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Solutions have been obtained for the upwash interference on two-dimensional aerofoils, and small-span 

wings, in a rectangular wind tunnel with viscous flow through the slotted floor and roof. 
A discussion is included on the application of results to tests on wings of moderate span. 

1. Introduction. 

The problem of determining the flow interference due to the partially open walls of a wind tunnel 

has received a great deal of attention. Davis and Moore x dealt with many slotted-wall configurations, 

representing the flow at the walls by the homogeneous boundary condition 4 + K(O4/On) = O, 

where K is a function of slot geometry. In order to take viscous effects in the slots into account, 

Baldwin and Turner 2 introduced a further term, and derived the boundary condition 

0 4 024 1 3 4 
o x + K  + - O. 
- -  ~ R On 

The parameter R is defined by the equation Ap = (pU/R)(~4/3n) and is a measure of the porosity 

of the screens which are placed in the slots in many wind tunnels. The quantity pU/R can be 

determined experimentally by measuring the mass flow and pressure drop through a sample of the 

screen under conditions corresponding to zero stream velocity. 

Baldwin and Turner derived the blockage and upwash interference on a smaU-span wing in a 

circular wind tunnel, together with the blockage effect on a two-dimensional aerofoil in a rectangular 
wind tunnel, with slotted floor and roof. The present author has extended the analysis to deal with 

the upwash interference on a two-dimensional aerofoil, and on a small-span wing in the latter type 
of tunnel. 

The application of results to evaluating corrections for wings with moderate span is discussed in 
Section 4. 

* Replaces the de Havilland Aircraft Co. Ltd., Wind Tunnel Report No. 91--A.R.C. 23,784. 



2. Upwash Interference on a Two-dimensional Aerofoil. 
The upwash interference on a two-dimensional aerofoil in a rectangular tunnel with solid side 

walls and slotted floor and roof is derived as follows: 
The velocity potential due to a two-dimensional aerofoil in free air is 

Ct = L tan-1 z (1) 
27r x 

which transformed into a Fourier integral gives 

61=. I'4 2rrI" f f  e-q~sinqxdq,-q z >  0. , (2) 

The interference velocity potential may be expressed in the form 

f P [{A(q) sin qx + B(q) cos qx} sinh qz] dq. (3) 
0 

The boundary condition which must be satisfied is 

~x + K ~ + ~ ~z (~1 + ¢2) = 0 ,  Z = h. (4) 

On differentiating (2) and (3) and substituting in (4) the terms in sin qx and cos qx must vanish 
independently for all values of q. Hence 

(1 - Kq)e -qh - qA(q) (sinh qh + Kq cosh qh) - -~ q B(q) cosh qh cos qx = 0 

and 

e-d~ - qB(q)(sinhqh+ Kqcoshqh) + ~ qA(q)coshqh sinqx = O. 

Substituting q for qh and c for K/h and solving for A(q) and B(q) we have 

e-q l(sinhq+cqcoshq)(1-cq) - ( l  coshq) i 
A(q) = 

l q (sinhq+cqcoshq)2 + ( l  coshq) 2" I 

and 

IlR 
B(q) = 

On substituting for A(q) and B(q) in equation (3) the interference at any point can be obtained. 
In particular at the origin x -- z = 0, 

= --  K B(q)-h = 2rr h (sinhq+cqcoshq) 2 + coshq Oz 2Tr o 
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As 1/R -> 0 in equation (5) a limiting process yields 

~¢~ + P  

0z 4h(1 + c) 

Equation (6) is in agreement with the results of Ref. 1. 

(6) 

3. Upwash Interference on a Small-Span Wing. 
The upwash interference on a three-dimensional model can be divided into two separate parts: 

(a) the effect of the solid side walls, which may be evaluated by means of a simple image system; 

(b) the effect of theslotted floor and roof. 
For a small-span wing in a tunnel of width unity and height A the latter effect is determined as 

follows: 
The velocity potential due to a small-span wing in free air is 

ps 1 + (7) 
¢ ~ -  2~ (~+S+~)v~ iy~+~ ~) 

which together with the images in the solid side walls gives 

Fs +°° 1 x f z eR = 2~ k=Eo~ 1 + [x ~ + (y+,2k) ~ + z~]~o [(y+2k)~+z~ ] (8) 

= f~(y ,  z) + gn(x, y ,  z ) .  

We may express gn in the form 

Psi= f f  C.~(q)sinqxcosm~rydq (9) 
gR - 2~r =o 

where 
az = q ~ + m ~  2. 

Now 

Hence 

~g2~ I~s + ~ Z 

C (q) 4pflfoo  cosqxcosm y . . ]  
- -  p = ½(m=O) 

41) gl  +Zo zK~[q{(y+2k)2 + z2}V~] . d | = 1(re#O) 
Costa y y) 

where K 1 is the modified Bessel function of the second kind order one. 

The integral has been evaluated in Ref. 3 and gives 

2pe-~, 
e r a ( q )  - q 

In  attempting to express fR in the form 

Fs o~ f ~  fR = ~ 5 0  o D~(q) cos qx cos m~ry dq 

it is found that Din(q) = O, q :/= O, and that the interference velocity potential must be of the form 

¢~ = L(y, ~) + g~(x, Y, ~) 



where 

Fs 

f 
oo  

__ 2p{A. , (q )s inqx  + B m(q )c osqx } s inhazc osmrry d  q. 
g =2g =o o 

The boundary conditions which must now be satisfied are 

1 
oz ( f R + f s )  = 0 z = h 7? # 0 

and 

(10) 

(11) 

8 3 ~ 1 0 )  
+ k ~ + ~  (g~+g~) = 0. (12) 

From equations (11) and (12) it appears that fs represents the interference which would arise at 
the origin from a closed floor and roof, andg~ gives the difference from the interference in a completely 
closed wind tunnel. 

On substituting for C,,(q) and differentiating (9) and (10), substituting in (12), solving for B,,~(q) 
and putting q = q)t, a = a)t and c = k/A we obtain 

a/qR 
B,,,(q) = 

q sinh a + ca cosh a) 2 + cosh a 
77" 

~gs _ Fs ~o ~ 2p~ (a/qR)dq 
(13) ~z 2zr d Aq 

.~o  o (sinh a + ca cosh a) ~ + 

at the originx = y  = z = O. 

The summation is rapidly convergent, and, putting h = A in equation (5), and remembering that 
s vanishes on computing 8 from equation (13), it appears that the leading term in the summation 
produces a correction factor equal to that for tests on a two-dimensional aerofoil. 

4. Application of Results to Tests on Wings of Moderate Span. 

Upwash correction factors at the origin, have been computed numerically for two-dimensional 

aerofoils and for small-span wings (A = ½- and A = 1), for various porosity and slot geometry para- 
meters. Curves are presented in Figs. 1 and 2. 

A method for determining the upwash correction factor for a wing in a rectangular wind tunnel, 
from the two-dimensional result, is described by Katzoff and Barger 4. It appears from Section 3 
of this report that, apart from the influence of the side walls, the correction factor for a small-span 
wing does, in fact, tend to the two-dimensional value, with increasing height/width ratio. However, 
this method is inadequate for small values of ~. 

Now, the correction factor (31) for a wing which spans the tunnel is obtained by adding A/2~r, i.e., 
the effect of the side walls, to the appropriate two-dimensional correction. An approximate correction 
factor for a wing of moderate span may be derived by linear interpolation between 31, and the small- 
span correction 30, i.e., 

( s ) + 3 t s  a=3o  f. 

4 



5. Concluding Remarks. 

The curves in Figs. 1 and 2 and the interpolation described in Section 4 of this report, yield the 
upwash correction factor at the origin for a wing in a rectangular wind tunnel with viscous flow 
through a slotted floor and roof. 

The analysis of Sections 2 and 3 may also be used to derive camber corrections, and to determine 
the spanwise variation in upwash. 

The solution for a porous wind tunnel is obtained by putting c = 0. 

(86953) A~ 
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The upwash correction factor for a two-dimenslonal aerofoil for various 
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FIG. 2. The upwash correction factor for a small-span wing for various 
porosity and slot geometry parameters. 
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