (2.4) remains unaltered. 

3. Expression of Surface Stresses in terms of Fluid Stream Function 

We suppose that the fluid velocity components parallel to the 
axes are (u, v) and if the fluid is incompressible these can be represented 
by a stream function Jr where 

As is usual in such problems, we separate $ into two parts denoting the 
steady flow and a superposed oscillation by writing: 

'IJ(n + $(n)eia(x-ct) . . . (3.2) 

where U(q) is real, and $(?I) a complex function. Supposing that I$1 
is sufficiently small, the equations of fluid motion then show that the static 
pressure of the fluid is p, say, where 

. 

[P-P,(X) I/~” = 
R.c[ 

U'$b+(l-U)$'+ : 
R 

($t-$ttt )]eiacxdct)3 . . . (3.3) 

where p is the fluid density and 

R= dw . ..* (3.4) 

It is also to be noted that in accordance with the boundary-layer 
approximation to the viscous flow over a plate: 

’ dpl --= 
pea dx 

” U”(0) . .*. (3.5) 
R 

Now, denoting by a subscript $ the oscillatory parts of p, u 
surface where 
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Remembering that we are dealing with small fluid oscillations, 
causing small displacements at the surface, we retain only first-order 

? 
uantities in X0 
3.5) in (3.6) that 

and Yo, or 56, SM find from (3J), (3.2), (3.3) and 

(~/PC”) Ix=% = - 1 U”(0)cX$e-ia(~-ct)-lJ~ (0)$(O)-$1(o) 
R 

+ ; w (O)+$‘(O)l 

(Gdpca ) I,, = 
0 

.l. UW(0)ayoe-ia(xO-ct) 
R 

+ ; w’(o)+~(o)l . 

Substituting for X 
surface displacemen s at q = 0, and substituting for 8 

and Y. from (2.2) by noting that these are the 
T and 'CI from (2.4) 

we find after some algebra that 

i . 

2+ - oV(0) (1-r:) 
R 1 L Ai+ (l+rt)+ t oU"(O)(l-r:) 

R 1 A, = z (I-~~)[m~‘(o)+$W- 
R 

L 
i 

2+ .z i ou"(0)(1 
R 

-rX) 1 FL Aa+ (l+rt)+ - oTP(O)(l-ri) 
R 1 Aa 

= -o(~-r~)IIU~(0)$(O)+~l(O)Ji+ 1 w (O>+#’ (0) 1 1 
R J 

. . . (3.7) 

Here we have written 
o- = P/Ps 

which can be called the relative density: if U is large the surface 
material is evidently light, but if CT is small it is heavy, relative to 
the fluid. 

4. Boundary Condition for the Fluid at the Surface 

The boundary conditions at the surface within the fluid are the 
kinematic condition that 

ay 
"I(xo+~,y,) = ' xc I/ ; 

J (x0,0) 

and the assumed 'no-slip' condition 

. . . (4.1) 

. . . (4.2) 

Remembering/ 
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Remembering, again, that we are concerned only with first-order effects 
of a small oscillation, we can interpret (4.2) from (3.1) s.nfJ (3.2) as 

0.. (6.3) 

. . . (4.4) 

I axf 
U'(Q)Yoa + $l(0)eia(%-ct) = -- 

l? at (x0,0) 

and so on using (2.2) we have 

44 + *a = j-$'(O) + U'(O)(A, + A,) . 

Again from (&I) we have similarly 

Ai + A. = u'(o) 

and evidently (4.3) can be written as 

*a + 43 = i[$'(O) + U'(O)+(O)] . e.. (4.5) 

Together with the two as yet undetermined boundary conditions to be applied 
at the interior solid surface at y = -d/a, the pair of equations (3.7) and 
equations (4.4) and (4.5) 
A, and, say, 

are together six linear equations in Ai, As, Aa, 

% = G(O) , A6 = i[$'(O) + U'(O)$(O)l , . . . (4.6) 

relating these to $"(O) and $3"' (0). We may conveniently summarise them 
in the form 

n!, amAn = am = (m = 1,2, . . . 6) . . . (4.7) 

where the equations for m = I,2 are taken to relate to the interior 
surface boundary condition, and the amn and a are given in Table 1 
below for m = 3, 4, 5 and 6, read from (3.7), (k4) and (4.5), but 
simplified by the omission of the terms of order u/R, where these occur 
compared with unity, Evidently 4, As, As and A, can be eliminated to 
provide the boundary condition at the surface within the fluid which will 

'be a connection between As and $ given by (4.6) and $"(Oj and $"'(O). 

Table 1 

Values of amn and am in equation (4.7) 

n 

\ m 

3 
-- -___ 

4 

5 

6 

b- 

- 

1 
- 

1 
_- 

0 
- 

0 
- 

I 
- 

2 --I 3 

0 0 

f-- 
1 &(l+ri) 

I-- 
1 

t 

I 
__ 

0 0 
I 

4 5 6 am 

$(I+$) 

0 

0 

1 

..- 

.- 

0 0 % (1-r:) #'l(O) 

0 1 : (1-r:) 1 g (GrX) #"' (0) / 

In the classical theory of oscillatory disturbances in viscous 
flow, the equations of fluid motion are solved in such a way that $ is 
represented as the sum of two functions, namely, 
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Gb = C,@(tl) + C,f(C) . . . (4.8) 

say, where 

c = h,)(~;)"3, u($) = 1 , u; E u'($) 0.. (4.9) 

and where, in general, @ is independent of R. 
function f(Z) 

If c is real, the 
is taken to satisfy the condition f(G) --) 0 as Z -+ +c0, 

together with the equation 

d"(c) + rrf'(zj = 0 

? 
l or if”’ (c) + a%) = f (G)  

It follows from (4.8)) (4.9) and (4.10) that, for R+ 00, 

. . . (4.10) 

; #“’ (0) = -iv; [f (&)-gift (CL) lCa +0(1/R) l .  .  (4.11) 

where 

Again, 

. . . (l+.Q) 

. . . (4.13) 

where for convenience we have placed 

[i 

k 
G(t;,) = 2 f(G>dZ - Gif(Zi> 

co 31 
k$f'<k,l . . . (4.14) 

as we may deduce using equation (4.10). Further from (4.8) and (4.9), 

and 

0) = C,@(O) + Csf(tJ,) 

i 
l +’ (0) = C,@‘(O) - C,kif’<~J/V,l 

. . . (4.15) 

Substituting in (4.7) from (4.11)) (4.13) and (&.I 5)) we find we now have a 
set of six linear equations which can be represented as 

,& b,,B, = 0 (m = 1, 2, . . . . 6) 

where *n = An (n = I, 2, 3, 4) 

B 5 = 1' C Ba = C, 

and where bmn = amn (n = '9 2, 3, 4) 

b 
ms 

= iam, B(O) + iama [U~(0)@(O)+$f(O)] 

. . . (4.16) 

1 
(4.17) 

b ms = iam f(;So)+iams U'(0)lf(t;,)-[~~f'(~~)/~lU:]]-a~Co 
J 

it being here assumed that 8% = as = 0, as we shall indeed later verify. 
The boundary condition now becomes the condition that the set of 
equations (4.17) is compatible; that is, that the determinant 

(bmnj = 0. . . . (4.18) 
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Or if we place A = lamnIt and denote by 
corresponding to the element amn then, 
becomes 

Amn the first minor of A 
from (4.17), the condition (4.18) 

A{[E/(l+h)l-F{ = b-W’U~(o)lm~lAms am-i(l+E)m&C’,s amj/[CaGift(t: )I I 
where 

E= u'(o)@(o)/@'(o), F = -f(k)/[Cif'(Gi)] e F(k) 
. . . (4.19) 

and O,?i = (l+A). 

Thus on expansion and rearrangement, we find from Table I, (4.11) and (4.13) 
that 

E= 
(I+~)@+D;(~+F)+D;G 

A+D;(I+F)+D;G 
. . . (4.20) 

where 

D; = &cr(l-r~)n:U~aA35 
. . . (4.21) 

D' = a ~(l-r~>~iU~a[A~sU'(0)-A~8'l/U'(0) 

D; = Ml-r~)$J;a [4e-4sU*(0)l/U1(0) 

Equation (4.20) is rather too complicated for a general. review such as we 
intend here, and we shall simplify it on the basis that both [Fi and 
UJ; (or l/iJt(0)) are generally small quantities. As is well-known such 
assumptions, or others similar to them, figure prominentl.y in the theory of 
hydrodynamic stability (in the derivation, for example, of equation (4.10)). 
To be precise, we shall ignore terms of order 

F'hJ; , F/U;' . . . (4.22) 

compared with unity in both the denominator and numerator of the right-hand 
side of (4.20), allowing that, in general, CT and the A's are of unit 
order. Then, noting that we may demonstrate, on expanding G in-terms of 
F, for F+O (i.e., q +m) that 

G = F[l - 2F +cmv . . . (4.23) 

we can simplify the right-hand side of (4.20) to read 

E= 
[(I+A)A+D;+D;]F+D~~ 

(A~D;)+(D;-D;)F ' 

Now, if we adopt the notation 

w = l/b + E) 

5qG-J = VU + NJ 
and note furthermore that, from Table I, 

A= $.<(I-r:)Ada + A0 , A0 = Asa 

. . . (4*24) 

. . . (4.25) 

. . . (4.26) 

then (4.24) becomes 
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3($) = 
[(l+h)Ao+D, ]w+D, 

(Ao+~a)+h&' 
. where 

D, = ~~('-r~)tllU:A~,[u'(0)-U~~/u'(O) 

D/Da+D, = -$-o(l-ri)rlLU;aA,, = U;D; , say, 

Da = $b-r; )vlU; [A,,+(l+h)Aa6 1 

. . . (4.27) 

. . . (4.28) 

For the boundary-layer flow over a flat plate for which 

u'qo) = U"' (0) = 0 

the assumptions that 

h = 0, v: = U’ (0) . . . (4.29) 

have a special justification, and then (4.27) simplifies further to 

. . . (4.30) 

which is the form of the so-called s'stability equation" we shall use in what 
follows. It will be seen that for an inflexible surface (4,20), (4.24) and 
(4.27) all reduce to the well-bown form 

“re, > = w(l+h)/(l+hw) . . . (4.31) 

s 

(see for example, Lin I, eqmtion (3.6.Y), p.40) whilst (4.30) is the simpler 
fO.IlIl 

:g$:, = w . . . (4.32) 

. used usually as a first approximation to (4.31) in an iterative process. 
The form of stability equation proposed by Brooke-Benjamin2 can be written as 

“t?(r, > = w+Ui’ @/Ao> .  .  l (4.33) 

which can be regarded as a particular form of (4.30) for the case where 
Da << ho, that is in general for 

&(I-ri) = $-ma/G cc 1 . 

We shall call this the 'rigid surface" approximation, on the grounds that it 
implies large G, but we see that it is inevitably seriously in error in the 
neighbourhood of zeros of Ao, which indeed play an important r&e in the 
stability theory. We shall reserve the term 'inflexible surface' to imply 
the more stringent condition that G = 00, for which the mode of oscillation 
is given by the well-known Tollmien-Schliehtig solution. A 'heavy surface' 
is one for which CJ is small compared with unity, and a 'light surface' 
conversely one with large a; in aerodynamic applications of engineering 
interest, it is likely that all surfaces would be 'heavy'. 

5. Expressions for w 

The function g(&) of equation (4.27) and (4.30) is a well-known 
complex function of the variable &, and is, for example, tabulated by 
Lin (Ref.l, Table 1, p.4-2). Its behaviour is shown for real negative & 
in Fig.1. The function w is more ccxnplicated to deal with, and most 
numerical assessments of it are founded upon the assumption that 

6 << 1 . . . (5.1) 

where/ 
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where 6 represents the ratio of boundary-layer thickness to the 
wavelength (l/a). This, for an inflexible surface at least, is in any 
case a justifiable assumption ir U'(0) is assumed large as in (4.22). 
Numerical estimates are often founded upon an expansion in a power series 
of P, and the leadin 
equation (5.5.8), p.86 'i 

terms are given (according to Lin, Ref.l, 
by: 

w = 1 + U'(0) + [U(s)-I]-" 111 +0(61)1 . . . (5.2) 

where the path of integration of the line integral is indented below the 
singularity at 7 = Q, and where U(6) =u 
outside the boundary layer. Thus placing 

dc, u6 being the speed of flow 

w = u + iv .*. (5.3) 

where u and v sre real, we find that 

v = -du”(~71 >U’ (WJ;” 111 +Q@“) +U[u@)-” I ] . . . (5.4) 

u = Ul(O)i&j(U-I)-'dtl + [U(6) - I]-'~~1 +&&")I . . . . (5.5) 

We note that, in this approximation, v is independent of 6. In particular 
if U(6) is large, we find that, for the Blasius flat plate velocity 
distribution 

U”hi > = ~hJivwbJt(o>lpI1l +ub(q-31] 
so, that in (5.4), we find from the Blasius solution and (4.29) that, correct 
to terms of order [U(6)lB3 and ha compared with unity, 

u(S) c 1.92 v-1'3 . .a. (5.6) 

Again in (5.5), we find that 

u = wmJ(~)l-a - i v4n[U(S)] +o[U(6)'1] l * .  (5.7) 

from which we observe that, as u is in general finite, 6 is of order 
WW. Accordingly, for a flat plate velocity distribution, from (5.6) 
m-d (5.7) 

U’(0) e [u@)llu fi 3.7 u/va’3 . . . (5,8) 

correct to terms of order 6 compared with unity. 

In the arguments that follow, we shall be considering the 
modifications to the boundary-layer stability due to a flexible surface on 
a flat plate, and (5.6) and (5.8) h ave a simplicity and qualitative 
signif'icance which renders them particularly suitable for our descriptive 
treatment. However, the latter in particular would not usually be judged 
sufficiently accurate for quantitative assessments, and we note that our 
approximations are severely in error wherever 6 or c/u& is large. 

We shall frequently refer to the Reynolds nmber R based on the 
velocity u6 and the boundary-layer thickness: this is evidently 

Rs = R6U(6) . . . (5.9) 

and for a flat plate velocity distribution, supposing that 6 is the 
displacement thickness 

Rg = 0.58 RhJ(@l’/@(O) . . . . (5.10) 

Further,/ 



- 13 - 

Further, substituting for R from (4.12) in terms of &, and using (4.29) 

R6 = 0.58 u'(0)[U(S)]a'(-~)3 
. < 

= 0.58 u(-&)~/v”~ 
Another useful relation is 

8R6 = ; [u@)Y kqY = 2.38 ( -&)“ /v  l . . . (5.12) 

.a. (5.11) 

It will of course be recalled that in our treatment of neutral oscillations, 
3 is real (and in fact negative in the range of interest, as shown in 
Flg.1.). 

6. Non-Dissipating Material Fixed at its Interior Surface 

If the material of the solid is fixed on its surface at y = -d/u 
then here both the real psrts of X and Y vanish. Thus from (2.2) 

-(h/r,) sinh r%d+$ cash r,d+$ cash rid-r,A, sinh rad = 

Ai cash rid-&/r,) 
. . (6.1) 

sinh rsd-r,A, sinh r,d+A4cosh rod = 0 

If we identify these with the equations m = 1 and 2 of (4.7)) then we can 
deduce from Table I that 

A 
0 

z i (~+r~)'[(l/r~ra) sinh rid - sinh rsd - oosh rid oosh rsd) ~ 

G 1 + ri + rira sinh rid sinh rsd - cash rid cash r,d . . . (6.2) 

A 
46 = 4 (l-rX) hi sinh r,d cash r,d - (I/ra) sinh r,d cash rid] l .e (6.3) 

$3+A43 = (l+r~)[(l/rir,) sinh rid sinh r,d-cash r&d cash rsd+l] 

+ 2[r,r, sinh r,d sinh rsd-cash r,d cash r,d+l] 

+~$(l-r~)[(r,r,+r;~rs -')sinh rid sinh rsd-cash r,d cash rsd+l)] 

. . . (6.4) 

6.1 Very thick surface 

If the surface is very thick, so that r,d and rad are much 
greater than unity, and we 
positive (i.e., c c c,), 

suppose that both r 
then from (6.2), (6.3) sd(6T8.) sre real and 

A0 = [rirp- ~(l+r~)a][(r,r,-l)/4r,r,] exp [(ri+rs)d] . . . (6.211) 

A 46 = &,(I-rL)[(r,r,- 1)/4qr, 1 exp [ (r,+r, )d . . . (6.3~) 

Aa5+A4a = [~~r,-l-r~+~~l-r~)(r,ra-l)l~(r,r,-1)/4rlr,lexp[(r,+r,)dl. (6.44 

6.1 I Surface material 'rigid' 

From (4.33), (4.28), (6.2~) and (6.;5A), the stability equation is 

"3(q) = w-i (pca/G)ri(l-r:)U'(0)/[rir,- ; (l+ri)'] . . . (6.5) 

We see that the identity between v and the imaginary part of y(q) is 
unaltered by the modification introduced by the flexible surface, which is 

seen/ 
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seen to affect only the real part of w. Thus from (5.5) and (5.11), if 
Umis the solution of the Eigen-value equation (4.30) for an inflexible 
surface corresponding to a certain U(6) and q,, there will exist a 
solution for a flexible surface for which U(6) and t;l are the same, 
but 6 is changed so that 

(h/8) = [Uc(-b)/U'(O)] = (EdRg) = I - ~(~~G)(l-r~)ri/[r~r,- 
(6.6) 

= I -x9 say 

the barred referring to the values for an inflexible surface. 
we find that 

3(~-r~)1;/[rlra- ~(l+r,")al 3 [I-(c,/c,)“]-’ = 4(c,/c,)" 

whilst for some c:=c <c the expression in braces in (6.6) vanishes, 
this speed correspond& toPchat of the well-known Rayleigh surface waves 
in a thick homogeneous and isotropic material. Thus, for c c ca, we see 
from (6.6) that a neutral oscillation propagated at this speed will have a 

- larger wavelength (i.e., 6 will be smaller) and occur at a larger Rb 
than when the fluid is in contact with an inflexible surface. Indeed for 
some values of c close to ca, but less than it, no solution exists amd 
apparently no neutral oscillation can exist. However, for c > ca we 
see that the expression in braces in (6.6) changes sign, and 6 is 
increased and Rg decreased compared with inflexible surface values, 
For speeds close to, but greater than, ca we see in fact that Ry, would 
be very small, suggesting that if any neutral oscillation exists on an 
inflexible surface for which c > ca, then neutral oscillations can exist 
on a flexible surface at indefinitely small Rg. However, plainly our 
solution is then not strictly valid as the wavelength is also indefinitely 
small, so that 6 is large. On the other hand, provided ca > Emax, 
where c' max is the maximum speed for which neutral oscillations exist for 
an inflexible surface (= 0.42 u& for a flat plate), it would appear that 
a flexible surface is stabilising, insofar as the minimum R6 for neutral 
oscillations is increased. 
Brooke-Benjamin*, 

These results have all been pointed out by 
but we shall now discover that they are considerably 

modified (even if' G is large) by the effect of the term of (4.29) 
'neglected in (4.33). 

6.12 Surface materials of smaller rigidity 

It will be seen that if Da is not neglected in the expression 
for A. + Da of (4.30), then we have from (6.4A) and (4.25), 

A, + Da = [I;r,- ~(l+r~)"+o(l-ri)[r,r,-$(l+rz)]- ~a(l-r~)'(l-rIra)~ 1 
rir,-I 

X 

4s,ra 
exp [ (rl+ra > dl 

( r,r,-I)? 
X ew [ (rl+ra > dl 

4sira J 

. . . (6.7) 

and we find that this expression has the same sign as A0 for small c, 
but vanishes for c = c,(o), say, where c,(o) < c,(O), which, of course, 
is the speed ca mentioned in the previous paragraph as the Rayleigh 

surface/ 
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surface wave speed. The values of c,(o) are shown in Fig. 3. Thus 
ho+% > maintains the same sign for all c in the range between C,(G) 
and ca, and so has the opposite sign to A. in ca > c > c,(o), but the 
same sign for c, > c > ca. The interior boundary condition is ambiguous 
if d --) qo with c > ca, since then A. and the other determinants become 
periodic functions of d, implying disturbances which do not attenuate on 
penetrating the depth of the material. Thus we exclude for the present 
the consideration of oscillations propagated at such high speeds. 

mom (5.3) and (4.30), we find that 

v E (Ao+D, > I/A0 . . . (6.8) 

From (5.6), v should be small for our solution to be valid, and 
this generally implies small I. However, we shall apply the solution to 
finite I as it may, nonetheless preserve some qualitative si&ficance. 
In relating u to H=$?+(&jl we observe that in (4.30) we must use 
the expression for Da which from (4.28) and (4.29) is 

Da = DaW'(O)+Da = ~~(c/c,ja[-A~5U'(0)+(A,8+g5)] . 

Accordingly, from (4.30) and (5.7), we can form the following relations: 

~Ut~O)/~U~~)]a+~D~/Ao>Ut(Oj+~D,/Ao)+~~~(~j~l 1 = (A~+D,)H/A~... (6.ya) 

u’ W[u(~> I” = (a,+D,jH/~(l-~jAol 

where xi = -(D~/Ao)[U(6)la1~~.[~,/~~~~(~)]j+~(6) . 

u = (a,+~~ )H*/[ (*I -x)Aol 

. . . (6.9b) 

where H" = H-D3/(a,+D3 > . . . . (6.9~) 

and x = -(D,*/A,)[u(S)]~ = $T(u~/c,)~ (Ada.",) 

In view of the crudity of the approximation involved in the expression (5.8) 
for u, some simplification of these relations need not substantially detract 
from their accuracy or, what is more important, their qualitative 
significance. thus, from (6,9b), if we can assert that 
bounded, then the replacement of X by Xl 

(Da/D,*> is 
in this equation involves in 

general no more crude an assumption than the use of (5.8) in place of (5.7). 
However, an exception arises in the neighbourhood of x = 1 where H must 
be replaced by H* as in (6.9c). Now x= 1 must correspond either with 
6 = 0, H" = 0 or with U(6) = 0, since (4+D3) would not in general be zero 
for x = I nor A0 infinite. The condition U(6) = 0 implying c = 00 
would, in any case, be outside the range of validity of our analysis, and if 
6 = o we see from (6.9b) and (6.9~) that xj. = x. Thus the replacement of 
X, by x in (6.9b) only results in additional and significant errors where 
X4' as H-+0; the correct behaviour is then represented by H* -+ 0. 

We can sum up by stating that 

u = U’ (0)/m) I” = (Ao+Da )H/[ (+-x)$1 
for (DJ'D;) = o[U(S)], and excluding 1-x = O(H) as H-' a ' 

(6.10) 

The restriction on (DJDS) usually, as in the present context, is in 
the form of an upper bound on E Thus from (6.3A) and (6.4A), for c < c,, 
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lo,/a:l = I @,,+A33 )/A,3 I = 0 [~(c/c~)~I as (r-+00 

= 00) as CT-, 0 

and (6.103 is applicable, except possibly near H = 0, without significant 
error if 

"(u&p)9 = madG = 0 [U(S)3] . 

In other words, our analysis would be inapplicable to indefinitely large 
values of madG. 

We shall now consider possible tiolutions to the Eigen-value 
problem posed by equations (6.8), and (6.10), assuming in turn values 
of c in the ranges (0, c,(c)1 , ca) and (c,, c,). 

From (6.8) and (5.6) we see that we have a connection between c$ 
and U(6) given in broad essentials by a relation of the form 

I = PC; (4 (c/u~)3/rc~ (u)-c" 1 

where P is positive. We see that this gives a value of c for each 
and every value of & for which I > 0; and c + 0 as 

and & --* -2.3 (approximately). 
I+ 0, which 

corresponds to r;l + --oo As P canbe 
shown to be a monotonic function of c, it follows that c will be 
maximumfor I=1 , and the smaller the value of ca(o)/u~ the closer 
will this maximum t? c be to c,(o); but note that cmax c c,(o), and 
there is no solution (and therefore no neutral oscillation) in the range 
c3 (u) > c > cm=. 

Supposing that the value of x for c = cmax is less than unity, 
it follows from (6.10) that there will also be a positive value for 
U'(O)/[U(6)]' - and so for 6 - for each and every ';i in the range of 
positive I, and it follows from (5.11) that on a c - R6 diagram neutral 
oscillations would lie on a looped curve with two arms stretching to 
% = co (as & + +0 or & 
c=c mm < c3 (CT). 

+ -2.3) and with its lobe bounded above by 
Using equations (5. II), (6.8) and (6.10) we see that 

Rs = 0.58(-Ci)3 (H/I”“) [A~/(A~+DJI~~~ (l-x)-l . . . (6.11) 

where x is given as before by (6.6), and consequently as x is positive 
in the range considered, 

R min >E min = 0. 58(-Zi )3 (H/+3 jrnh 

where R' , min is the minimum value of Rh for which neutral U'(0) remains 

finite and bounded, but since u and v sre bounded in this limit, (5.11) 
shows that R 
findona a 

+ 00, in proportion to l-g 1. In this range therefore, we 
c- 6 or 8-Rg diagram, as in Fig, 4b, a continuous extension 

of the incomplete curve of neutral oscillations propagated at speeds 
between c3(c) and c3, extending it now to Rs = q with the c-R& curve 
asymptotic to ~~(0) from above, and the 
to a finite limit, 6 = 6= (say), where 

6-R6 curve likewise asymptotic 

= 0*54(udc, )/(I +a 7a) , for cs +z ci. 

At/ 
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At the finite Reynolds number where c = ca, (i.l., where I -+ 0 for 
finite 'rthe value of 6 = 0.435 s,, since H then has the approximate 
value 2.3; 
from (5.11) 

thus 6 tends to 6oo from below: this Reynolds number is 

R6 = 9.4 (u&/c3y/q+. 

cc = c,> 
We are asserting a mode of neutral oscillation, with finite speed 
and wavelength, to exist for R6 = 00; however, it will be 

observed that, as we have assumed in our solution that both c/us and 6 
are small, this cannot be confidently asserted in general for very small 
~&~hewh%ch~;~bmp~g;;at c/u6 is large), nor for large udCa 

Indeed, our solution is only strictly valid 
for large 
U'(0) 

o and for a limiied range of values of IX&~. Nonetheless, 
will be observed to be generally unaffected by the magnitude of 

U 
d 

c,, so that in the limit IG 1 -+oo, which corresponds to Rg + CD, the 
quantities of (4.22) remain smail; thus our error results merely in the 
adoption of the simplified forms of the expressions (5.6) and (5.8) for 
U and v, and it seems probably that the solution will indeed have a wider 
range of applicability than we have just suggested. 

Note that in the range of speeds here considered, we find (as we 
did for c < ca (o)) that it is possible to derive solutions as a 
transformation of the values for neutral. oscillations on an inflexible 
surface. Infa&,oscillations exist over a flat inflexible surface. 
Further we see from (5.12) that 

R$ = -2.38 (~/I)~Ao/(Ao+D,)l 

so that on a 6-R& diagram, not only will the looped curve be shifted to 
higher I$., but 6Rg will also be increased, compared with the values for 
the same & for the Tollmien-Schlichting oscillation. Apparently the 
value of 6 is decreased by the effect of the x term, and decreased by 
the effect of the Da term: the nett effect would generally be in doubt. 

If x increases to unity for some c = c* < cmax, (where values 

of c* are shown in Fig.2), then 6 will tend to vanish as x + 1, U'(O) 
will tend to infinity, though U(6) will remain bounded, and also from 
(6.11) we see that R6 300. 
diagram, (Fig.4(a)) as x = 

There will then be two loops on a c-R& 
I will have two roots if regarded as an 

equation for It;l, corresponding to the same value of c = c*. These two 
loops would each have the same two asymptotes c = 0 and c = c*, and 
both curves lie everywhere in the range c < c*. Likewise the 6-Rg 
diagram would have two lobes, each of the fo% arms asymptotic to 6 = 0 
at R6 =ao. As before, of course, Rmin > Rmin for both lobes. 

'Ihe condition x = 1 for c < cmax is inevitably satisfied for 

sufficiently large values of udc,(o), or for sufficiently large puadG. 
Indeed, it would appear from (6.6) that x is least for c -+ 0, and 

Xl c=o = ~4ml-ba/cJaIj = 2o-&/c,>a . . . (6.12) 

so that if o(u c,>' > & we see that x > 1 for all non-zero c; and so 
no neutral osci d lation would exist in the range of speed of propagation 
considered above. 

(ii) c& o- < c < c3 

We observe from (6.8) that 'I < 0, and as negative values of I 
are bounded (by I = Imin < 0, say) there will be no solution for 

'3 Co) < ' "min say, where evidently cmin is the root of an equation of 
the form 
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l/(-Imin) = P(u&"[cs-c,l(o) l/(C,“-2) 

where P is positive. We first suppose that cmin > c*; indeed, we 
have already suggested that, under certain circumstances, c* < c,(o), 
and then'plainly this supposition would be true. We see that (6.8) will 
have a solution corresponding to all negative I, c increasing as I 
decreases; in particular as I -+ 0 through negative values, we observe 
that c+ca. In regard to the corresponding values of u, we note that 
from (6.10) it will be positive and finite, - and so also U'(O) 6 and R6 
will be finite, - at the speed c = c . 
Corresponding to smaller values of 
the latter becomin 

I yi 

(provided that cmin < c*). 
, both I and H will decrease, 

zero whilst I is still negative. 
this happens for & 7 1 

(As shown in Fig.1, 

and U(6) is finite, 
a little less than 0.9,) As c < ca for I < 0, 

it follows from (6.10) that U'(0) will tend to zero 
with H, and likewise from (6.1-l), so will R6. 
64 

(Plainly this also implies 
00, and this magnitude, and that of Rg, are both quite outside the 

range of validity of our theory, so this result can only be treated as 
displaying a trend.) On the other hand, as Irr, I increases towards 2.3, 
(-1) will decrease until in the limit of I + 0 we have seen that A0 -+ 0 
and c"c 3' 

In this range, therefore, neutral oscillations will lie in an 
incomplete curve on a c-R6 or &-Ii& diapam, extending from indefinitely 
small R6 to some finite value, with c increasing from cmin to ca, 
and 6 decreasing from some indefinitely large value. 
shows in particular that because v decreases whilst ,,Equa;g;eE;;2) 
(being inversely proportional, by (5.6), to [u(S)]"), thkrefore 6Rg 
increases over a bounded interval as Rg increases from zero. 

The condition that c* > cmin is unlikely to lie within the 
range of validity of our theory, and in any case it hardly corresponds to 
physical conditions of much interest. It requires a very lsrge value of 
cr, but yet a relatively small value of 46$/G, and so the value of ca/ug 
is inevitably large. 
cs W/C~ 

Even for indefinitely large c, - such that 
is small - the conlition that c* = c,(a) can be shown to imply 

that 

(c/U~)’ = V[~+(c,/c,)‘l 
and since ca/c$ is usually small compared with unity, and in any case 
always bounded, this is a ratio not very much less than unity. If we were 
to consider speeds of propagation c = c* > c,(c), plainly not only is c 
increased, but u6 must be lower, for the same or. 
is inevitably large. 

Consequently (c/u$ 
F'or what it is worth, we may however deduce that if 

c* > c min, then the neutral oscillations may appear on a c-R6 diagram 
asymptotic from above to c = c* at infinite Rh (and 6 is zero at 
Rg = m). At c = ca the values of 6 and RS are - as deduced above - 
both finite. 

(iii) s <c<c 

In this range (Ao+D3)/Ao is positive and likewise so also is 
($+D, )/b&-x) 1 which in particular is bounded. Thus there will in 
general be a solution for each and every Z$ for which, from (6.8), I > 0: 
and plainly for c + ca+O, there is a solution which is continuous with that 
for c + ~a-0 from below. As I&I increases above 2.3 (corresponding, 
approximately, to I = 0), (6.8) shows that c will rise, reaching a 
maximum, and will then decrease to c! = ca as I& 1 3~0 and I + 0 again. 
However, it should be noted that if 

[ca,c,/u”s(l +q I/ 
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[+&.(1+c$-)"]< (1,&3.57) fi 0.04 

then some values of I close to Imax would give no solution, because 
c=c p for I < Imax. As kiI increases to infinity, (6.10) shows 
that in particular, if E is the speed of propagation of such an 
oscillation corresponding to a certain 
c > E. 

Zi, then (5.6) and (6.8) show that 
Likewise Rb < R6 for identical. Z . i 

6.13 The 'heavy surface' approximation 

It is instructive to compare the 'heavy surface' solution obtained 
from paragraph 6.12 by allowing o 
of Brooke Benjamin2, 

+ 0 with the 'rigid surface' approximation 
outlined above in paragraph 6.11. If ca > cmax, the 

maximum speed at which Tollmien-Schlichting oscillations are propagated (over 
an inflexible surface), then in the notation of paragraph 6.12 (i) c* > cmax 
and there is essentially no significant difference between the single-lobe 
c-R6 and 6--R& diagrams discussed in paragraph 6.12 (i), and the equivalent 

. diagrams deduced from paragraph 6.11. However, if ca c Emax paragraph 6.11 

shows that these diagrams become double lobed in the region c < ca, both 
c-R8 curves being asymptotic to ca from below; whereas, by comparison, it 
is possible to show from the arguments of parapaph 6.12, and equations (6.6) 
and (6.7) that c* is only less than cmax for ca < 0.95 Crnax (if d is 

small), and provided thi s condition is met the curves become double-lobed, 
the c-R& curves being asymptotic to a value which is only slightly less 
than ca if o is small. 

Again, the 'rigid surface' approximation shows no other mode of 
neutral oscillation if ca ) F max, but an additional lobe with c > c if 3 
c3 < E max, both arms of the c-R& being asymptotic to c = ca from above 
at R 

8 
= 0, and both arms of the 6-R& curve tending to infinity at 

Ra= . However, the analysis of paragraph 6.12 shows a neutral oscillation 
to exist at all Reynolds numbers, irrespective of the value of 0, - the 
value of c being everywhere close to ca if o is small, and the c-R6 
curve being asymptotic to ca from above at R6 = 03 only. The 6-R& 

'diagram curve shows that 6 is infinite at R6 = 0, but finite for 6 -04 
It is in this range of c that the differences between the solutions are 
most accentuated, because a 'heavy surface' impresses its own neutral 
oscillations on the boundary layer. 

For very small ca/u6, the difference is even more marked: in 
particular we have seen that for cc /qj>" < 2o, the lobes in the region 
c < c3 disappear altogether accord& to the Canalysis of paragraph 6.12, 
though of course such an inequality does not arise if o+ 0. 

6.2 Thin surface 

We defined a 'thick' surface as one having indefinitely large 
thickness, and if we likewise define a 'thin' surface as one having 
indefinitely small thickness and evaluate equations (6.2), (6.3) and (6.4) 
in the limiting condition d + 0, we find 

A0 = -c’/tci [l+C?(rida) 1 . . . (6.2B) 

A 45 = -c4d/2c~c~[l+O(r~da) 1 . . . (6.313) 

A3s+A4e = ~c6da/2c~c~[Itu(r~d")+u(c~/uEa)l e-0 (6.m) 

In the limit we see from (4.28) that Da and Da will be 
negligible compared with Ao, and (4.30) becomes identical with (4.32) - the 
stability equation for an inflexible surface. This, of course, is quite 

understandable/ 
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understandable, but as we are interested in conditions in which the 
surface elasticity has some appreciable effect upon the stability, it is 
evident that this limit is not of itself of interest. 

An examination of the orders of magnitude involved shows that 
the term Da 
that 

has a finite effect if Iradl (or lr,dl) is small, provided 

whilst Da has a finite effect if 

CA c,/(+ = O(d) . 

if U(S) 
We suppose accordingly that, in our solution which is only valid 
is large, 

C/Ci = Q[U(6)nl , 

d = 0 [u(s)-'-n] 
. . . (6.13) 

and then plainly Irid and Iradl are of order l/'U(S), and so small 
within the range of validity of our solution. 
(and Da if n=l) 

The effects of the terms D 
on the solution are then evidently appreciable within a 

the limitation (6. I 3), provided 
equations (6.2B) and (6.3B) 

c is not small, but the error in 
will be seen to be of order l/U(6)a and so 

negligible within our approximation, whilst that in (6.4~) is also of the 
same magnitude when the effect of the term Da is appreciable. 

In practice it is convenient to relate the thickness of the 
surface to that of the boundary layer, by writing, say 

d = eu( q/u (0) . . . (6.14) * 

where 8 is proportional (and of the same magnitude as) the ratio of the 
surface to the boundary-layer thickness. Then from (5.8), if u is in 
general of order unity, we can re-interpret (6.13) as 

ha = 0 (0-A) , e = 0 [u(S)'"] . . . (6.15) 

so that the surface thickness is, in certain conditions, assumed small 
compared with that of the boundary layer; nonetheless, we have asserted - 
and will indeed show - that its elasticity can have a significant effect, 
provided at least o is not small. 

The restriction on c/c1 in (6. I 3) is, of course, artificial - 
as plainly to cover all eventualities we ought to allow that c is bounded 
only by the magnitude of ug. It will be recalled that it was necessary to 
assume c < c, in the discussion of the thick surface, and the present 
assumption is of the same category, though by no means so restrictive. It 
is merely a device to eliminate from consideration the 'periodic' solutions 
which will be the subject of the next paragraph. 

using (6.2B), (6.39, (6.4-B) we find from (6.8) and (6.10) that 

v = (Ao+Ds > Iho = [l+?d/c,c,)']I 

and u = (Ao+D,)H/[Ao(l-x)1 where x = o$d/ci 
. . . (6.16) 

1 

the expression for u being applicable (except possibly for H + 0) if (6.15) 
is satisfied. Using the interpretations of u and v in (5.6) and (5.8), 
and noting the definition of 0 in (6.14), we can recast these equations as 

Y/ 
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Y = 1;'" x(l-xa)a’3 

x = (1&8(W) 

where Io = (I/7.14) , x = P/bwJ'wl , Y = m@)/trr(o), 
(6.17) 

We note that y is proportional to P6, and further: 

where 

Rvidently, x satisfies an equation of the type 

. . . (6.18) 

. . (6.19) 

As A is essentially positive, this has one, and. only one, solution for x 
in (0,l) for any value of X. If Z < 0, there is also a single solution 
with x > 1; and if E > I, there are possibly two solutions with x > 1 
though these only exist if A is sufficiently small. 

where 
Following the solution for varying &, we see that for Z& 3 -CO 

I + 0 and H + 1, the solution becomes identical with that for an 
inflexible surface (p = 0), for which 

x/p = Z//3 = IO/H ; y//3 = I;"/H e 

Thus, 6, c and l/R& will all tend to zero in this limit, A solution 
exists for all ;;1 
O<y<l/y andso 

for which I remains positive, in which 
xc I. From (6.17) and (6.18) 

C/U6 = [Io(l-xa)]~a 

R6 = 0.,8(-&)3HI-04'3 (l-xa)-a'3(l-yy)-i 

and since x and y are both positive for B f 0, it follows that c/u6 
is decreased, and R6 is increased, compared with the Tollmien-Schlichting 
inflexible surface solution for the same qt. As r; 

2. 
tends to -2.3, for 

which I -+ 0 +, the difference once again becomes neg igible, and 6, c 
and l/R& once more tend to zero. Thus neutral oscillations would be 
plotted again as lobes on c-R& and 6--R& diagrams, but cmax would be 

smaller, and R6 rnin larger, than for the Toll-mien-Schlichting solution; 

the larger the value of p, the greater is the modification to these 
bounds. 

As I& [ further decreases, I becomes increasingly negative. 
We note that as I -+ 0 from below, then x + d and y -+ 00; this 
corresponds to c/u 4 0, and 6 and RC;+~ This indicates a 
breakdown in the ne$ess<q conditions (6.15) or (6.13) governing the 'thin 
surface' approximation, and f'urther investigation of the equations shows 
that there is no 'thin surface' continuation of the solution for I<0 
in the neighbourhood of I = 0. This is not meant to imply that no 
solution exists in this region for finite 6, but merely that this part 
of the solution is inevitably associated with large values of 68. On 
the other hand, for 68 = 03, we have seen in paragraph 6.12 (ii) that the 
solution for I -+ 0 - involves c +ca and 6 finite, which is 
inocmpatible with large 60 if 0 is bounded as here; thus if the 

'thin surface'/ 
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'thin surface' solution is to link up with the 'thick surface' solution, 
it must do so either at Ro = 0 
(corresponding to IGll 

(corresponding to H = 0) or at R - 00 
+ co) where 6 = co. Use of the full equat!ons 

would seem necessary to establish the precise form of the link, but some 
better indication is obtained by including the term of order ci/oc" in 
(6.4~). If this is done, it appears that Rg -+O and 6 +oo for some 
It0 where, supposing that 60 is small and ci/cF < l/3 

(c/c,>' + [A-3(4,>"1/~. 

No more credence can be attached to this limit than that obtained from (6.19) 
as clearly 60 is not small, but it shows that the inclusion of this term 
could account for the existence of some upper bound of R6 in the solution, 
as would be indicated by the possible limit R6 = 0 at H = 0 for 
68 = Co. Moreover, it confirms the trend already observed in the 'thick 
surface' solution for the speed of propagation to decrease with o at 
R6 = 0: we found in paragraph 6.12 for instance, that c,(o) varied 
inversely with l/c. 

In the range of I < 0 away from I = 0, where (6.19) has more 
accuracy, (insofar as the values of x and y may be finite) we find that 
there are two solutions corresponding to x > I and x < 1, and of these 
only the former is relevant as clearly, from (6.16), x must be greater than 
unity where I < 0 if v is to be positive. A solution exists for all 
I < 0 except in the neighbourhood of Z,. = 0: here I& 1 reaches a 
minimum and then increases again whilst x continues to increase 
monotonically; x reaches an indefinitely large value as H-+0- through 
negative values, varying in proportion to (-H)-3'4. 
find that y -+ l/y, so that this limit implies Rg -+ 0 

Correspondingly we 

6 6, where 
and c-'q but 

= 

The behaviour c + CO for finite 6 is however once again incompatible 
with (6.13)) besides, of course, being incompatible with large values of 
u(S) and we shall suggest, in the next paragraph 6.3, a better 
approximation to this particular limit. 

Except, therefore, possibly at the extremes of the Reynolds 
number ran e % - 
Rgcl co/o8ug, - 

that is, from (6.18), except for large or small values of 
we find that c decreases with increasing Ro, its general 

magnitude being indicated by the value at H=O+ (or rather at H* = 0 +, 
though from (6.9~) it can be shown that this distinction is unimportant), 
where 

(c&) = (c,/c~)"~ x"~ , where (~~-l)~'~/x = 2.1 y 

and evidently x is close to unity y (c,/c~) is small. This value is 
reached at a Reynolds number 

Rs = 0. 3a0$e/(clc~x3)1/p 

and corresponds to a wavelength such that 6 = 6,. 
have seen that 6 increases, but for lower Q, 6 

For higher R6 we 
tends to return once 

more to the value 6,. We note that for small values of ou"C/ci the 
B Reynolds number scale of the solution becomes vanishingly sma 1, as also 

does the wavelength of the disturbance; since 8 + 0 or c, -*co 
corresponds to an inflexible surface, it is only to be expected that modes 
of oscillation such as this must cease to exist: this is additional 
evidence that there must be an upper bound to the Reynolds number range for 
which the solution exists. 

6.3 Fast propagated oscillations 

In both paragraphs 6.1 and 6.2, we have limited our solution to 
bounded values of c: for a thick surface we supposed that c < ca, and 

for/ 
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for a thin surface, we took c/c = 8(V1). We shall now assume that 
c/c is large, and more specifisally that Oc/cl 
see'that if we place cd/c2 

is large. For then we 
= \Ir, it follows from (6.14) that 

U’ (0) = use/*ca 
and. U(qJ’(O> = cav8c ,.I (6.20) 

and consequently 6, which is of the same magnitude as U(6)/IJ'(O) is small 
for finite $. The appropriate form of equations (6.2), (6.3) and (6.4) 
is now 

A0 = - ;(c/c,)” cos yql cos $ 4 Q <2/c;> . . . (6.2~) 

A 46 = - &(c"/c,c~) sin rJr cos $ + Q(c/c,) . . . (6.W) 

435+A4e. = $fc4/c~ci) sin y$ sin \I, + o(ca/ci) +(j(o~"/cl) . . . (6.4~) 

where, as before, y = cp/cl. 
of cd/c, 

We should more properly put Ir,dl in place 
in the expression for 3, to avoid complications in the order of 

magnitude of the error of the above equations where JI or y$ are, either 
of them, integral multiples of x/2, but this distinction will be ignored. 

Then in (6.8), from (5.6) 

v = ?.wrm13 = <Ao+D3 > I/a, 
r- 2ca sin y$ sin Jr + Q(gc,") + Q (cc:) 

11 

' 
= I - 

i 

. . . (6.21) 

cica cos yq cos * + o(c;/Ca) 

Strictly, the error terms included should be included as they are evidently 
not negligible in the neighbourhood of $ = Nd2y or N42, where N is any 
non-negative integer. However, their effect is merely to shift the zeros or 
poles of the right-hand side of (6.21) to values close to, but not equal to, 
$ = Nx/~ or N7c/2y, and provided we exclude $ = 0, only a small difference 
results from their inclusion. Even at $ = 0, there is no significant loss in 
'accuracy, as we note that the expressions (6.2C), (6.3C) and (6.4~) above 
reduce to (6.2B), (6.3B) and (6.4B) if’ \I, is small, the error terms remaining 
negligible. TIIUS we can rewrite (6.21) approximately as 

l/I = 
0 

I 

[u(S) 1" - 1 sa tan yllr tan $ U(6) 
Y 

1 I . . . (6.21a) 

where s = m&1 
J 

In framing the equation for u, we note that, in (6.10), D,/D* 
does not satisfy the necessary bounds, and in general we must use (6.9aJ 
instead, so that from (6.20), putting r = +&ha, we find that 

y7[1-su(6) tan y$l = -(H-l)sa$ tan y$ tan \Ir+yHJr[U(6)la . . . (6.22) 

Re-arranging (6.22) and (6.21a), we then find after some algebra that 

vJrH[U(6)]'+(y~s tan y$)[U(6)]+[(sa$ tan y'!' tan '$-y~)Hs~'$ tan y\lr tan $1 = 0 

(yrs tan y$)[u(S) l”+(b” ‘tan v\lr tan $-Yd [u(S) l+(H/I,)Y+ = 0 > 
..* (6.23) 

and since both these equations, regarded 3s quadratics in u(S) 9 must have 
a common solution, we find the following relation between their coefficients: 

I[ (H-1 >/ 
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[(H-l)s*$tany$tan++~y] yrstany$ ! WI yTstany$ 

-WIo)Y+ (s*$tany$tan$-ry) ' yTstany+(s*$tany$ta$-Ty) 

a 

1 Hy$ Cl [(H-l)s*$tany$tsn$+y~] 
= 

yTstanfi -WIo)Y$ 
. . . (6.24) 

This, it need hardly be pointed out, is an awkward equation to analyse. 
However, it can be shown that for small $, it reduces - as would be expected - 
to a form compatible with (6.17), $ being propor+ional to 
notation of that equation. 
furnish a more accurate extension of Whereas in paragraph 612, we 
suggested that I + 0 from below corresponded to x'l and y +oo (which 
would indicate $ +co) we now see that the limit may correspond in fact to 
if= x/2 with 

tan 'k -,, [Hy cot(yti2)]/[(-Io)a'3 (H-l)'%*] , U(6) cu [(1-H)/Io]"3 

but this plainly implies c + 0 (since H > 1 at this limit). As it is 
necessary for c to be larger than ca in order that the periodic character 
of solutions of the type we are considering here to exist at all, we may 
reasonably suppose that this limiting solution is invalid. In fact, in the 
original approximation of paragraph 6.2, it also appeared that c + 0, so 
that it would have been surprising to find an extension of this solution, 
continuous with it in the limit, in the range of imaginary ra. 

bY>, 
However, there is another solution of paragraph 6.2 implying large 

and this appeared as the limit x 303, y-+ l/y, where H + 0 through 
negative values. This did indeed imply c + CO, and we see now that it must 
correspond again with $ = x/2, and another possible solution in the 
neighbourhood of 9 = x/2 is represented by 

(H-1 > - -(2ry/nsa) cot (742) cot $ , U(6) -.. ~(H-l)/(2rI~)- 

Clearly this corresponds to H+l from below, as $ + 7c/2 from below, 
and implies in this limit c + co, and so 6+0 and Rg+ 0. In the 
treatment of paragraph 6.2 we found in fact that the limit corresponded to 
C’OO and R6--+ 0, but the value of 6 was found to be finite. 

We can restrict our discussion of the solutions of (6.24) to those 
which correspond to large roots u(S) of (6.23), as plainly they are the 
only ones which are justified by our assumptions. Indeed, of course, our 
solution is only strictly applicable to vsnishingly small S as well as 
vanishingly small 
imply 6 = co; 

c/us, and we see from (6.20) that c = 0 is bound to 
thus we shall restrict our search to solutions which in 

general yield small, but non-zero, values of c/u . 
t 

For this reason we 
omit solutions in the region of I = 0, and then 6.24) shows that, for all 
values of b-VII in a bounded interval, large values of U(6) must 
correspond to values of $ such that approximately 

and 

($/y7) tan fi tan $ = ~-*-~~'*tan~'* y$ tan""$ 

I 
. . . . (6.24~) 

PS3 tan* y$ tan Jr >> y$ 

The corresponding values of U(6) and 6 are given by 

C/Ci = (y cot y$ cot lp/o , qs)/lJ'(o) = Jl(y tan y@ tan tf>- 

and it may be observed that the implied value of U(6) is such as to render 
zero the expression in curly brackets in (6..Ha), which, of course, is a 
result of supposing that U(6) is so large that l/U(h) can be neglected. 

*overly ,/ 
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Properly, of course, we should equate the curly bracket of (6.21) to zero 
to represent this solution, but the difference appears unimportant. A 
solution exists of the equation of (6.24.a) in which (cl/c), (c/us) and 
6 are all vanishingly small for any bounded (H/I), provided that 
<+I > is indefinitely large, that o is neither too large nor too small 
compared with unity, and provided that 8 is not too small. This solution 
is given by: 

c/c1 = b+w/~~1~” , WWU’ (0) = q(cp tan$pu~]~~ 

tan y$ N (c,/ou6)(ca cot ljl/ou6)1'3 i 
. . (6.25) 

Since tan fl is small, we can replace $ by (Nx/Y) with good 
approximation, and so observe that the solution is only real if tan NAY 
is positive. If 0 or CT is small, we see that 6 is large, whilst if CJ 
is large, we see that (c,/c~) is small - as opposed to the large value we 
have supposed it to have. From (5.11) the corresponding value of RS is 

R6 = 0.58 (of3u&fc,)(~~ tan ‘!‘/Cl)a’3 (-%)” . . . (6.26) 

but it must be recalled that the solution does not apply in the neighbourhood 
of those values of & for which I = 0, and in particular it does not apply 
for 5% -+ -c0. (Our basic solution also breaks down near & -+ -co as the 
terms of (4.22) are then no longer small.) 

Owing to the periodic character of the solution, there are 
evidently an indefinite number of such solutions, with 6 increasing, and . 
Rg decreasing, as Q takes on higher values. Plainly our solution is not 
valid applied to very large values of $, but it is probably a correct 
deduction that, as (0/Q) occurs as a parameter rather than just 0, the 
number of possible solutions of this type increases with 0. 

The implication of (6.25) that c is independent of z;1 is of 
course only an approximation to the truth: equation (6.21a) shows that U(6) 
will be increased or decreased according to whether I is positive or 
negative; thus as (6.25) applies both for positive and negative I, there 
will in fact be two separate modes of oscillation, with the values of both c 
and 6 displaced one way or the other from those quoted in (6.25). 
Equation (6.26) then shows that they exist in different ranges of Rg. We 
have already mentioned that our approximation is unjustified in the region 
of I = 0, but it is obscure what the appropriate form of the solution will 
be in this region, since so much would seem to depend on the relative 
positions of zeros or poles of tan Jr relative to those of tan y$, - for 
which there is of course no general rule. It is easily deduced, however, 
that there could be no continuous solution for all Jr, so that each 
successive value of $ = NT/Y, as N increases, will indicate a different 
mode of oscillation. 

The solution which we have demonstrated is certainly not the only 
one which exists, and which is within the range of validity of our analysis 
under certain circumstances: there are, for instance, solutions in the 
neighbourhood of $ = Nx/~, at least if CT is very small. In particular, 
if y is very small - a possibility of some practical relevance as it 
corresponds to a material of large bulk modulus but small rigidity, like 
rubber - it is possible to show the existence of modes of oscillation with 
speed c where c, << c << Ci. For then, from (6.24a) 

provided that (c,$/c,) CC 7~/2, and so we discover that, except for values 
of I in the neighbourhood of I = O., 

(dca > = +jbaYa , U(b)/U (0) = o---l (Jrc,/f%lgya . 

such/ 
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Such a solution is compatible with the assumptions provided c is not too 
small, and provided We) is bounded above and below - in other words, 
provided the surface is of the same order of thickness as the boundary layer. 

6.4 Slowly propagated oscillations 

We now assume that c/c2 is small. 
possible speeds of propagation if udc, 

This evidently covers all the 
is small, but it also includes, of 

course, a possible type of oscillation even if +a is not small. 
Expanding the right-hand-side of equations (6.2), (6.3) and (6.4) in a series 
of ascending powers of c/c,, we find that 

A0 = - f(c/c,)4[l+(l-ys)ada+(l-~)sinhad][~+~(ca/c~'] .a* (6.2~) 

A 45 = - ~(c/ca)4[(l+~)sinh d cash d-(l-~)d][l+&ca/,i:)] . (6.3D) 

x[(l-ya)da-(l+~)asinhad]~[l+~(ca/c~)]. . . . (6.4~) 

We see that these are a more general form of equations (6.2~), (6.3B) and 
(6.4~) to which they reduce if d is taken as small. 

In equations (6.8) 
c is large - 

and (6. IO) we find that Da/A0 is small unless 
and this possibility will not be envisaged here, as the 

effect would be to produce a more complicated form of the equations (6.17) 
which would be difficult to analyse in general terms. Thus the stability 
equation reduces to Brooke-Benjamin's form (4.33) for a 'rigid' surface: 
namely, 

(l+);d)sinh d cash d-(I-g)d 
v=I, u = H/(1-x) 9 x =,x(d) = $c+&)' 

l+(l-J")"d"+(l-y4)sinhad 

. . . (6.27) 

This implies, as we saw in paragraph 6.1 I, that the only solutions are those 
obtained bs transforminn the value of 6 for the Tollmien-Schlichting 
solution ai a certain U(6) = U@(q and Z: in the ratio 
in equation (6.6). However, this now yields an implicit 
rather than an explicit one as in (6.6); for from (6.14) 
0 is known, then 

of (l-x) to 1, as 
equation for 6, 
we see that, if 

Thus from (6.27) we find an equation for d as follows: 

a/b -x(d) 1 = I;'" e/H = [Um/Ut(0)]O. 

so therefore is Now x(d) is a monotonic, increasing function of d, and 
d/(1-x), unless x(m) exceeds unity, when d/(1-x) is negative for some 
large d. Thus one solution to (6.28), and one only, is always to be found 
for positive d., 
accordingly, 6/S 

As 8 is reduced, so Fe the values of x(d) and d; 
as well therefore as RdR6 are increase& On the other 

hand as 0 300, we see that d + oo if x(m) < 1, and so b/6 -+ (l-x). 
However, if x(m) > I, d tends to some finite limit (as 8 + CG) corresponding 
to x= I, and so 6 + 0. This, of course, is compatible with the absence 
of a solution for x(m) > 1 for infinitely thick surfaces as we found in 
paragraph 6.1; there the value of x(m) appeared as xI~-~, and was quoted 
in equation (6.12) 

7. Non-Dissipating Material Free at its Interior Surface 

. . . (6.28) 

. . . (6.29) 

Although it could never correspond precisely with a real physical 
condition, the assumption that the interior surface is free of any stresses 
provides an interesting comparison with that of the material fixed at its 

interior./ 
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'interior. It obviously may lead to a solution of some relevance to the 
problem of a skin fixed at only discrete points, which are wide apart 
compared with the wavelength of the oscillation, though in most such 
practical applications of interest the skin may be under considerable 
tension. If the tension is comparable with the product of G and the 
square of skin thickness, the linearised equations for the displacement due 
to stress which we have assumed will not be applicable. 

The boundary condition to be applied is obtained from an expression 
like (2.1), but relating to displacement derivatives at n = -d, and with 
no applied forces, both iY and T would be zero. Applying (2.2) we find 
accordingly that 

-%(l+ri)(A,/rL)sirih r,d+h coshr,d+~(l+r~)A,cosh r,d-r,A,sinh rad = 

hcosh r,d-&(l+ri)(A&,)sinh r,d-rlAasinh r,d+$(l+ri)A,cosh r,d = 
(7. ' > 

If' we identify these with the equations m r: I and 2 of (4.7), then we can 
deduce from Table 1 that 

A0 = &(l+ri)'(l -coshr~dcoshr,d)+[r~r,+(l/16rlr,)(l+r~)4]sinhr,dsinhr,d (7.2) 

A 
46 

= $(I-ri)[ r,r,sinhr,dcostiad-Z i(l+r~)"sinhr,dcoshrLd]/ra .*- (7.3) 

4s”A4s 
= &(l+r~)(J+r~)(l -coshr~dcoshrad)+[2r~r,+(l/4r~r,)(l+r~)3] 

x sinhr,dsinhr,d-~a(.l-r~)I[l+~(l+r~)a]coshrldcoshrld-(l+r~) 

- [r,r,+(l/4r,r,)(l+r~)a]sinhr~dsinh r,dj g . . . (7.4) 

We shall now expand these expressions for d = (x, 
small c/c1 

smsll d, and for large and 
as we did for the fixed surface relations. We have no need to 

write down the expressions for d = co since, understandably, they are 
identical to those for a surface fixed at its inner boundary, except for a 
factor common to all determinants, which is immaterial. For a 'thin' 
boundary, however, we find that 

AO = -i (C/C,)'da[l-4-~(c/c,)a][l,0(r~da)+O(c~da/ca)] . . . (7.2B) 

A 
46 = 4 (C/C,)4d[l-J)-~(c/c,)a][l+k)(r~da)] -0. (7.3B) 

A36+A44 = -(~c"/8c~)[1+~(d"c~/~ca)+~($d")] . . . . (7.0) 

For large c/cl, we have on placing Jr = cd/c,, 

A0 = (c,c6/16ci) sin y+ sin JI +o(c4/cz) . . . (7.2C) 

A 46 = (c6/8c;) cos y-$ sin \Ir +&c3/c;) . . . (7.3c) 

‘da46 = -(o?/84 cos y$ cos $ +Q(ca/cf)+&'/$) . . . . (7.4-c) 

These it will be seen reduce to the equations B if $ is small. Finally, 
for small c/c,, we find that 

A = 
0 

~(~/c~)'(l-y~)~(sinh~d-d~)[l+~(c~/c~)+~(c~/d~c~)] . . . (7.2.D) 

A 46 = i(c/c,)4(l-p)(sinh d cash d+d)[l+&ca/c,a)] e.. (MDj 

h,,+A,, - -~(c/ca)4~(l-~)~sinh"d+[l+~~(c/~,)a](1-~)ada 

coshad-y4sinhad)i[l+GP(ca/cI)] . . . . (7.4-D) 

We/ 
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We shall generally deal much more briefly with these equations than with 
the equivalent equations of paragraph 6, because the principles involved in 
the analysis are in most cases the same, or similar. The thick surface 
solution being identical with that of the fixed surface, we start with a 
discussion of the effect of reducing thickness on slowly propagated 
oscillations. 

7.1 Slowly propapated oscillations 

Assuming that B is bounded 
FEzding as before (in paragraph 6.4j, 

using (7.2D) and (7.&) and 
we arrive at an expression like 

. , namely, 

v=I, u = H/(1-x) , x z x(d) = 20(u&,p[sinhdcoshd+d)/(sinhad-da) (7.5) 

which is valid provided that (c/c,)" is small, and moreover provided that 

d >> oi'a (c/c4) . . . (7.6a) 

d ‘> b/c,) . . . (7.W 

conditions which will be established in paragraph 7.2. Whereas x(d) was 
a monotonic function increasing with d for a fixed surface, it will be seen 
that it is monotonic and decreasing (with increase of d) for a free surface. 
(In fact x+00 as d+ 0.) The equation for d, supposing that 8 is 
known, is that stated before, namely in (6.28), and further as in (6.29). 

@/@ = (RdRs) = l-x(d) . 

> 1 then x > 1 for all positive d, and there is no 
least if u6 is not small compared with c,, then none for 
On the other hand, if' X(W) < 1, then there may be a solution 

NW, if x(““> 
solution - at 
small c/es. 
which would correspond to those values of c in an interval about that for 
which 6 is largest: in fact as d/(1-x) has a minimum value (being 
infinite at d = 00 and at some finite value), there would be two solutions 
sorresponding to each Z$ (and c/us) if any exist at all. For some 
6 = 6 min < frnax these two solutions would merge into one, and for smaller 

. . 
values of 6, n_ solution would exist. Thus as I& 1 decreases from 
infinity and 6 and c/u& = l/U? booth increase, th_ere will be a region 
for which no solution exists: when 6 rises above hrnin a solution will 
exist (with 
as I&l 

6 < 5) the two values of 6 gradually diverging; ultimately, 
decreases further and 6 starts to fall again so the two 

solutions will once again converge. The smaller the value of x(m) may be, 
the greater is the difference between the two solutions, and the smaller the 
value of Smin. An increase in the value of 0 brings about the same 
effects, whilst increase of x(m) or decrease of 0 have the opposite 
effects. If, in particular, l/e and X(W) are sufficiently large that 

(l/@[d/(l-x)1,,, > ~)b~)lrnax = 0.366 

then no solution exists. Even, however, when it does exist, it will be 
observed that 6, (c/us) and Rg are always finite. 

The maximum value of 0 satisfying (7.7) is shown in Fig.5. 
For small x(a) = ~C(U~C,)~, 

[a/(1-x) lmin - 8[x(a~)/y]~” 

oc~~rrhg for d = 2[3+)] aI3 This value is compatible with (7.6a), and 
with (7.6b) as well provided &at, if' 8 is supposed small, 

u % d = O(e) l 

Solutions/ 



- 29 - 

Solutions in this range of small 8 thus excluded can be treated by the 
methods of paragraph 7.2 below. With this restriction, therefore, we find 
that the maximum skin thickness for which the mode of oscillation is absent 
is given by 

0 max * 10.5 8” (00) , for x(m) -+ 0 , . . . (7.8) 

Whereas, of course, for x(m) 3 1, we have that ernax +oo. 

Where a solution exists, then plotted on a c-R& or s-R6 
diagram, the neutral oscillations will be found (as sketched in Fig.4(e)) to 
lie on a closed curve, bounded below by Rg > Rbin, and above by a finite 

value of Ra. Likewise the values of 6 are bounded above by a value less 

than Lx, and below by a finite value; the values of c are also bounded 
above and below by finite values, and generally c = c max max. 

7.2 Thin surface 

7.21 Low speeds of propagation 

In order to connect the solution of 7.1 with that for a thin 
surface it is necessary to relax (7.6) and consider d and c/c to be 
similar small magnitudes. Then from equations (7.2D) and (7.2BJ we see that 

A0 = ~(1-ya)a”(~/~,)4~(-1-~)(da/3)-(~/~,)al~l+~(~a/~~)+~(da)l . (7.9) 

and similarly from (7.4B) and (7.4D), 

%s+A46 = -~(C/C,)4[(l-~)da+~~(c/c,)'l[l+~(ca/c~),~(da)]. . . . (7.10) 

As in (6.8) and (6.10) we can find from (4.28), (4.30), (5.6), (7.9) and 
(7.10) that 

v = (Ao+~$/Ao = ~~I(~-~~)(k~)/(3Gl) = 7.14/hJ(W3 

u = (Ao+D3 )H/I[: (l’x)Aol = U’ (O>/f?J@) I”, I x = -(~c,/I~~~,)[~~~/(E;-~)(~+%,)I 

. . . (7.11) 

where we have placed 

g s 4ca/dac:, - = 
2 

If o is small, k is close to, but less than l/3; if G is large, then 
% is small but non-zero. Now from (5.6), (5.8) and (6.14) 

6 = (4up%q)[U’(0)]~/[U(6)]” = 4uau~q . . . (7.13) 

and so eliminating U'(O) and U(6) between equations (7.11) and (7.13) we 
arrive at an equation: 

where 

A(3E-l)(E-5,)(C+E&? + C,a(3E-l) = B(&Ci)"(E;tca)' 

A= M+, 1 IO , B = ;(~/~)(u&~)~HI~. 

This appears a complicated equation to solve, and perhaps the easiest method 
would be to plot the curve of A versus B on a diagram, using A and B 
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as Cartesian co-ordinates, 
so H and IO) to vary. 

the curve being generated by allowing Z (and 
Then the straight lines E = constant c&n be 

superimposed, ard the intersections would be solutions: however, only those 
for that semi-infinite range of A for which the first term on the 
left-hand. side of (7.14) is positive would be valid solutions, because this 
is the condition, from (7.11), for positive W). 

If this is done it will be found that there are possibly solutions 
for a limited range of values above (and including) 
interval about either side of c = &. 

g = 0, but none in an 
These small values of E correspond, 

it will be appreciated, with the solutions - if any - of paragraph 7.1, 
modified for small d. In fact, for small E;, (7.14) can be expanded as 

(I-x)E"~ = (B/A)$Ea(l+aiE + . . . . ) 

and it can be shown that a, = -3~. 
that this is equivalent to 

The expression for C in (7.13) shows 

(I-x)u = H(l+a,C + . . . . . > 

and the series is evidently merely that for (A,+D,/&,); using the 
definition of 
earlier 

5 in (7.12), we see that Da/A0 is small if - as asserted 
- the condition of (7.6a) is satisfied. 

states alternatively that C << l/3 
The condition (7.6b) 

as in (7.5), in the condition 
, which justifies the neglect of (D,/Ao), 

CT-, 0. 

For some C in the range 6& < C Q l/3, a solution exists 
corresponding to negative I and positive H. Moreover, if x > I at 

= 0 there will also be solutions corresponding to still smaller values of 
k I where H and I are both negative, though a range about Z, = 0 
gi$ei no solution. 
validity.) 

(If it did, it would, of course, be of doubtful 
Now x < 1 at H = 0 implies, from (7.12) and (7.14)) that 

(u&d) < [2'5412+c)3/10~,, = 21/(12+4 . . . . (7.15) 

If this condition is satisfied, then as I,& 1 increases from the 
value corresponding to H = 0, E will decrease from l/3, reaching a minimum, 
and then it would increase to the value l/3 again as I + 0 with further 
increase of I$ I* Now, as H --) 0, we see from (7.11) that U(6) + 0, and 
by (7.13), h-+00 (and, of course, U'(O) -+ 0). Equation (5.11) shows that 
R6 + 0, but plainly the large values of 6 and c invalidate the solution 
in this limit. On the other hand, as I + 0, 6 and U(6) remain finite, 
as also will Rg; thus plotted on an c-% or 6-R& diagram, neutral 
oscillations of this mode would lie on an incomplete curve, extending from 
infinite c and 6 at R6 = 0. 

If (7.15) is not satisfied, the condition H-'O+ corresponds to 
a value of Es f l/3, and x -+ 1; but U(6) and U'(O) will be non-zero. 
The solution will be continuous here with that for the values of I& I for 
which H and I are negative. Ultimately as C + l/3, then H + 0 
through negative values, and this corresponds to the same limiting behaviour 
as noted before, - namely, c/u& and 6 tending to infinity, and Rh 
tending to zero. 

The solution for I + 0 through negative values (and 
correspondingly E; + l/3 from below) is in fact continuous with that 
existing in the range k > l/3, which is satisfied by positive H and I. 
If U& or o is sufficiently small, this continuation will be such that 
a single value of E; will in general correspond to two values of I, and 
the solution only exists for a finite range of C, above l/3. As 
I&I 39 and I + 0 from positive values, 5 will decrease to l/3 again, 
implying that U(6) has the same finite value as for the limit of I + 0 
from below but that U'(0) is decreased and so 6 increased. 
since Ii-$1 

However, 
is unbounded in the limit, so is Rg; consequently on the 

c-Rd 
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c-R6 and 6Rg diapams (Fig.4(g)) the aforementioned incomplete curves 
are thus continued to R6 = 00, being asymptotic to the values 

WC,)" = ~$!/[(~2+4c,H] , 6 ocu(q/u'(o) = 2(c/c,e)E-~a b. (7116) 

where evidently H = I end C = I /3. Since (c/u& and 6 must both be 
small we see that this solution is strictly valid only for large a; 
However, if (udc,) is sufficiently small, U'(0) will be large, and it 
will then be only the approximations to u and v' which are at fault. 

There is another solution yielded by (7.14) for small udc, or 
o which involves a range of values of Es with a lower bound greater than 
l/3 but no bounded upper limit. This is evidently properly dealt with by 
relaxing the assumption that c/c, and d are comparable magitudes, as 
this implies E = O(1). This we do in paragraph 7.22. 

Likewise if udcs or CT is large there are again two solutions, 
one being continuous with that already found for C Q l/3, and for all 
F > l/3 yielding values of I < Imax corresponding to bounded values of 

I& I* The other corresponds to & = --oo at C = l/3, and is compatible 
with I?& 1 decreasing to a value for which I < Imax and then increasing 
again as et*-, The solution IS; 1 -+ 00 as < -+ 1/3 implies the 
asymptotes given in (7.16) above, with H = 1. 

7.22 Solutions with larger speeds of propapation 

We now turn our attention to those solutions in which 8, and so 
d, may be vanishingly small, but c/c2 is finite. We should expect such 
solutions to be continuous with those discussed above which apparently exist 
for 41-'m. The relevant equations for 4, etc., may now be taken as 
(7.=), (7.3B) and (7.0) and we see that from (4.28), (6.9b) and (6.14), 

(A0 + D3)/Ao = [c;-(-l-+"]/(+ca) 

x4 = - (0/0)U’ (0) 1 (u&/c)+[:~ca/~(c~-ca > 

and from (5.6), (5.8) and (6.8) 

Io(u&3 = (c~-c")/[++?)c"] l . . (7.18) 

so that in (6.9b), ignoring the undetermined small term of order 6 compared 
with unity, 

(u&/c)u’(0)[l+(~/e)U’(O)[(u&+Oc~~i/(c~-c~)lj = (H/IO). . . . (7.19) 

We shall subdivide our discussion of these equations according to the value 
of c relative to c,(o) = c,/(I-~)~'~ and c,(O) = cd. 

W c < CA 

Here solutions must lie within the range of I > 0. We note that 
the expression in (7.18): 

L 
has a maximum at c = cmax where 

(crnJc4Y = [6-0=-~(24+~)~~]/[6(1-~)1 

and where its value is unity for small 6, decreasing to 0.24 40.6 = 0.186 
at o = 1, and finally to zero as o+co. Plainly if 

(u&J3(Io)max = 0.08 (u&Y 

is/ 
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is greater than this maximum, 
of I = Imm, 

solutions do not exist in the neighbourhood 
as we found when discussing the pair of 'large udc4 or c' 

solutions involving large E at the end of the previous section. 
other hand, if o or udc, 

On the 
is sufficiently small, continuous solutions 

will exist for all I > 0, though in both instances we see that, for each 
I and & for which a solution exists, there are two corresponding 
values of c/c 

? 
on either side of the maximum. 

slowly propaga ed 
For I + 0, the more 

oscillation - which according to our present 
approximation would have vanishing speed - will in fact obey the then more 
exact relations found in the previous paragraph for solutions in the 
neighbourhood of 5 = l/3. Thus we see how we may "marry" the solutions 
with those just discussed in paragraph 7.21. 

Considering first the form of the solution for sufficiently 
small udc4 (such that solutions exist for all I), and ignoring for the 
moment the particular solution corresponding to small 
other solution will correspond to c = c4 

c, we see that the 

cl-+-=), 
at the limits I + 0+ (for 

and & + -2.3) with c reaching some minimum (greater than 
cm=) at I = Imax. If udc, is smaller than unity, then of course 
such solutions would presumably not exist. 
(I0)ma-x 

However, since 
= 0.081, it follows that, if o is small, this form of solution 

applies for u& < 2.3, and close to this limit, the value of 
can be numerically quite small compared with unity. 

Wqj) 

We see that we can express equation (7.19) as 

(U~>Iou’(0)El+~*U’(0)/(8c)l = H-[~~'U'(O)/Bug]~/[c~-(l-~)c~] (7.19a) 

in a form evidently analogous with (6.Yc), and from this form it is perhaps 
more apparent that as I+0 (and c-tc,) then 

6 = 0.58 U(s)/Ul(O) = o*58/(mi’a) l . . . (7.20) 

In other words 86, - the ratio of skin thicla?ess to wavelength - is 0.58 at 
the one limit (corresponding to 
Since 6 and c are finite, 

I& 1 +m) and 0.38 at the other (& = -2.3). 

R(j--+% 
then from (5.12) the limit I$ 1 + 00 also 

porresponds to but the other limit corresponds to a finite value 
of Reynolds number given by 

R6 = 8.15 B(u&,)~ . . . (7.21) 

and it can be anticipated-that the solution will here be continuous with 
another existing for smaller values of Rg and larger c. 

The value of 6 from (7.20) at these two limits corresponds to 
values of 5 = H, and this is compatible with the prediction of paragraph 7.21 
above that the solution will originate from some value of E > l/3: however, 
since d is not negligible compared with c/c, at these limits, the present 
solution will not be accurate except in a qualitative sense. 

We note that for udc4 < 2.3 and o+ 0, the value of c tends 
to Cd for all I > 0 in this mode of oscillation, so that from (7.19a) 

(c,/u(j)3(u'(o)/~) = I,~[l+(~c~/I~Eidu~)~l'a -I] 

and the value of 6 = 0.58 u&J'(0)c4 is everywhere of the magnitude of 
l/0, if 0 is small, reaching a maximum at the two end limits, where I + 0, 
given by (7.20) above. 

t 

The other solution of (7.18) and (7.19) corresponding to that found 
earlier to exist in a bounded rsnge above E = l/3 tends, as c+ 0, to 
give c = c, where 5 is the speed of propagation for the Tollmien-Schlichting 

oscillation/ 

5 
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oscillation corresponding to k; further (7.14) shows that, as 
bm + 0, 

(G/0)U' (0) = 1 [li+(4R/Io>(cr/e)11'a -1 ]y . . . . (7.22) 

Thus in general 6 will also tend to coincide with 8, the inflexible 
surface value, except near the limits- I -+ 0, where 6 -+ 03. The value of 
C corresponding to c = C and 6= 6 is 

E = b$vc4 0) !a 0.. (7.23) 

and this can clearly be large - and so our solution valid - if 

However close to the limits I + 0, we find from (7.22) that E; tends to 
zero as I"/", (and Rs'-> and this is compatible with the anticipated 
result that this solution is another approximation to that found earlier 
to exist in a bounded range above Es = l/3, and indeed (7.14) yields the 
solution (7.23) for I # 0 m-d G-+ 0. This same limiting behaviour of 
C-+0 as I.30 is characteristic of the approximation to this mode of 
oscillation even where c is not small, and the correspondence between the 
present solution and that of (7.14) is always present. 
shows that U'(O) 

Equation (7.22) 
is then always less than the inflexible surface value, 

and so generally 6 will be larger, and Rs smaller. 

If (u&4) exceeds the critical value given by 

(uh4)Erit = (c~-ca)c”/~c~~c~-(l-~)ca~~m~(I,>max l .  .  (7.24) 

then c = cmax for some I < Imax. The solution which originates from 

cl = v3 in the neighbourhood of I = 0+ 
to c=cmax for some larger l&l, values of c as 

kll decreases once again, until as I returns to zero, c -+ c,, and 6 
and Rg have limit values ascribed in (7.20) and (7.21). 

i&=-co 
The other solution originates from the condition F = l/3 at 
given in the discussion of paragraph 7.21 relevant to small values 

of WC&' >. This condition corresponds to Rs = 03, with the c and 6 
values as given by equation (7.16). 
to 'max and continue to increase as 

TGi/& 1 decreases, c will-increase 
returns once more to infinity: 

at this limit c -+ 04 a.nd - according to (7.20) - the value of 
6 tends to 

(ii) c, < c < c4M 

Here we find a solution, in the range of values of ZZ for which 
I < 0, which.is continuous with one of the solutions in the region I > 0; 
y&I $y) IGl I a ecrease, we find that c increases to some value less 

solutiol foG 
and then decreases again as Gl + 0. There is however no 

6 in the nei 
Ir;‘jh 

bourhood of small ?&, and a continuous 
solution is found with reaching a non-zero minimum, and then 
decreasing once again, until in the limit as H-) 0 through negative values, 
6-+(x, and R&+0. 

However, if for some values of c in the range of the solution 

c3/h&"-c," > I G (@/a> . . . (7.25) 

then 6 -+ 0 and Rg 303 for that value of I,< 0 for which (7.23) is 
satisfied as an equality (with H > 0). A second solution then exists 

involving/ 
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involving the other limit of 6 + 00 and Q 
of c and 6 over a range of values of Z$, 

+ 0 which gives two values 

It is pertinent to note that if udc, and CT are small, 
(7.23) implies from (7.18) that 

but if either (u&/c*) or G is sufficiently large that 

(2+30s)u@t 2 1543 

(7.23) requires the less stringent condition that 

Tracing these various modes of oscillation for all c < ~~(0) on 
c-R& and 6-R 
value of (7.24 

diagrams, we see that if (udca) is less than the critical 
, one mode exists (involving large Es) which starts from 

S = 0.58/0 and c = c4 at Rg = 00, decreases at first in its values of c 
'and 6 as R 
tending to 2 

decreases (Fig.lc(g)), but reverses this trend, with 6 
in efinitely large values as Rb -+ 0. 

large that (7.25 
If 0 is sufficiently 

curves (Fig.4(h) 
is satisfied there is a branch in the 6-Rb and c-R6 

, returning to R6 = 00 with c > cs, and with 6 reaching 
vanishingly small values in the limit. 

ET wk is larger than the critical value, there are two modes 
involving large C, one originating from the asymptotes given by equation 
(7.16) at Rh = CO (which is a valid expression provided the given value of 

ifi - 
is small compared with c4) reaching a minimum Rh and returning to 

00, with c asymptotic to c4 
&.~.4(f)). 

from below, and 6 tending to 0.58/O 
The second mode is an extension of the solution for small C, 

extending to infinite c and 6 at Rg = 
of c/c4 and 6 at finite Rh ( 

0, which reaches some small value 
corresponding to C = l/3), then increases 

its values of c through c4, and 6 through 0,38/e at some finite Rg, 
finally returning to s = 0 with c > c4 and indefinitely large 6. 
Once again if 8 is sufficiently large, these latter curves branch to 
R6 = 00, with c > c4 and with 6 vanishing in the limit. 

(iii) 5 > c,@ 

This speed range only exists of course if o < 1, and if c is 
close to unity it will involve speeds considerably larger than c4. Here, 
once again, we may expect to find solutions of (7.18) only in the range for 
which I > 0, and since 

(c”-cgc3/[ (I-oB)c"-cgc; 

has a minimum at c = c min' say, where 

(cmh/c4)” = [6-~+~(24+oa)~~ 1/6(1--a") 

and at the minimum its value is close to unity for small a; but becomes 
indefinitely large if o+ 1, we therefore find that such solutions exist 
only for sufficiently large u6/cs, and then only for a finite range of 
positive I about Imax. The value of U'(O) is only positive if, 
from (7.14), 

c3/cl$ca- q1 < w-) 

and placing c = cmin, we see that this implies 

(U*'/C,) > (Cmi,/"')3[6(l-oa)/[50+(24+aa)"a 13 . 
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The right-hand-side is equal to 41.5 if G is small, but increases to 
infinity as CT-+ I. Supposing that 8 is sufficiently large to justify 
this inequality, then a solution exist s which will lie on a closed curve 
on both c-R& and h-R6 diagrams, existing for a range of finite Rs. 

7.3 Past propagated oscillations 

. Comparing (7.2C), (7.3C) 
(6.3~) and (6.4~), 

and (7.4.C) with ,-the equations (6.2C) and 
we find that the only difference - apart from a constant 

of proportion - is that 'cost and 'sin' are everywhere interchanged. Thus 
to each and every solution of paragraph 6.3 for the fixed surface there will 
be, in general, an analogous solution with the value of $ changed by x/2 
or 75/2y. This will, of course, affect the numerical values of the solution, 
but not its qualitative interpretation. The solutions mentioned in 
paragraph 6.3 relevant to the region about $ = n/2 will here be seen to be 
relevant to those for small $, which, of course, have already been remarked 
upon. There is likewise a singular behaviour of the solution in the region 
of JI z X, but it is difficult to determine whether this connects with any 
of the solutions already discussed. 

8. Surfaces Exposed to Fluid at the Inner Boundary 

Where a fluid exists at the inner boundary, its depth, 
compressibility, viscosity and density are all parameters of importance. 
In general, the structure of the equations for the boundary condition would 
need to take account of most - if not all - of these parameters, but in a 
few extreme examples its presence can be simulated quite simply. Thus if 
one is willing to assume that the fluid is incompressible, and has very large 
density and viscosity, then the boundary condition is effectively that for a 
rigidly mounted surface: in practice there will be some movement at the 
boundary but this could be small compared with the movement at the outer 
surface exposed to the moving fluid boundary layer. 4+-n, if the inner 
fluid is very light and assumed inviscid, then the 'free' boundary condition 
is appropriate, though clearly the inner boundary will not be completely free 
of stress - but rather the stress there will be much less than at the 
external boundary. 

Two other extremes of this type will now be considered and their 
effects on the stability problem briefly outlined. The first is the case 
of an indefinitely heavy, inviscid inctY,npressible fluid, and the other the 
case of a light, very viscous fluid; we shall refer to these respectively 
as HI, and LV, fluids for brevity. For the HI fluid, the appropriate 
boundary condition at the interior is that shear stress is absent, and there 
is no normal displacement: for the LV fluid, it is that normal stress is 
absent, and there is no tangential displacement. Interpreting this 
algebraically, and considering first the HI fluid, we find the boundary 
condition is formed by one from each of the pairs of boundary conditions 
(6.4) and (7.1). T:=se become, after some manipulation: 

4l-u-2 tar&r&d = 
- (A&,) tanh r,d + A4 = 

. . . (8.1) 

whilst, for The LV fluid we have similarly 

J-l/1;) 
%- 

tanh rid + As 
A,r, tanh r,d = 

0 

1 

l 

0 

(8.2) 

These are both simple conditions, and can be identified as the equations for 
m = 1 and 2 of (4r7). We can deduce, from Table 1, that the determinants 
of interest in our problem have the values shown in Table 2, where we also 
include the appropriate limiting forms for small c/c2 and small d. For 
large d, the equations are identical with those for the other boundary 
conditions, and for large "hi they csn be reduced to forms analogous with 
those of psragraph 6.3 by a suitable change in \Ir. 

Table 2/ 
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Ao 
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i 
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Table 2 

' Values of Determinants 

General Form* 

._-.-- -_-_---_____-_-_--^ 

&(I-ri > (tit,/rir, > 

-(l+rf)kJrg)+~ltl 

+~ojl-r~)(r~rgtl-t,)/r, 

~__- --.- 

d/24 

LimTit (c/c,) << I 

wJ”> <WC;, 
x(tanh d+d sech"d 

$(c'/c;) tanhad 

m-Y=) wq 
x(tanh d-d sechad: 
__--___ 

c=/2c; 

C 

> 
--- 

( 

Limit d << I 

‘Cc,’ -co > d/tc; 

cada/2c; 

I-2yP)cad/c; 

&oc'd/(c&' 

-c4d/l+.c; 

c'/2c," 

*Note: ti =tanhrid, t =tanh rad a 

. 

8.1 Slowly propagated oscillations 

Here, as in paragraphs 6, 4 and 7.1, the behaviour depends on the 
value of x, which is given by 

X = 2o(u~/c~)[sinhad&nh d cash d+d)] for HI fluid 

= 20(uad,~)[coshad/(sinh d cash d-d)] for LV fluid . 

For the HI fluid, x is a monotonic increasing function of d, and the 
inflexible surface mode of oscillation will be modified in the manner described 
in paragraph 6.4; for LV fluid, x is monotonic and decreasingwith increase 
of d, which as in paragraph 7.1 indicates the disappearance of this mode for 

0.366 0 < b/(l-x)lmin l 

For small values of o(udc4)', this implies a value for ernax which is ry3 
times that found for a free surface in (7.8) - that is, a reduction of about 
206 in the permissible thickness for the elimination of the 
Tollmien-Schlichting oscillations. 

8.2/ 
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8.2 Thin surfaces 

8.21 Heavy incompressible fluid 

From (6.8) we have 

. 

7*14/CU(6)13 = v = (Ao+~a)~/~o 

= 1~+~-[1-2cr(1-2y91c~c"-0%"~/[c,"(+-c")1 . . (8.3) 

whilst (6.9a) gives 

U’ @MJ(~) = [(H-l)ca/Iou~]+(~&)+[~~~/(c~-ca)] . . . . (8.4) 

We can simplify (8.4)by writing 

c; = ~(~~/~)~[[(1-2~)~+8~]~~ -[(I-2c~-)+4~]] 

> 
. . . (8.5) a cs = ~(~,/~)"[[(1-2a)~+8~]~'~+[(1-2~)+4~]] 

For small C, c,/c, is large, and ca is slightly in excess of 
c4; as c? increases, cs decreases and c5 reaches a maximum and then 
decreases, being equal to c4 again where 

o- = (‘1--2ya)/[2ya(~-P)l * 

As CT becomes indefinitely large both ca and ca tend to zero inversely 
with 0-i 

With this notation, (8.3) becomes 

c~(+c")(+c")/[+~(+ca)] = (c4/us>a/Io . . . (8.6) 

and (8.4) can be rewritten as 

lb = U’(o>/U@> = (c/u$~ ~H-1+~~u~c4)[l-(c/c,)a]~i[l+(,/,~)a]~i ]ro’+(u&) . 
. . . (8.7) 

We shall very briefly discuss the results obtained from these 
expressions by distinguishing whether c5 is greater than, or less than, c4. 

(0 o- < (l-2ya)/[2ya(1-ya) 

Here we see that c > c4, and there are two solutions for c < cq 
which, -asin paragraph 7.22, depending on the magnitude of udc,, - take 
the form of either a. pair of solutions starting and terminating at c = 0 
and c=c4, each limit corresponding to I + 0 through positive values 
(at H = I for one solution and for H = 2.3 for the other); or else to 
a pair of solutions, one increasing from c = 0, reaching a maximum and 
returning to c = 0, and the other decreasing from c=c , reaching a 
minimum, and returning to c = c4, as - in each case, - 1 I increases 
from 2.3 (where I = 0) to infinity. 

q 
As in paragraph 7.22, the latter 

corresponds to small (udc,), and the former to large (udca). In each 
instance,where c+O or c+c4 as I+O,wefindthat'6+0 and 
R&+oo; in fact ~oc?/R& as c-+c4,unless 1&1+m wh$: ~ccR-"~. 
In the other limit where 
ktl 

c 3 0, both c and 6 vary as R& 
6 , unless 

+w when c and 6 vaxy as Ri*'la. 

For small 0, the solution approximates, as in paragraph 7.22, to 
that for the Tollmien-Schlichting mode. 

For c4 < c c c5, I must be negative and any solutions which 
exist must be in a range bounded by some I < 0 and positive H: such a 

solution/ 
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solution would start at 6 = co and Rg = 0 with a value c > c4, and 
would either return to this condition or, if 
finish at I& I + 0, 

0 is sufficiently small, 
corresponding to c = c4 and 6=0 at 

There may also be a closed solution in the range c > c5 if 
sufficiently small. 

0-i) o- > (I-2Jd)/[2Jd(Lyl)J 

Here a solution exists for all I > 0 in the range c < cs < c,, 
maximum with I, and tending to zero as I + 0. the value of c reaching a 

For tis < c < cq, 
above, at 6 = CO and Rg = 

there is a solution starting, as we mentioned 
0 with c > c,, and finishing at 

and 6=Rh= 
1~1 3cx3 

with c = c, 0; again there may be a closed solution (for a 
range of I on either side of Imax) for c > cq. 

8.22 Light, viscous fluid 

From (6.8) we have, on taking account of the fact (as in 
paragraph 7.21) that d may be of order c/c,: 

where 

7.14AW)13 = 3(1+2dI[(E;o-%)/(+-3E;)1 

> 

.*. (8.8) 
E = c'/cid" , Co = 1/[3(1+2o-)] 

whilst from (6.10), which suffices since @3,+A4,> is small compared with 
A ,6, we have 

where 

mwcm1" = [3(1+2~)H/(l-x)l[(~-E;)/(1-3~)1 

> 
..* (8.9) 

x = (m-4/Ious)s3'a /(Co-f) 

and since c = <yjdC~ e> a 

we find, as in (7.14)) an equation for E; of the form 

A(3E--l)(&S,)?'+~'(34;-~) = B(E-Co)a . . . (8.10) 
where A = (1+24u&,/(c3), B = 

and this remains a good approximation even if c/c >> d (i.e., even if 4; 
is large) except for some modification to the mea&g of go* 

As in paragraph 7.21, the solution for C < Co represents the 
modified form of the inflexible surface solution, if it exists (as of course 
it will do if, for instance, o+ 0). Likewise, the solution for C > G 
follows the same principles as those discussed in that section: with E 
tending to l/3 as HI + 0, except that now, at this limit, instead of (7.16) 
we have 

(C/C,)” = (u~O/~C~H) , 6 0~ U(S)/U'(O) = (c/c,@)C"" 
. . . (8.11) 

Rs = IO. y (-zJ"ti'" (ufjc4)6'3 e3 

In the present instance, however, there is no solution in the range 
of unbounded C, and the solution starts at H = 0, with c = 6 = 00 and 
R6 = 0, and proceeds through I = 0 to I?$, 1 + 00, where E returns once 
more to the value l/3; at this limit c and 6 are finite, but Rh is 
infinite. If o is small, the solution for I > 0 follows closely the 
Tollmien-Schlichting solution, except at the limits. 

Y*/ 
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9. Summary and Discussion of Solutions 

We envisage the two-dimensional boundary layer to exist over a 
plane surface, which is composed of isotropic elastic material with a 
uniform thickness, supposed to be 0 times the boundary-layer thickness 
defined by u&/g , where 2 is the surface velocity gradient in the 
boundary layer. (This thickness for a flat plate boundary layer is 1.7 
times the displacement thickness.) The interior surface of the material 
is supposed either rigidly fixed, exposed to fluid of special properties 
b-graph 9.7), or else free (that is, strictl.y, exposed to vacuum) - the 
latter being an unrealistic condition but intended to simulate the 
condition where an unstretched elastic covering is bonded only at discrete 
points to a rigid structure. 

In framing the stability equation, which is in effect the 
statement of the Eigen-value problem concerning the evaluation of the speed 
of propagation (c) of the assumed neutral oscillations and of their 
downstream wavelength, we find it desirable to introduce some special 
simplifications, as the form of the equation derived by making only the 
usual simplifications (equation (4.20)) app ears unduly complicated for a 
general analysis such as we attempt. These special simplifications (that 
the terms of (4.22) are small) would be justified if (cs/,&t) and 
(c2@/u~~o") are small compared with unity, where 6 is the boundary-layer 
displacement thickness divided by the oscillation wavelength and &, is 
described below. Then, for a flat plate boundary layer velocity 
distribution, which is closely linearly near the surface, we deduce (in 
equation (4.30)) that the stability equation can be represented by 

y&zo> = (A ,w+D,  )/(Ao+D, )  l 

Here r'(Go) is a complex function (as shown in Fig.1) of &, which is a 
parameter involving the Reynolds number Rg based on the boundary-layer 
displacement thickness, as well as involving the terms C/US and 6; w is 
a complex function of c/q and 6, whose form depends on the assumed 
velocity distribution. For an inflexible surface D, 

T&Q 
and Da are zero, 

and the equation reduces to the familiar form = w, where w is 
usually separated into its real and imaginary parts u and v. In contact 
with an elastic surface, Ao, D, and D, are functions of 
and of 8, udcz, c,/cL 

c/u6 and 6, 
and o- as well, where o is the ratio of fluid 

density to that of the elastic material, and c1 and c, are respectively 
the speeds of propagation of compression waves and of shear waves within 
the material. The form of the functional relationships for Ao, D, and 
Da depends on the interior boundary condition, - whether it is fixed or 
free, or exposed to a fluid. It may frequently be justifiable to ignore 
Da cornFared with A, in which event the form of t 

5 
e stability equation 

reduces to that already proposed by Brooke-Benjamin . However, since A, 
may vanish under certain conditions corresponding to a mode of oscillation 
of the surface in vacua, (that is, with o = 0), the inclusion of D, 
leads to some important differences in interpretation. 

In an endeavour to understand the qualitative aspects of the 
various possible solutions of the stability equation arising from variation 
in the four parameters 0, qiba t C&i and C, some specially simple 
forms of expression for w in terms of c/u* and 6 are adopted 

(equations (5.6) and (5.8)) in which in particular the real part (u) is 
crudely approximated in a manner which is only justifiable if 8 is small 
compared with unity. This is merely a matter of expedience, and in any 
quantitative solution relatively little more labour would be involved by 
taking more precise expressions - though even so iterative methods, which 
are convergent, or&v if 6 is small would cormnonly be adopted. We 
certainly consider solutions which in practice would not justify these 
simplifications, and it is pertinent to enqui;-e what significance may be 
attached to these. Where the frequency parameter c6/us remains small 

cd 
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or Rg is large, it is merely our approximations to u and v which are 
at fault; large values of 6 would indicate a modification to our 
results - and a difficulty in deriving the numerical values - whilst large 
values of c/us would imply in fact values close to unity (since in our 
approximation this implies by equation (5.6) large v, and the more precise 
form of this relation - equation (5.4) 
values for c&j < 1). 

- shows that v takes all positive 
Where the frequency parameter is implied to be 

large, and l/R* small, we can infer nothing more than that our theory is 
inapplicable and the reality of the solutions obtained must remain in doubt. 

However, the inclusion of the elastic constants introduces another 
aspect to these approximations. We shall, for example, consider modes of 
oscillation propagated at speeds close to the Rayleigh surface-wave speed 
(ca), at those close to the speed of waves on an extensive thin plate (cd), 
and various 'resonance' solutions involving speeds of propagation larger 
than that of compression waves (c,) or shear waves (c,) within the material. 
Provided, of course, that such speeds are small compared with u6 - as we 
are at liberty to assume - then such solutions have reality, but they 
clearly would not be found to exist by an exact analysis if the relevant 
speed of propagation were greater than ug. The possibility of the 
existence of oscillations propagated faster than u 

e 
is not of Course 

envisaged-in the basic framework of our theory - le alone in the 
approximations - and it would take us too far afield to discuss this matter 
here. However, because our approximations take no account of the fact that 
C cannot exceed ~6, these solutions, involving discrete speeds of 
propagation connected with the elastic properties of the material, appear 
to exist in our treatment irrespective of the relative value of c/ug; and 
even if we consequently imply in our analysis that c/u6 is greater than 
unity, this cannot of itself be taken to imply that they are in reality 
absent, as our analysis gives an over-estimate of c/u* under such 
conditions. In fact, in an exact treatment these modes of oscillation will 
be found to cease to exist for some value of c '< ~6, and it may be that the 
condition c = u6 in our approximation is no bad guide to their 
disappearance. Whether this disappearance implies their absence is 
effectively a problem of 'inviscid flow' stability, and possibly a question 
susceptible to analysis. 

We investigate solutions for large and small values of dc, 7 
with the purpose of definitely including or excluding such modes of 
oscillation, for both large and small values of 0. In this way we hope 
to be able to interpolate broadly the effect of these parameters over their 
complete range of variation, though with only the edges of the jig-saw 
complete, it is obviously diffiult to try to predict all that lies in the 
interior, - for general values of 8 snd udc,. 
is rarely of crucial importance, 

The parameter c,/c 
and in any case for common materials L 4 has 

only a limited variation between a small (positive) value typical of 
non-rigid but relatively incompressible materials like rubber, - to about 
v39 - a figgure typical of most metals and alloys. 

9.1 Thick surfaces - large 0 

We first limit our considerations to speeds of propagation 
c < ca, which would in fact cover all conditions we could legitimately 
consider if udc, is not very large. The oscillations within the elastic 
material attenuate exponentially away from the surface into the depth of the 
material, and the solution for large 8 is indistinguishable from that for 
infinite e. Our solution being only qualitative we have little basis for 
any numerical indication of what we mean by 'large 8', but provided udc, 
is not large, a surface thickness of, say, 4 times the wavelength could be 
interpreted as large, and the 'wavelength' mentioned here being that of the 
neutral oscillation, its value could be taken for this purpose to be that 
for an inflexible surface at the relevant Reynolds number. (Further 
amplification of this point will be found in paragraph 9.3 below.) 

9.w 
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9.11 Modification to Tollmien-Schlichting mode 

For small values of CT and udc,, the lobe diagrams of c-R6 
and 6-R&, familiar in the study of the Tollmien-Schlichting waves of 
inflexible surface stability, are modified only slightly, and what 
modification there is, depends primarily on the value of a$/cf (or of 
puadG, where G is the modulus of rigidity). The effect of the surface 
elasticity, as Brooke-Benjamiri!has pointed out, is to decrease 6 below 
the inflexible surface values and to increase R6, thus increasing the 
minimum Reynolds number for which neutral oscillations exist. (There is 
as well a slight decrease in c/ufp If d% is small, the 
proportionate reduction in (l/Rbti amounts to 

As a better approximation for larger values of us/c , - though generally 
rather an overestimate - if in Fig.2 the value of .fl: is taken as the 
speed of propagation of Tollmien-Schlichting waves at minimum Reynolds 
number (i.e., 0.43 us), 
the ratio of‘ out/c: 

then the proportionate reduction can be taken as 
to that value read from the figure. 

As o and udc, further increase, the above mentioned effects 
become more and more pronounced - the decrease in speed of propagation 
being particularly noticeable if CT is large (i.e., if the surfaoe is very 
light in density compared with the fluid). Indeed, the maximum value of 
C is always less than the value of c,(o) shown in Fig.3 as a function 
of 0; Ultimately, the lobes of the diagrams lose their characteristic 
shape when cx (given in Pig.2) is less than the maximum speed of 
propagation of neutral disturbances. For then, at the hiEl;her speeds of 
propagation of neutral oscillations, the Reynolds number tends to infinity 
and the wavelength to infinity, producing a double lobe as indicated in 
Fig.k(a)*. With further reduction the lobes tend to shrink towards zero 
speed and infinite Rg, until for 

0$/c: > 3 i.e., 

they are altogether absent. 

9.12 The Rayleigh wave mode 

However, before this happens, a new mode of neutral oscillation 
shows its presence. If this value of o$/ci is obtained by relatively 
large o, but small values of udc4, this mode only appears as a 
possibility with such a high speed of propagation, and such a small 
wavelength and Reynolds number, that our analysis is hardly applicable. 
However, if udca has a greater value than unity, the mode is recognised 
on a c-R8 diagram as existing at all R6, having a value rather greater 
than c&-) at low Reynolds number, increasing through the value 

Q,(O) at some finite Rb, 
g& : 00 

and tending to decrease to it again as 
(Fig.lc(b)). 

The/ 

. 

_---__-_-^------------------------------------------------------------------ 
*None of the diagrams of Figs.&(a) - (j) is intended to be anything more 

than a free-hand sketch, composed on the basis of a study of the various 
formal, snd approximate, solutions of paragraphs 6, 7 and 8. 
Generally the information available consists only of a knowledge that in 
certain ranges of Reynolds number c and 6 are increasing (or 
decreasing) with increase of Rg, and that their asymptotic variation at 
the extremes of Reynolds number is of a particular form. Possibly (where 
indicated) numerical values at one or two particular points may be known, 
but otherwise the curves shown have no quantitative significance. 
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The value ca has some special significsnce as it is the 
speed of propagation of surface waves in the material in the absence of 
fluid stresses - the so-called Rayleigh wave speed. Thus we are asserting 
such a neutral oscillation also to exist even at Rh = 00 in the presence 
of a fluid, though only if it has a specific wavelength. This wavelength 
varies inversely as dca (and also decreases somewhat as C is 
decreased), so that although the mode of oscillation is apparently within 
the range of validity of our solution for large udca, insofar as the 
speed of propagation is then sufficiently small, the wavelength is then 
too small to justify our approximations, at least in 
expressions for u snd v, - the equation connecting 
remaining valid. 

9.13 Conditions for a 'heavy' surface 

It is therefore judged that, despite the quantitative breakdown 
of our analysis, this mode of oscillation does truly exist for u6 < ca 
in some form for all c, including vanishingly small values, and this seems 
physically plausible since neutral oscillations of this speed (c,) can 
exist, as we have pointed out, in the absence of the fluid, - though then 
they can have arbitrary wavelength. Indeed, if o = 0 - that is, the 
surface is indefinitely heavy compared with the gas - there can be no effect 
of the fluid on the surface, though the surface itself constrains the fluid, 
by virtue of the assumed kinematic and 'no-slip' boundary conditions. 
Thus the surface can perform its own modes of neutral oscillation and 
impress these on the fluid, any stabilising or destabilising effect of the 
latter being as nought if we assume CT = 0. Such conditions (in the limit 
of o = 0) correspond to an indeterminacy in the stability equation, D, 
and Da being zero for CT = 0, and A. being zero for a natural surface 
mode of oscillation, such as that given by c = ca. Neutral oscillations 
of an;y finite wavelength can exist at this speed if CT = 0, irrespective of 

However, if: 0 is very large; but finite, and the interior 
surface is fixed, such neutral modes exist for the surface itself (with 
o = 0), again for any wavelength, but with some discrete speed of 
propagation c > c3 depending on the wavelength (i.e., the oscillations 
are dispersive). The speed is ca for zero wavelength (i.e., infinite OS), 
and the absence of neutral oscillations at speeds other than ca for 0 = 00 
arises simply because any finite wavelength is necessarily as nought by 
comparison with the surface thickness. 

These results, of course, would be modified in practice by the 
presence of frictional dissipation, because then only attenuated oscillations - 
rather than neutral ones - could exist at o = 0; there is, of course, no 
question of the existence of amplified oscillations if o = 0, even for a 
non-dissipating surface. In practice, in any case, the condition o= 0 
could not be reproduced, but this limiting condition has some importance as 
a guide to conditions for small G. Thus we know that, in the 
three-dimensional R~-6-c 'space', neutral oscillations for non-zero o 
lie on twisted curves, whose projections on the c-R6 and 6-R& planes are 
plotted on diagrams such as those of Fig..&. The description of lines of 
constant amplification factor will generate surfaces or 'sheets' in this 
space, and since for a non-dissipating material only neutral oscillations 
exist (at least for the mode in question) at CT = 0, it is evident that as 
o+ 0, this sheet must tend to degenerate to the planes c = ca, and 6 = 0 
for c > c,, if 6 is infinite, or to some cylinder 6 = f(c)/0 for 
c > ca, if 0 is finite. Furthermore, the amplification factors (whether 
positive or negative) must tend to zero as CT+ 0. Thus for small, but 
non-zero o, we can expect this cylinder to be deformed to some extent, as 
indicated for instance by the projections of the line of neutral 
oscillation in Fig..!+(b), and the amplification or attenuation factors to grow 
particularly in regions removed from the neutral line. Cn the sheet this 
neutral line will delineate regions of amplified and attenuated disturbances, 
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and the region of amplification (or attenuation) would only terminate at 
the limits of this space, or else on another neutral line. The latter 
possibility certainly arises when o = 0 and 8 = 0, for then c = c, 
is also a mode of neutral oscillation for all wavelengths and Reynolds 
numbers (corresponding to the propagation of shear waves throughout the 
material), but for 0 large but finite, the two cylindrical sheets of 
neutral oscillation in Rg-6-c space are separate, meeting only on the 
line 6~0 and c=m; we shall return to this point in paragraph 9.2 
as we shall see that there exists an indefinite number of rapidly propagated 
modes of oscillation with c > c,. 

9.14 Disappearance of the Rayleigh wave mode 

Another important point concerns the magnitude of u6 relative to 
C3 l 

We see that there is nothing to prevent the neutral oscillations 
existing at c = 0, even if c3 > ~6, though their presence would then 
obviously not be uncovered by an examination of boundary-layer stability b 
the usual methods. (We have referred earlier to this particular problem. ;Y 
Supposing, as seems reasonable, that for o small but non-zero the 
oscillations only exist with speeds of propagation above some certain 
minimum (corresponding to zero wavelength), the sheet of oscillations in the 
Rg-6-c space will only appear in the range c f US if ca/u6 is 
sufficiently small; certainly, anyway, this applies to the neutral line, 
which as indicated in Fig.S(a) grows from a closed curve as c3/u is 
reduced below unity. This closed curve indicates a finite regio A of either 
amplified or attenuated oscillation - to hazard a guess, the former would 
seem more plausible - which gradually expands as C3/uG is reduced. If it 
is indeed the higher speed oscillations which are unstable2, the shape of the 
sheet of oscillations for finite 0 and zero o would suggest that it is 
the longer wavelengths which are the unstable ones. 

Where c3/ub is reduced to such proportions that the c and 6 
values of the unmodified form of the inflexible surface mode of oscillations 
impinge on those representing the natural surface mode, the latter suffer 
some distortion as indicated in Fig.lc(c): if o-4 0 in such circumstances, 
the otherwise limiting cylindrical shape of the sheet of oscillations is 
indented, and the neutral curves of both modes tend to coincide over part of 
the speed and wavelength range. 

9.2 Rapidly propagated oscillations - large udca 

The fast moving oscillations we have here in mind, are those which 
are propagated at speeds greater than ca, the speed of shear waves within 
the material, and particularly those which travel at speeds seater than cl, 
the compression wave speed. These, of course, only lie within the range of 
validity of our study if c, < ~6, or c1 < ~6, as the case may be. The 
question of their existence in other circumstances, as we have already 
pointed out, cannot be answered except for o = 0, when they are certainly 
present. 

However, with this reservation on the magnitude of ~6, we find 
that solutions can certainly exist which indicate a number of modes of 
neutral oscillation. There is considerable analytical difficulty in 
discovering the precise variation of speed and wavelength of all such 
oscillations as a function of Reynolds number, and we are content to derive 
what is little more than an existence theorem. In any particular case, 
however, it may not be unduly difficult to derive numerical solutions - but 
this haa not been done as it is apparent that the detailed structure of 
c-R6 and b-R6 diagrams for such oscillations is very critical to the 
choice of the parameters, particularly of co/c1 - 

9.21 Compression wave resonance 

We find that solutions exist for u6 > c > cL provided at least 
that ois neither very small, nor very large, compared with unity; and that 

there/ 
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there are a number of such solutions, each independent of the next, the 
number generally increasing in rough proportion to the surface thickness, 
and the number of those lying within the range of validity of our analysis 
increasing, of course, with Q/C,. They can, in a very real sense of the 
term, be regarded.as 'harmonics' of some fundamental, the wavelength of the 
higher harmonics being progressively smaller. The fundamental itself would 
have a wavelength increasing with 0, o and udc%, but the speed of 
propagation of fundamentals and harmonics alike increases with udci, but 
decreases with increasing o (that is, it is slower for a surface of low 
inertia). We know such oscillations also exist for o = 0 for all 
wavelengths, but in our analysis if we allow c to tend to zero, the 
wavelengths are too small for our approximations to u and v to be valid; 
high values of o tend, as we have noted, to reduce c 
4 

(apparently below 
and certainly no solutions of this type can exist for c < c,. 

Each 'harmonic' will - if lines of constant amplification factor 
are supposed to generate a sheet in the Rh-6-c space - correspond to a 
separate sheet, but the precise shape of such sheets as revealed by 
projections on c-R6 and 6-R& diagrams has not been determined: it 
would indeed be a formidable task. However, it is apparent that solutions 
for the neutral line occur in pairs, with the value of c6 for each more or 
less the same and a constant, but one existing for high Rb and tending to 
have a reduced speed of propagation (and so higher 6) at both high and low 
R&Y whilst the other, existing for lower Rh, tends to increase its speed 
of propagation at the extremes; for both there is quite a wide range of Rh 
over which c (and 6) vary only a little. However, these are only 
general trends, as it is not clear whether the range of Rg for which either 
member of the pair of solutions exists is bounded or not. 

9.22 Shear wave resonances 

It is not at all clear, either, whether these solutions, on which 
we have based our comments, are the only ones. In general, it would appear 
that there were also others. Thus if c1 >> c,, corresponding to a material 
of high bulk modulus but low rigidity, there are certainly solutions for 
ci >c>ca,and ceu&, which have a different character; these exist at 
least provided the surface has the same order of thickness as the boundary 
layer, and provided (as before) that G is not small, though again it is 
known that such oscillations also exist for o = 0, and in particular an 
indefinite number exist at c = c, for a surface of infinite thichess. 

9.23 Physical origin of resonances 

What is the phy ical nature of these oscillations? They are 
t well-known in seismography , and it would appear that they are resonances of 

the material of the surface, tuned, as it were, by the thickness of the 
material, and not its surface dimensions. The general family of solutions 
discussed above, which exist for c > ci, can be shown, for example, for a 
surface fixed at its interior, to correspond roughly to the condition in 
which compression waves reflected from the interior surface arrive back at 
the surface exactly in phase with the surface waves. Thus the 'fundamental' 
of the oscillations is such that the wave originating (say) from a peak 
compression is reflected to arrive back at the following peak compression; 
the 'harmonics' correspond to waves which have shorter wavelengths, and for 
which the reflected wave arrives at the surface two or more cycles later, 
but still in phase. The thicker the surface, and the greater the length 
travelled by the wave, the greater is the number of cycles delay that is 
possible. With a free surface, compression waves are reflected as 
expansions from the internal surface, and here an analogous resonance is 
experienced if the thickness of the material is such that the reflected 
waves are exactly 180' out-of-phase. 

In fact, the presence of two types of waves (of shear and of 
compression) within the material, greatly complicates the whole physical 
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picture and the analysis. A single type of wave - shear or compression - 
reflects or refracts as the case may be, as two distinct waves - one of' each 
tne - fromanyboundary. As a result, the solution is not exactly periodic 
as it would be with a single-wave system (unless c2~ci is a rational 
fraction), though.it is, broadly speaking, quasi-periodic. 

Although we have discussed this solution in some detail, it will be 
evident that it may be rather an academic problem, as the sensitive nature of 
the resonance implies in practice that any slight non-uniformity at the 
elastic material's interior surface will modify it, - or maybe even eliminate 
it, on much the same grounds that it is easy to produce a bad note on a 
violin string by imprecise fingering. 

9.3 Thin rigidly-attached surface 

We interpret a 'thin' surface as one whose thickness is comparable 
with that of the boundary layer to which it is exposed, but at the same time 
we exclude from consideration those neutral oscillations of the 
quasi-periodic character studied in the previous paragraph. 

9.31 Modification to Tollmien-Schlichting mode 

If the surface is rigidly attached at its inner boundary, the 
Tollmien-Schlichting mode of oscillation found for an inflexible surface 
exists in a slightly modified form, the extent of the modification being 
appreciable only at smaller Reynolds numbers a& tending to vanish for 
R&-+00. The parameters affecting the modification are o?@/ci and, to a 
less extent, ca/cl (but not the value of CT by itself), an 2 these determine 
the magnitude of the increase in Re.ynolds number and the reduction in the 
speed of propagation which is noted if the solution is compared with the 
inflexible surface values. Plainly, for ~300~ or c, + 00, or 0 -+ 0, the 
modification vanishes, since then in each case the surface becomes virtually 
inflexible. On the other hand, no matter how large the value of (xl",O/c~ 
may be, the mode of oscillation never vanishes (as we found to happen for an 
infinite surface). 

9.32 Rayleigh wave mode 

Another mode of oscillation also exists dependent on the same 
parameters. The behaviour of this in the range of finite (R&/68) 
as indicated in Fig..&(d), and it involves wavelengths of oscillation such 
that 6 is of order l/kg in this range. For smaller Reynolds numbers, 
the mode becomes associated with the 'fundamental' of the shear wave 
resonances and c + 03 but 6 + 0, whilst its behaviour at high Reynolds 
numbers is plainly associated with the Rayleigh-wave mode for thick surfaces 
as it involves wavelengths very small compared to the surface thickness. 
We have found no simple solution for this particular anomalous behaviour, 
though it appears that either neutral oscillations may only exist for a 
range of Rg with an upper bound - the curves on the diagrams returning to 
Rg = 0 at finite c < c3 with infinite 6, - or else c tends to ca at 
Rg =oo, again with infinite 6. Which of these alternatives may actually 
appear may be dependent individually on the parameter 
%3/C l 

c, 8, x$/c; and 
we have adduced some evidence which points to the former alternative 

if ii/c: < l/3, but this may not be the only parameter of significance. 

This association with both the shear wave resonance and the 
Rayleigh-wave mode is not surprising, as we know that for o = 0, the latter 
mode involves speeds of propagation greater than c, for sufficiently small 
values of 06, and indeed from the relation connecting 86 and c, - which 
we wrote as 6 = f(c)/@ in paragraph 9.1, - we can determine that c -*03 
as 6 -+ 0, in which limit it joins the shear wave resonance. Thus for 
C= 0, neutral oscillations exist in the Rg-6c 'space' on the cylinder 
6 = f(c)/@; and for G* 0 the sheet generated by solutions for the mode 
discussed above for both amplified and attenuated oscillations will tend to 
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this shape, with the neutral line delineating stable and unstable regions. 
The part of the Reynolds number range of the neutral curve for which we 
have obtained a solution will tend towards the line 6 = 00 and Rg = 0 
as 6-+ 0, and in the limit, at higher Rg it must lie on this cylindrical 
sheet, tending to emanate from the point c = c 

% 
ontheline ~=CO and 

R6 = 0, and returning either to this point, or 
line 6 =Rg =co. 

o the point c = ca on the 

For C-*0, or ca 400, the elastic surface becomes - in the 
limit - effectively a rigid one, and we should expect only the 
Tollmien-Schlichting oscillations to exist. Here again that part of the 
Reynolds number range for which we have found the form of the neutral line, 
tends to the line 6 = w and R6 = 0 for all values of c above some 
minimum, and the remaining part must either tend towards the plane 6 = CO 
(if 04 0) or c = w (if ca --) w), thus disappearing from the range of 
physical interest. 

9.4 Rigidly attached surface of moderate thickness - J&C, < 1 

A modified form of the Tollmien-Schlichting osoillation has been 
observed to be present for both thick and thin surfaces and it is possible 
to identify it for all thicknesses of material - in other words, without 
the restriction that 0 is about unity. It is found that, whatever the 
value of 8, there is the reduction of c/u6 and 6, and the increase of 
R&9 compared with the inflexible surface values which we have seen before 
to exist, and as for a thin surface this is most marked for small Rg. 
The reason is that the effect of the surface on the oscillation depends on 
the ratio of surface thickness to wavelength, rather than to boundary-layer 
thickness: thus the significant parameter is not 0 but rather 86, and 
since the values of 6 for neutral oscillations decrease as Rg increases, 
we see that at sufficiently high Rg any finite value of 0 would be - in 
effect - a 'thin' surface, and in particular at ' R = w the effects of 
surface elasticity are quite negligible for the in efinitely large 3 
wavelengths of oscillation when these exist. 

It follows that for any finite surface thickness, part at least 
of the usual 6-R* and c-Rg curves of neutral oscillation always remains, 
although for an infinite surface we have seen them to be absent if 
ouadcz > l/2. To reconcile this apparent contradiction, it is to be noted 
that if indeed o'uvct exceeds this limit, then as 8+w, both 6+0 and 
R6 -+ w asymptotically, so that although the mode never disappears for 
finite 8, it at least tends to do so in the limit. 

9.5 Freely mounted surface of moderate thickness 

We shall now consider surfaces which are free of stress at their 
interior boundary, excluding from consideration the generality of resonance 
modes which we noted to exist in paragraph 9.2. 

Plainly for a surface of infinite thickness it would not matter 
whether the interior surface were rigidly attached or not as, excluding 
these resonances, the disturbance attenuates through the material of the 
surface and the interior 'boundary' - at infinity - is undisturbed whether 
or not it is constrained. But in practice for any surface of finite 
thickness the interior boundary condition has a significant effect. 

9.51 Modification to Tollmien-Schlichting mode 

Considering the modification to the Tollmien-Schlichting 
oscillation then as 0 reduces from indefinitely large values, we can 
generally represent the effect of the surface elasticity as reducing 6 
and increasing Rs for disturbances of the same speeds as those for the 
inflexible surface. However, whereas on a rigid surface, the effect 
gradually diminishes as 8 is decreased, the opposite is true if the 
surface is - as we now envisage - free. 

Indeed,/ 
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. 

Indeed, there appears to be no possibility of' the existence 
of neutral oscillations of this form which have a value of 06 below some 
minimum- that is, whose wavelength is sufficiently large compared with 
the surface thickness. The physical reason for this is not apparent to 
the author. B&t the effect is that even where o$/oi is less than l/2, 
and 80 not sufficiently large to cause this mode of oscillation to be 
absent for 0 = 00, then for finite 8 the neutral oscillations at large 
R6 will be absent, and as 0 decreases, the extent of the Reynolds number 
range in which neutral oscillations exist gets progressively smaller, not 
only by an increase in the lower Reynolds number bound, but by a decrease 
in the upper bound as well. The 6-R 
oscillations form closed curves (Fig.4 e)) t 

and c-Rg diagrams of neutral 
and ultimately for a 

sufficiently thin surface, vanish altogether: the maximum skin thickness 
for which thexillation is absent is shown in Fig.6 (which is only a 
good approximation if 
value of o$/ci 

8 >> u~c~) and it will be seen that the smaller the 
the thinner must be the surface to reveal this effect. 

On the other hand, if o$./ci exceeds that limit of l/2 for which these 
oscillations are absent for infinite 8, they will remain absent for all 
finite 0 as well. 

9.52 Practical realisation of the 'free' surface 

This, of course, is just the kind of stabilising effect we are 
looking for, and it is a pity that it arises fern a concept of a boundary 
condition which is apparently completely unreal. However, it would be 
reasonable to sup-pose that if the surface was in fact rigidly bonded on 
short discrete spanwise strips, whose downstream extent was small campared 
with the critical Tollmien-Schlichting wavelength, and the downstream 
separation between each being large compared with this wavelength, then at 
least the mathematical model represents a fair description of the 
conditions between strips. But, of course, as-the critical wavelengths 
for large Reynolds numbers tend to be very large, it would seem likely that 
neutral (and amplified) oscillations would in any such practical example 
still exist at large Rg. Alternatively, it may be that a surface bonded 
at discrete studs arranged over the surface reproduces in some measure the 
conditions of the concept, and the development of studded rubber skins by 
Kramer6 springs naturally to mind. (The discussion in paragraph 9.7 below 
throws some light on the action of the fluid damping also used in Kramer's 
experiments,) In practice, too, a question arises concerning the 
structural integrity of a skin of this kind. It may be desirable to use a 
material with a high modulus, but this drives us to thinner skins in order 
to obtain the effect we are looking for (see paragraph 9.67). 

However, there is obviously more to the matter of reducing skin 
thickness than we have so far mentioned, as plainly a thin skin may well flap 
like a flag or any other form of flimsy surface exposed to moving fluid. 
In other words, it is reasonable to suppose that, if 0 is small enough, 
there will be other modes of oscillation - even apart from the resonances. 
already mentioned - which may bear some resemblance to the well-known 
Kelvin-Helmholtz type of instability. We do indeed find such modes of 
oscillation, though their relationship to the Kelvin-Helmholtz instability 
is not at all clear. 

9.6 Unstretched free membrane 

9.61 Longitudinal and flexural waves 

Implying by the term 'membrane' a surface whose thickness is of 
the order of that of the boundary layer, and supposing first that 
is sufficiently large so that oscillations propagated at speed 

(udc,) 
c = CA 

may properly be considered, we find two modes of neutral oscillation to 
exist. On a c-R6 diagram (Fig.4(f)), 
exists only for 

it is seen that one mode generally 
Rs less than some upper bound, the value of c/cd being 

bounded below by a small value proportional to (u~O//C~)~~, and the 
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maximum Reynolds number varying as (u& )5'3 4'" , if 0 is small. 
The 6-R& diagram shows that both arms of the neutral curve extend towards 
indefinitely large 6 as Rb + 0, though the solution is not, of course, 
valid in such a circumstance. In fact, however, this behaviour suggests 
that this solution might in some circumstances, be related to the 
fundamental of the shear-wave 'resonance' modes, but its limiting behaviour 
for small R6 is difficult to determine correctly - even if the basic 
theory provides an adequate approximation, which seems doubtful. The 
minimum value of 6 in this mode is twice the minimum value of 
and this is also large compared with unity if 0 is small. 

(C/b4 > , 

The other mode of oscillation exists for larger R6, and on a 
c-R6 diagram it forms a lobe extending towards the other, and its two arms 
are asymptotic at infinity, the one to c=c and the other to a value 
which is a little larger than the minimum val.:~ of the other mode of 
oscillation. Likewise, there is a lobe on the 6Rcj diagram, one arm 
asymptotic to 6 = 0,58/O (corresponding to c = c4) and the other again to 
a minimum a little larger than that of the other mode. 

It will be seen that we are implying the existence of two 
conditions of neutral oscillation at Rg = 00, the one with a speed of 
propagation equal to c4, which, as we have already noted, is the speed at 
which waves spread over an extensive, unstretched, thin membrane, and the 
other with a smaller speed and larger wavelength (related byfiO6 = 2c/c,), 
which can be recognised as a mode involving long flexural waves over a thin 
plate* - that is, anti-symmetric vibrations, whereas those propagated at 
speed c = c4 are longitudinal, and symmetric, vibrations. It is natural 
to associate the lobe on the 6-R& and 
these asymptotes, 

c-R& diagrams, which is formed by 
with a region of amplified oscillation, and to suspect 

that at Rg=m the limits of the neutral curve mark a region of 
Kelvin-Helmholte instability. However, it should be noted that the 
wavelength of the neutral oscillation, being related to the thickness of 
the elastic layer, vanishes with 0 + 0, which is a result which would not 
apply if we considered the reaction at the inner surface of the elastic 
material to a fluid medium (see paragraph 9.7): thus, although our result 
is analogous to that of the Kelvin-Helmholtz instability, its boundary 
condition is not designed to deal with the stability of an infinitesimal 
interface between two fluids. 

9.62 Effect of value of o 

Increasing the value of o has the effect of depressing the 
minimum values of c and 6 of the neutral curves, but on the other hand 
they do not increase indefinitely if o is decreased, the minima being 
inversely proportional to (12+o). The most noticeable effect of a change 
in G is in the separation between the two lobes, this being large if CT 
is large; but provided udc, < 2.3 (see Fig.7) then as o is reduced the 
two lobes will join, and for smaller o (i.e., for surfaces heavy in 
density compared with the fluid) the neutral curves separate into two lines 
in the projections of the c-Rg and 6-R& diagrams (Fig.Lc(g)). As 
C+ 0, the speed of propagation of the more rapid 'longitudinal wave' mode 
will tend to c, over virtually all the Reynolds number range, and the 
value of 06 will remain finite except as R -fO. 

6 
Likewise, except in 

this region, the speed of propagation of the 
to follow the law ~-=@306o,, 

flexural wave' mode will tend . 
with c and 6 both increasing somewhat as 

R6 increases an exception also arises in this mode due to the fact that 
the neutral curve is indented round the outside of the Tollmien-Schlichting 
mode (which, of course, exists in virtually unmodified form if CT-+ 0) on 
both diagrams, tending towards it from larger values of 6 and smaller R6' 

v.63/ 

*See, for example, equation (6.21) of Ref.4, which corresponds with our 
equation (7.16) for c = l/3. 
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9.63 Solution for a 'heavy' surface a 

At o = 0, the solution for elastic waves on a free surface7 
shown in Fig.8 indicates that - viewed in a R&-6-c space, - neutral 
oscillations exist on two cylindrical sheets given by 
6 = fa (4/% 

6 = f,(c)/0 and 
say, for all Reynolds numbers; and for small 86 these 

yield the values of c = cq and c =330&c,, respectively, consistent with 
the location of the neutral cmres for CT > 0. Since, for both symmetric 
and anti-symmetric modes, c -+ cs as 06-+-w, it may well be that the 
undiscovered limiting behaviour of these neutral curves as R6 + 0 
(with o > 0) is not associated with a shear wave resonance, but is such 
that they tend to c = cg and 86 = w; they certainly must do so, at 
least, if 0 is small. 

For small G, then, there are two sheets of oscillations in 
R&-&c space, each divided by the neutral line into a region of (weak) 
amplification and (weak) attenuation. As 8 increases these surfaces 
must either coalesce or one must vanish. For the solution for CT = 0 
suggests as we have already noted that if 0 = 03, the oscillations are on 
the plane c = cB for all finite R6 and 6, but other oscillations of 
the symmetric model will lie on the plane 6 = 0 for ca < c < c4, and 
those of the antisymmetric mode in the same plane on the strip c < ca; 
Fig.8 applies of course for any 8 and makes it clearer how the surfaces 
tend to this condition as 0 increases. Certainly our solution suggests 
that both the speed of propagation of the anti-symmetric mode, and its 
wave-number, increase as 8 increases, and although it is not permissible 
to treat 0 as large in our solution, this is at least compatible with 
the trend towards coalescence. As we shall note in paragraph 9. fi4 below, L 
however, there are anomalies in the behaviour of the solution, where o 
is not indefinitely small. 

If c-3 0 with udca > 2.3, we find'(see Fig.7) that the neutral 
curves retain the lobed shape of Fig.&(f) in the limit, and since c, is 
then less than the maximum speed of propagation of disturbances of the 
inflexible surface mode, these lobes tend to be 'wrapped around' each side 
of the neutral curve of this mode. This gives us a clue to the means by 
which the neutral curve in this configuration apparently passes from one 
sheet of oscillation to the other. The sheet of the flexural wave 
oscillation is, we know, distorted so that its neutral line tends to 
coincide with that on the sheet of the inflexible surface mode: possibly 
the two sheets are joined. Whatever the form of this deformation - and 
there are various possibilities - the effect will plainly be that one part 
of the sheet of the longitudinal wave oscillation is brought into contact 
with the flexural wave oscillation, as cq 
o is small). 

is reduced (below ud2.3 if 
There are, as a consequence, certain deductions one could 

make about the orientation of the regions of amplified and attenuated 
oscillations on each side of the neutral lines on each sheet, in order that 
the sheets match where they join, but the variety of possibilities is such 
that only a study of attenuated, or amplified, oscillations could yield a 
reliable indication of the sheet geometry. 

9.64 Effect of thickening the surface 

For larger values of 8 (indefinitely large if' B-+ 0 or 
udc, + 0, but otherwise finite) we find an anomolous behaviour in the 
neutral line on the longitudinal wave mode, shown in the detail of Fig.le(h), 
which is again almost certainly associated with the intersection of its 
sheet of oscillation with another - 
mode. As applied to Fig.4(g), 

presumably that of the flexural wave 
such a modification could change the shape 

of the neutral line of the faster propagated mode to a lobe extending in 
both branches to R 

e 
= w in the 

Reynolds number of 
6-Rg and c-R6 diagrams: the minimum 

his lobe would increase with 8, and so leave 
effectively only the single neutral line in the range of finite Rb as 
B-+00, as of course is compatible with Fig.&(b). As applied to Fig.4(f), 
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the modification would make the low Reynolds number neutral line S-shaped, 
extending it to Rh = 00, and here as 0 increases, the high Reynolds number 
lobe progressively retreats towards R.6 = W, again leaving in the limit, as 
we would expect, the single neutral line. 

9.65 Disappearance of the longitudinal wave mode 

In more accurate assessments of boundary-layer stability, the 
problem of the relative disposition of these sheets of oscillations would be 
apparently simplified by the restriction c < ug. The neutral line of the 
longitudinal wave mode tends to vanish - as a closed curve - as u6 is 
lowered below cq (Fig.S(b)); or if o is sufficiently large that, with 
CI<UY 

P 
the stability diagram is that shown in Fig.lc(f), the lowering of 

u6 be ow c, joins the two sheets of oscillation along c = ~6, the neutral 
line retreating as shown in Fig.s(c) to the lower speeds of propagation 
characteristic of the flexural wave mode alone. It is doubtful whether the 
latter ever 'disappears', no matter how small u6 may be: if o is small 
we should expect it to move towards c = u6 as u6 is decreased, the 
associated wavelength being increased, as governed by the value of 06 
shown in Fig.8, to correspond with this speed. 

-9.66 Increase of surface rigidity 

Indeed as c, -+oo, we must reproduce the effects of a rigid 
surface (since this also implies c, + 00, and an infinite rigidity), and 
Fig.8 shows that, even without a restriction of c < ~6, the lower speed 
flexural wave mode would exist only for vanishingly small 6, and the 

' longitudinal wave mode would vanish (towards c = a). For any finite Rg, 
the speed of propagation of the former mode would be virtually constant at 
its asymptotic value for large R6, only varying significantly at 
vanishingly small Rg if cq 300. This asymptotic value implies 
C/U& - [c3!u"s(l 2+cJ-p3 - that is large values 'of c/u& in the limit 
c, +co, - and the trend of c towards u6 noted above to apply if 
U 

d 
c, -+ 0 where cr is small, evidently also applies even if. o is large. 

The corresponding wavelengths tend to zero. Thus whatever might be 
said in other circumstances, for that region of small CT or small u d cd 
where the neutral curves appear as in Fig.le(g), it would appear plausible 
that the shear wave mode is generally associated with amplified oscillations 
which are more rapidly propagated (and have a smaller wavelength). 

9.67 A tentative 'prescription' for a thin stabilising skin 

It is interesting to see the consequences of such a supposition 
about the amplification of the flexural mode on the 'prescription, for a 
free elastic skin which will stabilise the boundary layer as far as possible. 
To eliminate the longitudinal compression wave and resonance modes we must 
at least make u6 c cd, though this may not of itself be sufficient. 
Anticipating that values of 8 will be so small that we are interested only 
in the part of Fig.6 where the variables at-e related by a cube law we find 
that, to eliminate the Tollmien-Schlichting waves, we must make 
less than - in round numbers - say, 2,000. 

dCp+ 
Then we would predict the 

minimum speed of propagation of the flexural mode to be cf where 

and the extent of the amplified region c>c 
f 

will evidently be less the 
higher the value of cf. Of course, as poin ed out before, we may 
erroneously predict that cf > u6, and this could not be taken to indicate 
the absence of this mode in more exact calculations; but as a simple 
criterion, this value of cf (which is also inversely proportional to the 

largest/ 
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largest wavelength of amplified disturbances) may yet have some relevance 
to the extent of amplification. 

Clearly, to make c 
h 

large, we must take (@ci/oui) as close 
to its permissible upper boun of 2,000) as possible, and make udcll a.8 
small as possible, and not merely just less than unity. The optimum value 
of o appears to be 6. There is, no doubt, little significance in this 
precise figure; it can merely be i&erred that CT must neither be too 
large, nor too small - the one alternative reducing the flexural wave 
speed, and the other reducing the effect of the modification to the 
Tollmien-Schlichting mode. In fact, the physical stiffness of the skin 
would be determined by a parameter proportional to the product of rigidity 
modulus and the square of the thickness, that is to 

so that although the largest permissible <@c,"/qj> and the smallest 
value of (qjhq > also help to stiffen the skin, so does choice of a small 
c (i. e.,.high density skin). 

The extent to which we could reduce u cd in practice would be 
governed by the limit to which we could reduce d since, with fixed 0; 
the two are related by the criterion for the elimination of the 
Tollmien-Schlichting mode. 
practical minimum, oU$/ci 

If we suppose 8 therefore fixed at some 
is automatically determined by that criterion, 

and therefore also the stiffness criterion ha will have a definite value - 
being inversely proportional to the chosen 8, so that the thinnest skins 
which avoid the inflexible surface mode are the stiffest. The expression 
for cf is then largest if' we provide the required ouadci by choosing an 
elastic material with as large a value of cd, and as small a density, as 
is compatible with this value. 

9.671 Examples of thin stabilising surfaces 

As an example, for movement through water with a value of &LX$ 
of, say, 1000 lb/sq ft, the critical value of displacement thickness for the 
Tollmien-Schlichting mode of the flat plate boundary layer is only about 
0.01 inches, and the least practical value of 0 might be (say) 3. To 
eliminate this mode we must accordingly find a material with a modulus of 
rigidity of 40,000 lb/sq ft, which is in the range of the strongest 
vulcanized rubber. Assuming, for example, a specific gravity for the 
rubber of unity, the equivalent cq would be about 300 ft/sec, and cf 
would apparently be 1.5 ug. 

In wind tunnel work, on the other,hand, dealing here with values 
of $m$ of (say) 30 lb/sq ft, the critical displacement thickness would be 
nearer 0.02 inches, and so taking now 8 = 3/2, we find the rigidity modulus 
required is about 10,000 lb/sq ft - in the range of the softer rubbers. 
Thus with cq about 300 ft/sec as before, but now a value of B = 0.005, 
the value of cf would be 0.35 ~6: using a lighter rubber which has the 
same modulus, so that cq is increased to 400 ft/sec (say) and G = 0.01, 
would increase the value of cf by 60s. Putting e= l/20 takes us into 
the range of thin papers and metal foils, with rigidities of the order of 
1000 tons/sq in.; and then cf would apparently equal 2~6. However, 
although the stiffness of the skin is enhanced, compared with the rubber, 
its strength is certainly not, and panels of such a paper or foil skin 
could only carry a minute part of the breaking load the thicker rubber 
could withstand - though it is, of course, very doubtful whether full use 
could be made of the rubber's tenacity, due to the displacements produced 
in the surface. 

9.672/ 



9.672 Support spacing 

Supposing that we call 4 the distance between the supports of 
the skin, and imagining that the greatest applied pressures are of order 

$ Pu"s (say), then to avoid fracture of the skin some such relation as 

e/s” = h(S/nG)l's 

must be satisfied, where S is the elastic material's tenacity and 6' 
the displacement thickness of the boundary layer. However, the 
applicability of our theory depends, it will be recalled, on two assumptions 
about the magnitude of 4: first that the applied load is sufficiently small 
that the skin is not greatly tensioned or 'stretched' - i.e., that this load 
is small compared with the product of G and the square of skin thickness; 
and second, that the pitch of the supports is large compared with the 
wavelength of oscillations. In algebraic form 

Provided (S/G) is small, therefore, as it is for most materials except the 
rubbers, structural integrity will ensure that the skin is not unduly 
stretched. For skins just thin enough to avoid the Tollmien-Schlichting 
mode, h is approximately (45/41a ) if 8 is small (and reaches a minimum 
of 26 at 0 = 6). This is certainly greater than the values of l/6 for 
the mode of oscillation we are seeking to avoid, except at very high 
Reynolds numbers, and in the above examples it is possible that the metal 
foil or paper skin will behave essentially as if it were free of support, as 
far as the lower Reynolds number Tollmien-Schlichting waves are affected. 
For rubber skins which have tenacities of 10 or 100 times G, on the other 
hand, it would be possible only to use a fraction of the available strength 
if we are not to stretch the skin out of the proportions assumed in our 
analysis, but even so the permissible support distance can certainly be 
several times the wavelength without the skin tensions becoming prohibitively 
large. This is the essential virtue of rubber, or rubber-like substances, 
in the present context. 

9.68 A thick stabilising skin 

We have so far envisaged the 'thin skin' approach to the 
stabilisation of the boundary layer: the alternative thick skin approach 
is denied in aerodynamic applications because then the value of -&madG 
must not be small compared with unity, and since (to avoid the longitudinal 
wave mode) udc, must be less than unity, it demands the use of elastic 
materials having densities of the same size as, or smaller than, that of the 
air. For hydrodynamic applications where such relatively light materials 
are available, it would seem a better device* 
are obtained with o$./c~ = l/2, (i.e., $pl 

the largest values of cf 
% ) -G, and with the skin density 

and 8 as large as practical. Substances which have a rigidity modulus of 
the order of the 1000 lb/sq ft which we have quoted for $PL$ are rubber 
foams: wouldbe 
about 

with their small densities we can calculate that cf 
w3 ugr 

thickne& (i.e., 
it would thus need a skin of about 20 times the displacement 
0.2 inches) to better the value of cf for the thin skin 

quoted for the same set of conditions; furthermore, any value of 8 > 10 
would produce a stiffer skin - i.e., a larger value of h, - and permit a 
spacing of supports more likely to simulate a free surface in relation to the 
Tollmien-Schlichting waves for large Rg. 

Since, - as just suggested - many materials of interest may be 
porous, and it may be of interest to note that the method of approach8 used 
in seismology to the study of the elastic properties of such a medium lies 
in the adjustment of the elastic constants to simulate an equivalent 
homogeneous and isotropic material. Thus there would appear to be a 
precedent for the application of our present results to such materials. 
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9.7 The effect of fluid at the inner boundary 

In the sense that the presence of a sufficient depth of a very 
dense and highly viscous fluid below the inner boundary of the elastic 
surface will make this boundary more or less rigid, and the presence of 
a very light in-viscid fluid will leave it virtually free, our previous 
discussion will therefore be relevant to the effects of some kinds of 
fluid at the inner boundary: all that we have omitted i=y account of 
wave propagation at the speed of sound within the fluid - in other words, 
we have assumed it to be incompressible. By the same token, we can 
consider the effects of a very heavy, inviscid (HI) fluid, or of a very 
viscous, light (LV) fluid - interpreting these broad descriptions to mean 
hypothetical substances, the HI fluid being heavy enough to inhibit 
normal displacements, and the LV fluid viscous enough to prevent 
tangential displacements of the inner boundary. Viewed as a limiting 
condition, the supposed presence of such fluids - assuming them to be 
incompressible - suggests the possible extent of the action of more 
realistic fluids at the inner boundary. 

9.71 The effect of heavy inviscid fluid 

-The presence of an HI fluid will cause the Tollmien-Schlichting 
mode to be modified in the same way as if it were replaced by a fixed 
boundary, but enhances the effect particularly for elastic skins of small 
thickness: the effective density of the elastic surface is raised in the 
ratio 2qc4" if 0 is round about unity, but, of course, for a very 
thick elastic surface, the effect is negligible. The Ra;yleigh wave mode 
for thick surfaces is replaced on a thin surface exposed to HI fluid by 
the longitudinal wave mode discussed earlier in relation to thin free 
membranes. It now occurs on c-R& and 6-R8 diagrams generally as two 
lobes (Fig.k(i)) extending from the extremes of large and small Reynolds 
numbers. If c4/u6 is sufficiently small, the higher Reynolds number 
lobe becomes 'absorbed' into the modified Tollmien-Schlichting mode 
(Fig.Lc(j ) and if PC,"/C~ is large enough (certainly if it is greater 
than l/2 1 , the higher Reynolds number lobe becomes identified on the 
diagrams as a closed curve over a finite range of Reynolds number - 
ultimately vanishing altogether for large C. 

For very small values of cd/us another closed curve appears on 
the c-R 

s 
and 6-R& diagrams whose extent and position has not been 

found, a though it is known that it involves speeds above cq (considerably 
above, if o is small). In fact, there is a similar mode of osoillation 
for a free surface - though its presence was not noted in our discussion 
before; however, tnere are also, of course, resonance modes to be 
considered if cd/u6 is small enough. 

9.72 The effect of light, viscous fluid 

The presence of the hypothetical LV fluid at the inner boundary 
will cause the Tollmien-Schlichting mode to be modified in the same way as 
for a free-boundary, with a disappearance of this mode altogether for a 
sufficiently thin elastic skin, thus showing that it is the freedom of the 
inner boundary to move up and down which is the essential property on which 
this complete stabilisation depends. The action of the LV fluid however . 
inhibits the effect to some extent if 0 is small, and the thickness of 
the skin has to be about 80% of that necessary on a completely free surface 
to produce stabilisation (Fig.6, lower curve). The flexural mode (noted 
already in connection with a free surface) makes its appearance for thin 
elastic surfaces in contact with such a fluid, in place of the Rayleigh 
wave mode, and in a slightly modified form. It appears on the c-R6 and 
h-R6 diagrams in much the same form as in Fig.4(g) (where it appears as 
the lower speed mode): the speed of propagation and wavelength are both 
slightly increased above the values for a free-surface. This neutral 
oscillation may presumably be viewed again as a boundary of amplified waves 
of faster speed and smaller wavelength. 
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9.73 Solutions for a 'heavy' surface 

At first sight the appearance of shear (flexural) waves and 
absence of compression waves for a thin surface exposed to a viscous - 
i.e. , sheer resistant - fluid, and the opposite combination for a thin 
surface exposed to heavy fluid, seems the wrong way round. However, the 
shearing oscillations are vertically polarised, and the compression waves 
are longitudinal, so that the result is plausible. It may be of intere t 
to note that studies on the propagation of waves in a floating ice sheet 9 , 
a problem analogous to ours if CT = 0 (so that the boundary-layer fluid is 
too tenuous to have any effect), show indeed that inviscid fluid in contact 
with a solid reduces the speed of propagation of long flexural waves, in 
proportion to z/(l+z), where z is equal to (~,a/pf), and pf is the 
density of the internal fluid; conse uently their speed would be zero in 
the limit P 
attenuation f 

+ CO we here assume. s The fluid is also shown to add an 
0 the compression waves, vanishing in the limit-appropriate 

to an incompressible fluid such as we assume, but otherwise being 
proportional to cl/a, where a is the speed of sound of the fluid.) 
Thus - supposing speeds greater than that of propagation of the flexural 
mode imply amplified disturbances - amplified flexural waves might occur 
at all finite speeds of propagation in the presence of HI fluid, neutral 
oscillations being standing waves: in other words, the absence of a 
neutral line for travelling waves clearly does not, in this instance, 
necessarily imply absence of the mode of oscillation. Unfortunately there 
appear to be no corresponding treatments allowing us to find the way in 
which a viscous fluid modifies longitudinal waves. 

It will be also realised that, as we have here been dealing with 
internal fluids of indefinitely large, or indefinitely small, densities, 
we cannot expect to obtain any precise analogy with the Kelvin-Helmholtz 
mode of instability between layers of fluids if we allow 0 to tend to 
zero, although for real fluids such effects would exist. 

IO. Conclusions 

A leminar boundary layer in contact with a resilient surface may 
sustain various modes of neutral oscillation , quite apart from modified 
forms of the Tollmien-Schlichting waves (present on an inflexible surface). 
These modes can generally be identified as modified forms of the neutral 
oscillations which the surface could perform in the absence of the boundary 
layer, if it were composed of non-dissipative material (as we here assume). 
Thus there may exist waves propagated at speeds in excess of c1 (the 
speed of compression waves within the material) representing resonances 
struck by reflection of compression waves from the inner boundary of the 
resilient skin; or at speeds in excess of the smaller value c (the 
speed of shear waves) representing the reflection of sheer wave: from this 
boundary. A thick resilient surface may reveal many such modes, 
representing higher 'harmonics' of some 'fundamental' resonance. There 
may also exist oscillations, whose wavelength is small compared with the 
skin thickness, which are propagated at speeds close to c, - the speed of 
Rayleigh surface waves, which attenuate exponentially with distance into 
the solid material. For a thin skin which is free of stress at its inner 
boundary, or exposed to a fluid, Rayleigh waves degenerate into longitudinal 
waves travelling at speeds close to cq - the speed of waves on an extensive 
membrane - or into slowly propagated flexural waves. 

In many conditions, modified forms of these neutral oscillations 
may exist over the complete range of Reynolds number, and this invariably 
happens if the fluid density is small compared with that of the resilient 
material - though rapidly amplified oscillations could not then exist. 
However, all but those of the flexural wave mode apparently disappear if 
the material is chosen so that the speed cg (which is less than cl, c, 
and c4) is larger than u 6 (the free-stream speed), merely because the 
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conventional analysis is restricted to a consideration of oscillations 
propagated at speeds less than ub. It is not known whether this 
fdisappearancef can be taken to imply their absence in reality. 

The flexuralwave mode may be eliminated by restraining the 
normal displacement of the resilient skin at its inner boundary (e.g., by 
securing it to an inflexible structure, or exposing it to a heavy fluid). 
But the freedom of this boundary to move in this particular fashion has a 
special importance, as it eliminates Tollmien-Schlichting neutral 
oscillations at both high and low Reynolds number. (A resilient surface 
will otherwise eliminate this mode only at low Reynolds numbers.) Indeed, 
if such a 'free' surface were thin enough, or of sufficiently low rigidity, 
amplified oscillations of the Tollmien-Schlichting mode would be eliminated 
at all Reynolds numbers, - though only at the cost of the introduction of 
amplified flexural waves. 

Assuming - tentatively - that the ccndition ca > u6 eliminates 
all other modes, and that amplification of the flexural wave mode may be 
reduced by increasing the speed of propagation of neutral flexural 
oscillations (thereby decreasing their wavelength), one is led to two 
alternative 'optimum ' forms of surface which completely stabilise the 
Tollmien-Schlichting mode. If a material is available whose density is 
less than that of the fluid, but whose rigidity modulus is about equal to 
the free-stream dynamic pressure, then a thick resilient skin of such 
material virtually free at its interior surface (i.e., say, supported on a 
honeycomb, or on discrete studs) would be best for this purpose, No such 
material exists if air is the fluid in question, and the second alternative 
of a very thin skin of rubber-like material - again virtually free at its 
interior surface - is then the only practical possibility; here, the 
thinner the skin is, the faster the flexural waves propagate, provided the 
rigidity is increased in conformity with the relationship of Fig.6. 
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List of Notation 

F 

wq > 

G 

H 

H* 

I 

IO 

Jr I 

K 

R 

vi’ 

XYY 

a*yamn 

bmn 

C 

ci 
53 
% 

cg (4 

c4 

constants determining X and Y by equation (2.2) 

constants determining 9 by equation (4.8) 

parameters of stability equation (4.27) 

parameters of stability equation (4.20) 

parameter of stability equation, given by (4.28) 

related to + by equation (4.19) 

related to f'(G) by equation (4.19) 

= l/(l+F) 

function of q given by equation (4.14) 

= Jx.I';it(q >I 

= H - [D3/(Ao+D3) 1 

= 3 mJ1 

= I/7.14 

imaginary part of 1 ] 

bulk modulus 

Reynolds number, pc/ap 

Reynolds number, pug6/p 

real part of i ] 

steady x-component of velocity with boundary layer 
divided by c 

= U'(rl,) 

strain-displacements of particle of elastic surface at 
(x,y) due to applied stress 

coefficients of equation (4.7) listed in Table 1 

coefficients of equation (4.16) 

complex velocity of wave propagation (real part, 
speed of propagation) 

speed of compression waves, = /%+&G/3) lua /Py' 

speed of shear waves, = (G/P~)~'~ 

Rayleigh surface wave speed, = c,(O) 

root of (Ao+Da) given by equation (6.7) 

speed of longitudinal waves on an extensive thin 
plate, = 2[1 - (ca/ci)']"" cp 

c4 w/ 
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cq (4 = c,/(l-aa)i a for o- < 1 

C 6 9% given by equation (8.5) 

d . ratio of skin thickness to wavelength of oscillation 

fM function related to $ by equation (4.8) 

P fluid static pressure 

1" n = [I - (c/cn)"]L'a 

S = cm c d i 

t time 

u,v velocity components of fluid parallel to x- and y-axes 
(parag-aphs 3 and 4 only) 

UYV real and imaginary parts of w (paragraph 5 et seq) 

% 
free stream speed 

W = l/(l+E) 

X,Y Cartesian axes parallel and perpendicular to surface 
(y measured into fluid, x downstream) 

XYY compendium symbols defined by (6.17) (paragraph 6 only) 

A the determinant lamI 

AO = 46 

A mn the first minor of A corresponding to amn 

@h) related to $ by equation (4.8) 

a wave-number of oscillation (reciprocal of wavelength) 

p = o$/cic, 

Y = cab* 

o- boundary-layer displacement thickness divided by 
wavelength of oscillation 

;: = h-tl, > (RU; )i'3 

G = "7% (RU;)+ 

Q value of n such that x-component of fluid velocity 
equals c (i.e., u(rl,> = 0 

0 thickness of elastic skin divided by (u&) where k 
is the surface velocity gradient of the boundary layer 

h modulus of elongation, = K - (2G/3) (paragraph 2 only) 

6 boundary-layer thickness divided by wavelength of 
oscillation 

A/ 
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= QJ; - I> (paJ.waph 4 O~Y) 

viscosity of fluid 

5 4ca/dac," (paragraph 7), = ca/daci (paragraph 8) 

normal stress at surface exposed to fluid divided 

bY Ge 
ia(x-ot) 

fluid density 

elastic medium density 

= P/Pa 

shear stress at surface exposed to fluid divided 
by &ia(x-ct) 

= y./ca (p-wash 6 only) 

related to Jr by equation (3.2) 

= - @,9/Ao> <u&> a 

given by equation (6.91) 

stream function of fluid flow defined by (3.1) 
b=graph 3 only) 

= cd/ta (paragraph 6 et seq) 

Barred quantities refer to the Tollmien-Schlichting 
oscillation for an inflexible surface, 

Primes denote differentiations. 

Subscript $ denotes oscillatory components. 
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