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Sununary.

An analysis is given of the deformation under normal loading of a plate tapered symmetrically in planform
with edges either clamped or simply-supported. The thickness may be constant or may vary along the plate
as a power of the width. Numerical results are given for plates of constant and linearly varying thickness
under uniformly distributed load.

1. Introduction.

Arrapproximate analysis is given in this report of the small-deflection deformation under normal
loading of a thin elastic plate tapered symmetrically in planform with edges either clamped or
simply-supported. The thicknéss of the plate may be constant or may vary in the direction of taper
as any power of the width.

The analysis is applicable to loadings under which the deflected shape across the plate normal to
the direction of taper may be represented adequately anywhere along the plate in terms of a few
known functions. The deflection of the plate can then be expressed in terms of the sum of the
products of each of these functions with unknown functions representing the deflected shape in the
direction of taper. Linear homogeneous differential equations are derived for these functions using
the Rayleigh-Ritz method? and closed-form solutions are obtained. Similar solutions for rectangular
plates of constant thickness have previously been obtained by Kantorovich!. The amount of
computation increases rapidly with the number of functions used, and in the applications given here
two functions only are used to represent the deflected shape across the plate.

If the shape of the load distribution across the plate does not vary and if the load intensity varies
as a power of the width, it is shown that for a long plate (length/maximum width greater than about 2)
an ‘optimum’ thickness variation can be derived in which the stress distribution on the surface does
not vary along the plate except near the ends.

Williams?® has examined the local bending behaviour of the corners of plates and has shown that
infinite stresses are produced in theory at obtuse corners joining simply-supported edges. The

* Replaces R.A.E. Report No. Structures 273—A.R.C. 23,975.



present analysis is therefore not valid in the immediate vicinity of such corners. A similar singularity
at corners joining simply-supported and clamped edges only occurs when the included angle
exceeds 129°, which is larger than would be met in this context.

The general analysis is illustrated by application to a plate under uniformly distributed loading
with the same boundary conditions along opposite edges. All such combinations are considered in
turn. The deflected shape across the plate is here represented by the deflected shape across a
parallel infinite strip under the same loading and boundary conditions, together with a second
polynomial of higher power. It is shown that in this example an analysis using the first function
alone, which could easily be performed on a desk calculating machine, will often give adequate
results even for the maximum stress in the plate. Curves showing the variation with the plate geometry
of the maximum deflection and the maximum value of the von Mises stress away from the corners
are given both for a plate of constant thickness and for a linear thickness variation, the latter being
the ‘optimum’ thickness variation for this loading. .

2. Analysis.
2.1. Basic Theory.

2.1.1. Some general results.—The strain energy of bending U of a thin plate in the x, y
plane undergoing a small lateral deflection w(x, v) is given by the expression?

1 2% 02w D2 \2
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U= 2ff D (Vi) =21 =) [axz oy? <3x ay) ]

The increment of the strain energy due to an infinitesimal arbitrary variation 8z of the deflection
is thus

dedy.
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Moreover, provided the total work done on the edges of the plate by the variation §w is zero, and
provided the flexural rigidity D is a function of x only, the following expression can be obtained
by integrating equation (1) twice by parts.

i dedy. (1)
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The line integrals around the edges of the plate which arise in the process of integrating by parts
correspond to work done by forces or moments acting on the edges and here vanish due to the
restrictions imposed on dw.

The work done on the plate due to the variation 8w of the displacement is given by

ST = H o(%, y)owdndy 3)

where g(x, y) is the distributed load.
Now, by the principle of virtual displacements, the total work done by the infinitesimal variation
of the displacements is equal to the change in the strain energy, so that

8T = &U.



Hence equating expressions (2) and (3), we obtain
dD o d?D (9%w o*w
4 — — (V? == — | - = 0. 4
4 ” S [DVw+2 () + (8x2+ Vaya) _q(x,y):| dudy )
If the variation d=v were completely arbitrary within the plate,' equation (4) would yield the exact

equation for the bending of the plate. In the present problem however an approximate solution is
found by considering only a restricted variation of .

2.1.2. Application to tapered plates.—The axes and notation used here are shown in
Fig. 1. The plate is symmetrically positioned relative to the x axis, the parallel ends being defined
by the lines x = 0 and & = a. It is convenient to express the problem in terms of the following

non-~dimensional symbols’

w x 2y
W—E, X—1+Pa) Y"‘Z:’

Y b a
6:—- :—2— = —,

X’ P bl 1’ I"L b]_

The symbols b, and b, represent the widths of the plate at x = 0 and x = a respectively (b; > b,).
The co-ordinate X represents in non-dimensional form the distance along the plate measured from
the point at which the sides would meet if produced.

The analysis given here is immediately applicable when the shape of the load distribution across
the plate does not vary along the plate. More complicated problems may be considered by adding
together a number of such load distributions, which can each be expressed in the form

g = qox(X)B(6)
where g, is a constant and the functions « and B express the shape of the load distribution.
_The most general variation of the flexural rigidity to which this analysis is applicable can be
expressed in the form
D = D, X7

where D, and 7 are constants.
Re-expressing equation (4) in the notation of this section, we obtain

AW AW 4 202 B 02 2 .
ffDSW[p4—~+8P2M2—W—+16M4a~pZ+ ds (2 W+4,ﬁ%)+

oX< X% v? av: " x ax \P axz
Hr—1)p% [ | W RW\  guafa(X)B(6)
+t (p28X2+4v,u23Y2)~— o DX :|dXdY=O. (5)

An approximate solution is obtained to this equation by assuming that W can be expressed in the

form
W = ?J?(X)‘Dj(@) (6)

where the functions ®;(0) are chosen to represent approximately the deflected shape normal to the
X axis and the functions f(X) are unspecified. Simultaneous differential equations for these
functions are obtained by substituting equation (6) in equation (5) and considering in turn the

following  restricted variations of W.

SW; = @,8f;. )
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The integration sign with respect to X may then be removed from equation (5) because the variations
8f; are completely arbitrary within the plate. If the resulting equations are then divided through

by the relevant variations 8f; and integrated with respect to 8, the following set of equations is
obtained.

i dt, 12(1— »)od¥, R
7c§1 (%El DXt dX; + Pmofl) = = d (8)
where
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Pino = p* {liga + 1205 + 3615 + 241, — 2r(l; s + 647+ 6157,) +
+ 7(r = 1) e+ 2L1)} + 4p*2 {2(S) 30+ 68531 + 05510) —
= 25 (S + 28530) + (1 — D)wsype} + 16p2myy,
Py = p{— s+ 69+ 6L) + 6# (Lo + 20514) — 2¢(r = 1)} +
+ 4p%u® { — 4(s550 4 28510) + 275530} 5 )
Pira = P {0na+2L0) — 67Lp + 7(r — 1)} + 8p%u3s5,
Pins = — 2pM2l550 —7in0)
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c as
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2.1.3. ‘Solution of equations.—As equations (8) are of linear and homogeneous form, they
cap be solved by standard methods. In the numerical examples given in this report two unknown
functions only are considered. For simplicity of presentation the subsequent analysis is therefore
restricted to assumed deflected shapes of the form

W = f(X)P(8) + /o X)Py(8) . (11)
The complementary function of the solution to equations (8) is then found by substituting
f = AX
f» = BX?
and equating the left-hand sides of these equations to zero, giving

Ahy(A) + Bhyy(d) = 0 ,
and (12)
Aho(A) + Bhgy(d) = 0

where
hir(y) = v*Pira + V(=600 + Pirs) + Y211 00— 3Pjas+ Pine) +
4 V(= 0Pinat 20508~ Pirat Pirr) + Pino- (13)
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Equations (12) are only consistent if the determinant A(}) of the coefficients of 4 and B is zero,

that is
A(A) = hu()‘)hzz(}‘) - klz(/\)kzl()\) = 0.

The complete solution is then given by

i=8
fi=F(X)+ ¥ 4,X%

t=1

(14)
fo = Fy(X) + E B.X™
where F; and F, are the relevant particular integrals and the constants 4, and B, are related by the
expression

B, _ 11(’\z) hzl(’\z’)

A k() (W)
The eight arbitrary coefficients in the above complete solution can be found from the boundary
conditions on each of the functions f; at X = 1 and X = 1 + p. The constants 4; and B, and the
indices A; are in general complex.

If the load intensity at constant 6 along the plate varies as X, the particular integrals in expressions
(14) are given by
2(1 R
Fy(X) = H (W (b7 +0) — Wi(h— 7+ )} Xooris
(15) .
12(1—

Fy(X) 1(4——

{IF h11(4' 7+ ‘U) lF]_}lZ]_(‘I- —7+ 7))} X4-riv

or, if only one function f is used in the analysis,

_20-BR
FX) = G rig 15

2.1.4. Moments and stresses in plate.—The bending moments M, and M, and the twisting
moment M, are given by the expressions,

02w 0w
_ DX W, BT
T uby ( axe T ayz)
02w 02w
et <ay2 ' w) [ (16)
_ DXy, BW O
= T b, (“ayz P a'jﬁ)
02w
Mmy = D(l_‘V) m‘:}—)
DX o2
=2 0 55y
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Substitution of the assumed deflected form (11) into the derivatives of W gives

W =2 q )
axs = 2 5 (0K, — 2007 XS + 000, +20,)f),
L "iji[ /00 407, o
where f;' = d;;’, d(D'=cf;I;

The value of the von Mises stress o; on the surface of the plate, which is here assumed to govern
the yielding of the plate, is given by

o; = V(g2 + ayz—- 0,0y, + 3Tmy2)

= t12X21‘/3 \/(sz + MUZ - MIUMZ/ + 3M»Cl/2) (18)

where #; is the thickness of the plate at X = 1.

2.1.5. Boundary conditions.

(1) Boundary conditions at ends.—The boundary condition of zero deflection at
the ends of the plate is satisfied completely by making

[f?]cnd [Sfa]end = 0. (19)

The further condition necessary for the virtual displacement 8W; to do no work on the ends is

given by .
+1 08, BZW , W

7 S st )] o

Substituting equations (17) and (19) in equation (ZO) we obtain

k=2

[aﬁpz ,El (ﬂoflc” -5 jllflc )J = 0.

= end

The second boundary condition for a clamped end is thus satisfied completely by making

[fa'l]end = [3][3"]311(1 =0

and that for a simply-supported end is represented approximately by

k=2 l 2 .

(ii) Boundary conditions at clamped sides.—The deflection functions ®; can be
chosen to satisfy the boundary conditions along clamped sides completely. If a complete series of
functions ®; were used and if the ends of the plate were also clamped this method would thus give
a solution Wthh would converge to the exact solution as the number of functions was increased.

(iii) Boundary condztzons at simply-supported sides—The boundary conditions
cannet be satisfied purely by approprlate choice of the functions ®@; if the sides are simply-supported,
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because the expression for the bending moment about the sides also involves the unknown functions
f;- The deflected shape across the plate is here represented approximately by functions which would
satisfy these boundary conditions completely if the sides were parallel. It can be shown?* that the
total work done on the sides of the plate in this deflected shape is zero if the plate thickness is constant
and the derivation of equations (8) is then strictly valid. Errors introduced by using this derivation
when the thickness varies should be small compared with those due directly to the moments along
the sides which would be strictly necessary to maintain this deflected form irrespective of the
thickness variation. These moments, which are illustrated for a specific example in Fig. 12, are
usually small but can lead to inaccurate results for large angles of taper.

2.2. Some Special Cases.
2.2.1. Plates of constant thickness.—For a plate of constant thickness

r=10
and the coefficients of equation (8) are given by

Piro = PHlpat+124; k3T 3610+ 24171) + 8p%u3(Sjpa+ 08501+ 68;1,0) + 16ptmyy,

DPiw = — 4p*(lpa+ 6L+ 64;11) — 16p2u%(sj51 + 28510) 5
Dins = 0p* ire+ 2z) + 80751 5
Pins = — 4%

— Al
lec4 =p l?'lc[)‘

2.2.2. Optimum thickness variation when load at constant 8 varies as X°.—The particular
integrals given in equations (15) can be interpreted physically as representing the deflection of a
semi-infinite tapered strip under the same loading with the relevant boundary conditions along the
sides. To these are added the complementary functions which here represent the additional deflection
necessary to make the strip satisfy the boundary conditions at the ends of the plate. Thus in a
relatively long plate the influence of these complementary functions is only significant near the
ends and elsewhere the plate behaves as a semi-infinite tapered strip. Now by substituting the
particular integrals, equations (15), in equations (17) it is seen that for such a strip the second
derivatives of W with respect to X and Y vary as X%, Substituting these successively into
equations (16) and (18), the von Mises stress o, is seen to vary as X223, Hence the optimum
thickness variation of the semi-infinite strip in which the surface stresses at all chordwise sections

are the same is given by

7= %(7)+Z).

Thus for a relatively long plate this represents a near optimum thickness variation.

3. Application to Plates under Uniformly Distributed Loading.
3.1. Specific Examples Chosen.

The preceding analysis has been computed for plates under uniform loading with opposite pairs
of edges either clamped or simply-supported. The plate thickness is either constant or linearly
proportional to the width, the latter being the optimum thickness variation for long plates in the
sense described in Section 2.2.2.



The functions chosen to describe the deflected shape across the plate are given in Section 3.2
together with the constants and equations derived using them. In each case the first function chosen
is the deflected shape across an infinitely long strip of constant thickness under uniform loading
with the relevant boundary conditions. In long plates the influence of the second function is only
significant near the ends and the computation of the two-function analysis becomes impracticable.
Equations are given therefore both for one-function and for two-function analyses.

The figures plotted are listed in Section 3.3 and the results are discussed in Section 3.4

3.2. Transverse Deflection Functions and Related Constants.

3.2.1. Plate with clamped sides.—The transverse deflection functions are chosen as
O, = 64—262 41,
O, = 63+ —26%+1).

The related constants are shown in the following tables:

7 3157, 3465/,,, 34651, 450451,
0 + 256 + 256 + 256 + 768
1 — 128 + 128 - 384 — 384
2 0 — 768 + 256 — 3584
3 + 384 + 1152 + 1920 + 17280
4 + 334 + 20352 + 1920 + 151680

) 10554, 31555, 3155y, 346555,
0 - 256 0 0 - 768
1 + 384 — 384 + 384 + 1152
2 + 384 + 3456 + 384 + 20352

Sy 35my, 35my, 315my,
128 128 128 3456
15®, 1050,
16 16

Substituting in equations (8), the following equations are obtained for f; and f£,.
(i) Plate of constant thickness.
(@) Single-function analysis.
3(Sp*+72p%u2 + 336pY)f + 12p%(p® + 4u2) (Xf' — X2f") + 2p42X3f" + XY"") = 28-665u3 RX*
where a dash denotes differentiation with respect to X and v = (-3,
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(6) Two-function analysis.
33(5p% + 720%u2 + 336u4) f; + 132p%(p%+ 4®) (XS, — X2") +
+ 22p%(2X3f, "+ XA, "") + 3(25p% + 264p%u2 + 528ub) £, +
+ 12p%(7p2 + 442 X f," — 20%(12X3%," +2X3," — X%4,"") = 315-3153RX*,

39(65p* + 616p%u + 528ut) f; — 156p%(3p% +44ud) XS, — 2p%(156 X3f," —
— 78X3," — 13X%,""y + (1725p* + 18408p2u% + 6177614 f, +
+ 4p2(5 1p2+156p) X f," — 4p%(51p% + 156p*) X2, " + 6p42X3," + X4,"")
— 585-585,3RX?. |
(ii) Plate with thickness proportional to width.
(@) Single-function analysis.
(21p*+ 244 8p%u24- 1008u8) f — 12p%(p%+ 8u) XS’ + 6p%(3p® — Su) X" +
+ 2p3(8X3f” + X4 "") = 28-665u3RX .
(b) Two-function analysis.
11(21p* + 244 8p%u2 4+ 1008ut) f; — 132p%(p? + 8u?) X f; + 66p%(3p% — 8u2) X2, " +
+ 22p48X53, "+ X4, ") + (177p% + 1584p2%u? + 1584ud) £, + 528p2u2Xf,  —
— 2p8(15.X%," — 4X3/," — X%,"") = 315-315u8RX,

13(117p% + 1056p%2 + 1584u2) f, — 3120%(3p%+ 22u2) X f," + 26421 X%, " +
+ 12X, "+ X, ") + (1827p% + 18782 4 p2u2 + 617764) f, — 12p%(31p2 + 1042 X, —
— 2p%(57p% +31202) X3, " + 6pX8X°F," + X4f,"") = 585-585.8RX .

3.2.2. Plate with simply-supported sides.—The transverse deflection functions are chosen as

D, =9+ —662+5,
D, = 0%(564—146%+9).
The related constants are shown in the following tables:
3150,y 34657, 34651, 450451,
0 + 7936 + 18176 + 18176 + 105728
1 - 3968 + 6272 — 24448 — 51840
2 - 2688 — 75648 — 14208 — 706944
3 + 3840 — 15360 4+ 30720 + 456960
4 + 3840 + 1136640 + 30720 + 12552960
i 355y, 3155y, 3155y, 34655,
0 — 2176 - 4224 — 4224 — 107904
1 + 1024 — 33024 + 5376 — 59904
2 + 1024 + 158976 + 5376 + 1476096
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Sty 35my, 35y 315y,
768 1536 1536 209664
5%, 359,
32 64

Substituting in equations (8), thé following equations are obtained for f; and f,.
(i) Plate of constant thickness.
(a) Single-function analysis.
3(—185p*—552p%u2 + 1008ut)f + 12p%(47p2 + 156u2) X f" —
— 3p2(83p2 +204u2) X2f" 4+ 31p*2X3f" + X4y = 85-995u8 RX*,

(b) Two-function analysis.
33(—185p* — 552p%u2 + 1008ut) f; + 132p%(47p% + 1563 X f," —
— 33p2(83p2+ 204u2) X%, " + 341p%2.X3 " 4+ X4, "") — 6(1055p* +
+ 3696p2u2 — 1584u8)f, + 24p%(281p2+ 1188u2) X f," — 3p*(493p% + 484u?) X3f," —
— pH98X3f," —T1X4,"") = 945-945u3RX?,

78( — 455 pt+ T04p22 + 1584u8) f; + 3120%(131p%+ 88ud) X [, —
30524932 + 4842 X2, " + pHA966.X%, " + 923 X4, ") +
4 3(— 11273 p% + 63544 p%2 + 62462418) , + 12p%(5333p2 + 18668:2) X f,' —
— 3p%(6333p2+ 146120 X2, " + pY(810X%," + 413X4f,"") = 3513-51u3RX".

(i) Plate with thickness proportional to width.
(a) Single-function analysis.
(42p%+ 601 - 2p%u? + 3024ph) f + 3p*(p2+ 12uB) X f' +
+ 4p%(54p% — 153 X2f" + 31p4(8X3" 4+ X4 "") = 85-995u3RX .

(b) Two-function analysis.

11(42p% + 601 - 2p%u2 + 3024p4) f; + 33p%(p2 + 121%) X f, " + 44p%(54p% — 153p2) X%, +
4+ 341p%8X3 " + X4, ") + (2307 p%+ 19285 - 2p%u2 + 9504uh) £, +
+ p2(2013p%+24156p2) X f," — p*(1494p2 + 1452u) X%, " 4 p*(328X%," + 71X4,""
= 945-945,°RX,

13(507p% + 6085 - 2p%u? + 9504u4)f, — 39p2(49p? + 748u2) X1, +
T 78021117 — 24202) X3, " + 13p8( 0" + X3, ") +
+ (43176p+ 487203 - 6p2u2 + 1873872u%) f, + 3p%(3143p? + 30836p2) X f," —
— 12p%(1073p2 +3653u2) X%, " + p*(3288.X3%," +413.X%,"") = 3513 -51uRX.
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3.3, Resulis.

"The variations of the maximum deflection and the maximum value of the von Mises stress o, with
a/b, are plotted in the figures listed below for a series of values of b,/b,. The corresponding curves
for rectangular plates which are also given in these figures have been obtained from results given
by Timoshenko and Woinowsky-Krieger2.

Boundary conditions Maximum o, '
Thickness occurs on Fig.
No.
(afby > 1)
Sides Ends
Constant Clamped Clamped Sides 2
Clamped Simply-supported Sides 3
Simply-supported Clamped Wide end 4
Simply-supported Simply-supported Centre-line* 5
Proportional Clamped Clamped Sides 6
to width Clamped Simply-supported Sides 7
Simply-supported Clamped Narrow end 8
Simply-supported Simply-supported Centre-line* 9

* large bending stresses in the immediate vicinity of the obtuse corners are neglected.

The following examples are plotted in more detail. The deflection = and the von Mises stress
oy are plotted in each case along the centre-line of the plate. The von Mises stress along the clamped
sides and the error bending stress normal to the simply-supported sides are also plotted.

Fig. 10. Comparison of specimen results of the two analyses. Sides and ends clamped, thickness
constant, a/b; = 2, b,/b; = 0-4.

Fig. 11. Comparison of specimen results for long plates of constant and linearly varying thickness.
Sides and ends clamped, a/b, = 4, b,/b; = 0-4.

Fig. 12. Specimen results for simply-supported plates, a/b; = 2, b,/b; = 0-4.

3.4. Discussion of Results.
3.4.1. Comparison of one-function and two-function analyses.—If the results of the two-
function analyses plotted in Figs. 2 to 9 are compared with the corresponding results of single-
function analyses, the following observations can be made.

(i) Deflections.—The maximum deflection results are virtually indistinguishable except for the
shortest plates where differences of up to 2%, occur.

(ii) Stresses.—When the maximum von Mises stress is not at the ends of the plate, the results of
the two analyses converge as the length of the plate is increased. When a/b, is greater than 2 the
difference in the results is less than 39%, for a plate of constant thickness with clamped sides and is
less than 1%, for all the other examples calculated. When the maximum von Mises stress is at either
end of the plate, the results, which do not converge as the length of the plate is increased, differ by

11



up to 39, for plates of constant thickness and 449, for plates with thickness proportional to width.
The two-function analyses can be used however on plates sufficiently long for the stress distribution
at the ends under this loading to depend purely on the angle of taper and not on the length of the
plate.

3.4.2. Optimum thickness variation.—If a clamped plate such that a/b; = 4 and by/b; = 0-4
is designed to a maximum stress specification under uniform load, a weight saving of the order of
149, is obtained by using the optimum linear thickness variation rather than a constant thickness.
This confirms the usefulness of the optimum thickness variation for a plate under uniform loading.

12
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NOTATION

Suffices 1 and 2 indicate values at ¥ = 0 and x = a respectively.

Length and width of plate
Plate thickness

Cartesian co-ordinates
Deflection

Maximum value of @

SRS

Young’s modulus

Poisson’s ratio (taken as 0-3 in computations)
Flexural rigidity = E#3/12(1 —1?)

Normal loading

g = qo(X)B(0) where o and B are dimensionless functions
% (é_)

E\g

Stresses

Von Mises stress

Maximum value of o;

Bending and twisting moments per unit length
Index such that D = D, X

Index such that « = X?

Unspecified function of X
13



NOTATION-—-continued

¥ Known function of ¢
+
Y, = J‘_l BD,d0
Pini Defined by equations (9)
Lins
o Defined by equations (10)
Siki
A Indices in complementary function in equation (14)
F(X) = Particular integral
hin(A) Defined by equation (13)
A Determinant of 7;;, terms
4;, B, Arbitrary constants in equations (14)

Work done by normal loading

U Strain energy of bending
Ve Laplacian operator
V4 Biharmonic operator.
REFERENCES
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S. Woinowsky-Krieger Chapters 4 and 10, 2nd edition, McGraw-Hill, 1959.
3 M. L. Williams .. .. . Surface stress singularities resulting from various boundary

conditions in angular corners of plates under bending.

Proc. 1st U.S. Nat. Congress of Applied Mech,, A.S.M.E.,
pp. 325 to 329, 1952.

4 G.G.Pope .. .. .. .. The buckling of plates tapered in planform,
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Fia. 2. Curves of maximum deflection and
maximum o;. Sides and ends clamped,
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Fic. 4. Curves of maximum deflection
and maximum o,. Sides simply-supported,
ends clamped, thickness constant,
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thickness proportional to width.
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