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PART I

Summary.—A general method (requiring the aid of a digital computer) is described for deriving the influence co-
efficients of any type of wing, and hence for evaluating its strength and stiffness characteristics. The method allows for
shear deflections, and hence implicitly takes account of effects like shear lag and warping of wing cross-sections. A rapid
method accurate enough to serve as a basis for dynamical calculations is first described, and secondly a more rigorous
method on which to base final stressing of the structure.

1. Introduction.—In a recent lecture! the writer discussed the profound impact of the electronic
digital computer on the problem of computing the strength and dynamical characteristics of
aeroplane structures. In the same lecture he put forward a method of deriving the influence
coefficients of thin wings of any shape by exploiting three simplifying factors: plate theory, the
matrix notation and the digital computer. It will be appreciated that, once a comprehensive
enough set of influence coefficients are obtained for a structure, its stiffness and strength under
any kind of external loading can at once be deduced. The same set also constitutes the essential
data for computing the natural frequencies and modes of the structure. By seeking to establish
a sound and rapid method of deriving a comprehensive set of influence coefficients for the complete
aeroplane, one 1s in effect seeking a royal road to the solution of all strength, stiffness and vibration
problems of an aeroplane structure. With regard to wing structures, to the consideration of
which the present report is confined, a general method of derivation, once established, has the
great advantage of making the most unorthodox type of wing amenable to what may be described
as a stereotyped approach.

A major assumption made in the method above alluded to was that shear deflections could be
neglected in the expression for the curvature of the wing. This is a legitimate assumption when
treating thin near-solid wings, but open to question for more orthodox designs. The main
purpose of the present report is therefore to modify the original method so as to be applicable
to any kind of wing. At the same time the opportunity is taken to put on record the original
method, which up to the present appears only as an appendix to a lecture embracing a much
wider thesis.

* R.A.E. Report Struct. 168, received 7th March, 1955.
R.A.E. Report Struct. 209, received 8th November, 1956.



2. Description of Original Method—Shear Deflections Neglected.—The essence of the original
method above referred to is to use elementary plate theory for calculating, by means of a digital
computer, the stiffness coefficients associated with a comprehensive set of discrete stations well
distributed over the wing. A further essential factor in the method is the inversion, again by
the help of the digital computer, of the stiffness matrix thus obtained to form the flexibility
matrix, whose elements consist of the influence coefficients finally required.

Now elementary plate theory cannot be legitimately applied to a wing unless two major
conditions are satisfied. These are:

(@) that curvatures produced by shear deflections are negligible compared with bending
curvatures

(b) that deflections (as calculated by * small deflections theory’) relative to a developable
surface are small compared with the thickness of the wing. '

The thinner the wing the more nearly is condition (a) satisfied, but the more doubtful is the
satisfaction of condition ().

For nearly solid wings with thickness/chord ratio of 5 per cent or less condition (@) is approxi-
mately enough satisfied, and may even be satisfied for considerably thicker wings.

The satisfaction of condition (b) naturally depends on the severity of the load applied. For a
light-alloy wing with a spanwise curvature corresponding to a bending stress of 40,000 1b/in.?, the
deflections due to anti-elastic curvature are still approximately within the limitations of the
‘ elementary ’ or < small deflections’ theory when the thickness/chord ratio is only 5 per cent.
‘When part of the chord is taken up by ailerons or flaps this figure could drop to 4 per cent, or
even 3 per cent, without violating the conditions under which elementary plate theoryisapplicable.
For a steel wing, of course, the figure of 40,000 1b/in.? goes up in the ratio of the Young’s Modulus
to 120,000 Ib/in.2. :

2.1. Basis of Method—It is hardly necessary perhaps to point out that, in expressing the
deformation of a highly redundant structure under load by means of influence coefficients, good
accuracy requires that an adequate number of stations should be used. For, the greater the
number, the more nearly can the discontinuous station deflections represent the essentially
continuous true deflection shape. Since, however, the amount of computational work goes up
somewhat faster than the cube of the number of stations, a digital computer is an indispensable
adjunct to the proposed method.

As shown in Ref. 1, it is now accepted that it is much easier to derive the influence coefficients
of a highly redundant structure indirectly, by first deriving the stiffness coefficients, rather than
directly. By using the machine (¢.e., the digital computer), the stiffness matrix so obtained
can then be inverted to give the corresponding flexibility (or influence) matrix, from which the
deflections and stresses in the structure can be obtained for any applied load.

To look at the matter in a slightly different way, we may consider the differential equation
(or set of equations) that relates the deflections of a structure to the loads applied to it. Always
on the left-hand side of the equation is a function of the deflection and its derivatives with respect
to the co-ordinates of the system, and on the right-hand side appears the arbitrary external
loading. What the engineer is asked to do is to find, from a given external loading, the consequent
deformation. He is never given the deformation of the structure and requested to determine the
loading that produced it, becaiuise such a problem has no interest. It is only since the advent of
the digital computer that the facility with which this inverse problem can be solved has become
open to exploitation. For, after the loading associated with a given set of hypothetical deflections
has been determined in general terms, the machine is capable of solving with great facility the
set of linear equations by which the loads are thus expressed in terms of the deflections. In other
words the machine solves the real problem whereas we solve only the easy inverse problem.

2.2. Derivation of Stiffness Coefficients.—The problem of finding the stiffness coefficients of a
wing is that of evaluating the reaction at each station necessary to maintain an arbitrary set
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of wing deflections. For this purpose, the wing cannot be regarded as isolated, but must be
considered as an integral part of the complete aircraft. This means that the influence coefficients
must relate all wing deflections to some convenient three-point datum as described in Ref. 1.

One of the advantages of dealing with stiffness, rather than influence, coefficients is that the
number of coefficients is greatly reduced. This is readily seen from the fact that, taking a simple
example, the force at a wing-tip station due to a unit displacement at a root station (the
displacements at all other stations being zero) is vanishingly small, but the displacement at a
tip station due to a unit force at the root station (with all other forces zero) is not. That is why

the reaction (and hence stiffness coefficients) for a wing station can be expressed in terms of the
deflections of only. those stations immediately adjacent to it. As a consequence, in illustrating

the application of plate theory to the wing, we can confine attention to a restricted area of wing.

2.2.1. Choice of stations.—Since the shear stiffness of ribs and shear webs is, in this preliminary
approach, assumed infinite, the choice of location for the stations need have no relation to the
disposition of the shear-carrying members inside the wing. If, in addition, reliance is placed on a
thick skin alone to resist bending stresses, location of the stations becomes a matter of choice,
to be decided largely by computational convenience.

In order to demonstrate the essential character of the method without introducing unwieldy
formulae, the wing is assumed to be of the thick-skin type, so that, in any particular station, the
T of the wing section per unit width is the same for a chordwise as for a spanwise section. On
this basis it is legitimate to distribute the stations over the wing surface in a regular pattern;
for choice a chess-board pattern with a station at the corner of each square. Fig. 1 shows such
a square mesh of stations suitably numbered from 0 to 12.
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2.2.2. Adaptation of plate theory.—We can now show that the reaction R, at the central station
0 can be expressed in terms of the 13 deflections w,, w,, w,, . . . @y, and the 1 per unit width of the
spanwise and chordwise cross-sections, i.e., per unit length along x and v in the figure. This I
will vary with the skin thickness and the depth of the wing section, and there is no difficulty in
taking account of its different values at different stations. It is only for convenience of writing

therefore that the I’s at stations 1, 2, 3 and 4 are assumed equal.

Following the standard notation for plate theory, let:

M, = Dbending moment per unit section parallel to the y-axis

M, = bending moment per unit section parallel to the x-axis

M, = - M, = twisting moment per unit section parallel to the y-axis
Q. = shear per unit section parallel to the y-axis
@, = shear per unit section parallel to the x-axis.

The positive directions of these moments and shears are shown in Figs. 2a and 2b.
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Similarly :
(R))o = D(H, + H, — 2H,)[L. .. .. .. .. .. (18)
The total reaction at station 0 is therefoce : '
Ro - {(Rx)o + (Ry)o}l .
= D(H, + H, -+ Hs + H, — 4H,) . .. .. .. .. (1)

Expanding the H’s in terms of the »’s by using (9), (10) and (11) to obtain H,, H, and H, and
similar equations to obtain H, and H,, we finally write:

Ry= D[l*T Wy + W, + ws + w, — 4w,
+ wy A+ w, w4 wy — 4w,
+ wo‘l‘w12+ws+w7_4_ws
+  wy -+ wy, + w, + w, — 4w,
| — 4(w, +ws + w, + w, — 4w) ]

D
— Zz—}z()wo — 8(w, + w, + @, + W)

‘l‘ 2(w5+ws+w7+ws)+(w9+w10+w11‘|—w12>§

D 4 8 12

F[ZOwO—SZw,+22w,+zw,]. R O 1)
p=1 R =5 =9

The bracketed quaﬁtity in (18) represents a standard pattern of station deflections that can

immediately be applied to write down the reaction at any other station within two pitches of the
wing-plan boundary.

It will be noted from (17) that the I of the wing section comes in only for the central station 0
and the four inner stations 1, 2, 8 and 4. At each of these stations (if the bending resistance is
provided by a thick skin alone, thus making the 7 in the x and y directions the same) the change
in I with change in wing-section depth must normally be taken into account. This merely means
that the appropriate constants have to be taken inside the bracket in (18) instead of being
included in the stiffness D outside the bracket, as they can be when the I’s are equal. The case
where the I’s in the x and y directions are different presents no real difficulty and is treated later.

The coefficients of the thirteen station deflections in (18) are, of course, the stiffness coefficients
that give the force (or reaction) at station 0 due to any possible deformation of the wing structure.

If the whole wing is represented by (say) 50 stations it means that all but 13 of them have zero
stiffness coefficients.

The fact that these coefficients can be written down in such a systematic fashion, at least for

the interior stations, suggests that there should be little difficulty in programming the machine
to do the job. :

2.2.3. Boundary conditions.—A main advantage of the approach wvia stiffness coefficients is
that the problem of satisfying boundary conditions ceases to be a problem. This follows from the
fact that the wing boundary conditions can all be expressed in terms of wing deflections or their

derivatives, in terms, in other words, of a set of given quantities or quantities easily deduced
from their boundary couditions.

A few typical boundary conditions are discussed in the following paragraphs but a detailed
discussion is relegated to Part I of the report.

Boundary conditions at free edge—As an indication of how to deal with boundary conditions,
suppose the line AA* passing through station 10 in Fig. 1 to be a free edge. As the whole cluster
of stations is unbroken, equation (18) is still applicable for writing down the reaction at station 0.
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If BB became a free edge, however, the x curvature at station 1 can no longer be expressed in
terms of the wing deflections, since there is now no station 10 to give the slope between 1 and 10.
But as the y curvature at 1 is still fully defined, we can use the fact that:

0*w 0%w
(Mx)1:D<W+vW)1=o.. 9
to give 0%w/9x? as (— »9%w/[0y?). The same procedure can obviously be applied directly to any
other straight boundary.

Suppose the boundary is the stepped shape defined by the stations 11, 2, 6, 1, 10 shown dotted
in Fig. 1. To obtain the x and y curvatures at a re-entrant corner such as station 1, we use the
standard formula, but for a projecting corner such as station 6 one needs only to use the two
conditions: '

0%w 0*w
(M.)e = D(a_x_i + V@g) =: 0

6

i A% Q% ’ (20)
(M) = D (55 + 2 559), = 0
to show that: -
% 0%w :
(Gr) = (Gr) =0

Any shape of boundary can in this way be approximately represented by a suitably stepped
outline: ‘

Boundary conditions at wing voot—The conditions at the wing root are just as straightforward.
They are different however for the symmetrical and the anti-symmetrical displacements.

For the symmetrical case, the x slope, by symmetry, is reversed as the plane of symmetry is
crossed, a fact that, for a wing passing straight through the fuselage, enables the wing x curvature
at the intersection with the plane of symmetry to be at once written down. For wing spars that
bridge the fuselage by some kind of frame, the root slope at the side of such a frame is given by
the deflections of the frame itself. But if the wing spar is pin-jointed to the fuselage side, the
same condition as for a free edge applies, ¢.¢., zero spanwise bending moment.

For the anti-symmetrical case, straight-through spars have zero bending moment at the plane
of symmetry. A spar fixed to the fuselage has its root slope defined as in the symmetrical case,
while a pin-jointed root gives as before zero bending moment.

Along the y direction the curvature is, by definition, completely defined.

2.2.4. Comversion of stiffness into influence coefficients—The conversion of the stiffness co-
efficients found by the above method into influence coefficients by matrix inversion has been
fully covered in Ref. 1, and will not be discussed here.

2.2.5. Use of machine for computing stiffness coefficients—When a fairly large number of stations
are used on each side of the plane of symmetry of an aeroplane structure, it is essential that the
procedure of deriving the stifiness coefficients should be systematised to the last degree. ‘For this
enables the machine to be programmed thoroughly enough to require feeding only with such
basic wing-design quantities as:

(@) the spacing of the stations
(6) the wing-section properties at each station

(c) the wing plan-form. o

3. Approximate Method for Taking Account of Shear Deflections—Shear flexibility in bending
complicates the issue because, by introducing a curvature of its own, it impairs the otherwise
simple relation between resultant curvature and bending moment. Since shear flexibility is also
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a governing factor in such secondary effects as shear lag and warping of wing cross-sections, no
structural analysis can lay claim to accuracy without taking it into account. Only in the case of
solid, or nearly solid, thin wings can it be legitimately neglected, when the method already
described may be used without modification.

The effect of shear flexibility is two-fold; in the first place it reduces the wing stiffness and in
consequence affects the frequencies and modes, and in the second place it modifies the stress
distribution in the wing. So far as the first, or dynamic, effect is concerned, an approximate
method is here put forward that appears to be quite adequate. The approximation used
may not however be good enough in all cases for the purpose of the static stressing of a wing,
where it is desired to take full account of such secondary effects as shear lag and the warping of
wing cross-sections. For this, if the utmost accuracy is required, it is necessary to increase the
number of degrees of freedom three-fold in order to allow for x and y displacements in the plane
of the wing in addition to the z displacement normal to that plane*. : :

What makes it possible, in the rigid shear method already described, to completely define the
deformation of the wing in terms only of the deflections normal to the plane of the wing, is the
fact that the normal deflections, in defining the slopes of the neutral plane of the wing in the
x and v directions, thereby also define the displacement of the skin in those directions. This
follows from the fact that, with infinite shear stiffness (of ribs and spar webs) a point on the skin
cut by a normal to the neutral plane before deformation remains on the same normal after
deformation. Any method of defining the deformation of a wing by the normal displacements
w alone of a number of stations distributed over it must therefore specify how the dependent
displacements # and v in the x and y directions are related to the independent deflections w.

In the approximate method now to be described this is done in the following way. The wing
is imagined to be rigid in shear to begin with so that the method already described is immediately
applicable. In this way the flexibility matrix for bending is derived, which gives the deflection
at every station in terms of any arbitrary system of applied loads. Suppose the wing to have
taken up its appropriate contour of displacements under a particular external load distribution.
If now, while the # and v displacements are constrained by some external agency to remain the
same, full shear flexibility is restored to the ribs and webs, the deflections w will generally increase.
The amount of this increase under the external load applied, since we are dealing with linear
conditions, is independent of the bending displacements already in existence and these may
therefore be disregarded for the purpose of obtaining the extra shear deflections. In fact we can
consider the unloaded wing subjected to a system of displacements w of a kind that allows no
accompanying » or v displacement for any station, and that therefore allows only the components
of shear displacement represented by 9w/ox and dw/dy (d#/0z and dv/dz being both zero).

The set of reactions R necessary to hold the wing in its deflected position are easily written
down, because the shear in the shear-carrying internal structure can, under the special conditions
visualised, be expressed in terms of the first derivatives of the station deflections and not in terms
of their third derivatives as in the rigid-shear case above treated. In Fig. 1 the shears in the shear
webs that meet at station O are given by:

Sox = (K)o, (0, — wy) Gh(li)o,l
Seo = (K)o (w0, — wy) Gh(lt)g,o
So e = (K)o (100 — ) Pl ’ (22)
Ssio = (B)ao (00 — @) Gh(lt)z,o

* See section 4,



where % is the thickness of the wing, (#),,, the thickness of the shear web between stations # and m,
and the K’s are the appropriate shear constants for the several panels. The external upward
reaction necessary to equilibrate this system of vertical shears at station 0 is then:

(R)s = (Ss.0 — So,2) + (Sz0— Sua) - Ce e (28)

In this case every station, whether on the boundary or not, can be treated in the same way, so
that the stiffness matrix is obtained very easily. On mvertmg this matrix we obtain the flexibility
matrix for shear, 7.¢., the shear deflection (of the particular kind concerned——ow/9x or dw/[dy) at each
station under any arbltrary external loading. The complete flexibility matrix is now at once
written down since it merely requires the straightforward addition of the two matrices, the one
of bending and the other of shear.

3.1. Remarks on the Approximation.—Certain points regarding the above approximation may be
noticed. A minor but interesting point is that it would not have been feasible to superpose the
shear and bending reactions at each station in turn, so as to combine bending and shear reactions
in the same stiffness matrix, the inversion of which would then give the resultant flexibility
matrix in one operation. Any attempt to do so introduces the reciprocals of the deflections.
The situation may be summarised by saying that, whereas the bending and shear stiffness matrices
cannot be directly added together, the corresponding flexibility matrices can. Since it is generally
expedient to derive the flexibility matrix via the stiffness matrix, the only approach here is to
derive the bending and shear stiffness matrices separately, to invert them separately so as to
obtain the corresponding two ﬁex1b111ty matrices, and finally to add these together to give the
resultant flexibility matrix.

A major point is the fact that the deflections obtained are correct only so long as the constraints
needed to prevent » and v displacements during the shear deformation are maintained. Their
final removal will produce not only # and v displacements additive to those induced by the
initial bending deflections but also further w deflections, with of course an attendant modification
of the stresses.

It will be noticed that the problem remaining to be solved 1.e., the effect of removing the
constraints, no longer involves forces normal to the wing plane but only forces in that plane. This
is equlvalent to saying that the resultant of the shears in the four shear-carrying panels that meet
at each station vanishes.

3.2. Approximate Method Applied to Single Box Cell—Obviously, the greater the shear flexi-
bility, of a structure in reldtion to its bending flexibility, the more important become the con-
straining forces. It was therefore thought desirable to see how the method works under
extremely unfavourable conditions, where the shear deflections constitute the major part of the
total. For this purpose a single-cell torsion box was chosen and assumed fixed along one side
ADA’D’ and loaded by a couple consisting of two vertical forces P as shown in Fig. 3.
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Bending stiffness is introduced by edge booms, which are connected by panels capable only of
resisting shear. The box is square in plan and has a length #» times greater than its depth 4.

The equal and opposite deflections at B and C were calculated :
(a) correctly by any of the various methods available
(b) assuming the sides and end infinitely stiff in shear

(¢) assuming the four end corners to be constrained to move only vertically, in other words
assuming infinite stiffness for the booms and the two horizontal panels

(d) under forces equal and opposite to the resultant constraints required by (8) and (c).
Deflections (b) and (c) are the constrained bending and shear deflections above discussed.

Deflections (d) arise from the unbalanced forces brought into action by removal of the con-
straints and must always take the form, shown in Fig. 4, of tractive forces along the horizontal
edges of constant amount S per unit length. The structural

B S, analysis of this box is given in Append1x I to this Part, where
:.o‘ ‘ it is shown that if:
p (/' "S""—B—s ~7°¢ ¢, = thickness of side panels
/ s ¢, = thickness of top and bottom panels
A - 3 4 t; = thickness of end panel
Fic. 4. A = cross-sectional area of edge booms,

the unbalanced residual edge force S per unit length has the value:

_ Pr2g-1-087 tfts ' :
S—Z—[Zg+2'133_1—}—2t1/tj’ e (29

where .
g = AA[(t,nh) .. .. . - .. .. .. (25)

and the ratio G/E of the elastic moduli has been taken to be equal to 0-4. This shows that for
certain values of A and of the ratio (£/4;) the edge force S vanishes and the approximation is
exact.

Perhaps the best way of showing how effectively the approximation takes account of the shear
flexibility of the vertical panels is to quote numerical values for various combinations of relative
panel thicknesses and boom cross-sections. This is done in Table 1 in which the approximate
deflection (w, + w,) is shown against the true deflection.

In looking at the figures in Table 1,

TABLE 1
By approximation
g 7 tfte B3/t - Wirne
A w, (w; + w,)
1 2 1 0-2 0-517 1-43 1-947 . 1-95
1 2 1 0-0 0-517 2-0 2:517 3-07
1 2 1 1 0-517 0-67 1-18 1-55
1 2 1 10 . 0-517 1-67 2-18 2-22
0-5 2 01 0-05 0-7 10 10-7 10-9
0-5 2 - 0-05 0-1 0.7 8 87 - 10-78
0-5 4 1 0-2 2-73 2-86 5-59 5-63
1-0 4 1 0-2 2-07 2-86 4-93 4-93
1-0 4 1 0-0 207 4 6-07 8-37
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one must remember that the box structure here considered and the kind of loading assumed
represent an extreme case, in that the shear deflection accounts for much the greater part of the

total deflection. Even in this highly unfavourable example the addition of the shear deflection w,

to the bending deflection w, brings the total (w, + w,) well into line with the true value, whereas
the neglect of w, gives a hopelessly inaccurate result.

If, instead of the two forces P being applied in opposite directions, they are applied in the
same direction, thus changing the torque into a transverse load, the approximation becomes
exact. It follows that, since any two upward forces at the outer corners B and C of the box
can be represented by a transverse force and a couple, the approximation approaches closer
to the truth the more nearly equal the two forces become. It is to be expected therefore that in
most practical cases this approximate method should be satisfactory.

A final point to notice is that, if the deflections obtained by the approximate method are used
for stressing the wing, the stresses in the skin and its reinforcements (including spar flanges, etc.)
are obtained directly from the bending deflections (i.e., ;) since the superposed shear deflections
(w,), by virtue of the constraints, have no effect on the skin stresses. This means that, although
the allowance made for shear flexibility makes a valuable adjustment to the deflections, it has
no effect on the skin stresses. To obtain the latter with sufficient accuracy a more rigorous
method, now to be described, is needed in some cases.

4. More Regorous Method—Suitable for Both Wing Stressing and Dynamic Calculations.—The
above approximate method depends essentially on assuming an implicit and arbitrary relation
between the normal displacement w and the displacements % and » in the plane of the wing.
This means that the « and v displacements are subject to an external constraint that has later
to be liquidated. To remove this source of inaccuracy it is proposed to use the rigorous method
of regarding the three displacements #, v and @ at each station as independent variables. The
disadvantage of this course is the three-fold increase in the number of variables it entails, since
three independent displacements are now associated with each station.

There are compensations, however, that mitigate this disadvantage. One of these is the fact
that, consequent on the relevant difference equations being only of the second order, the reaction
at any station can now be expressed in terms of only eight of the adjoining station deflections
instead of the 12 previously necessary. It is also to be noted that, once the influence coefficients
connecting normal loads and displacements are found, the dynamical matrix is of the same order
as before, the number of elements being unaltered. It follows that the task of matrix iteration
for the natural frequencies and modes and all aero-elastic calculations can proceed just as if the
# and v displacements never entered the problem. '

4.1. Derivation of Stiffness Coefficients in Terms of Station Displacements u, v and w.—
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The reactions X, Y and Z in directions x, y and z at any interior station 0 (Fig. 5) can be
completely expressed in terms of the #, v and w displacements at the eight surrounding stations
1,2 ...8
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Relevant equations in differential form.—In order to facilitate the writing down of the appro-
priate difference equations, the three equations of equilibrium that govern the relation between
the three displacements %, v, w and the applied forces are first expressed in differential form.
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FiGs. 6a and 6b.

In Figs. 6a and 6b let ABCD represent a square element of area of the top skin of unit side.
Assuming that there is an identical bottom skin symmetrically situated relative to the neutral
plane FE'HH’, we need only consider the equilibrium of the top skin element. The stress symbols
used in Fig. 6 follow standard practice and need not be defined here, except to note that the
direct stresses in the booms or stringers are distinguished from those in the adjacent skin by
having the symbol ¢’ as against ¢ for the skin. We assume here that stringers and ribs are
parallel to the co-ordinate axes. When they are not the method described in Part Il must be used.

Let
A, = average or equivalent flange area per unit width of y due to booms and stringers
in direction » at station 0
A, = average or equivalent flange area per unit width of x due to booms and stringers
in direction y at station 0
A, = equivalent flange area of skin in x and y direction at station 0 per unit width
t, = thickness of skin
t, = equivalent web thickness in direction x per unit width along y
t, = equivalent web thickness in direction y per unit width along x»
I = pitch of stations
h depth of wing section
X = applied force in direction x per unit area of skin
Y = applied force in direction y per unit area of skin
Z = applied force in direction z per unit area of skin.

The three equations of equilibrium of forces in the %, y and z directions may now be written
down at once.
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In the x direction :
y oo,

¥ 9x

do
e x
Lt (—ax T

arxy
)

tt

x-xz

- —X, (26)

where the stress o, in the boom (not being subject to Poisson’s Ratio) is different from o, in the

adjacent skin.

In the y direction, similarly:

da,’ 20, . Bz, B
4By+aﬁ; aﬂ~mw——Y- (27)
In the z direction:
0T, 0Ty
th = T th e Z. (28)
In a wing the forces X and Y are always zero.
Putting:
_E  jou a0\
=1 (at gy
;O
o, — E é__d—(,'
E  (ov ou
o =1=7 5+ 7 2)
, oy | ‘
O'y = E@ F ; (29)
ou , 0v
VT;ry == G (@ —I— 5})
ow . on
Tyy = G (% + 55)
ow , ov
w=bra
we write (26), (27) and (28) in the form:
o [0u E o [ou v 0 [ou  dv ow ou\
B (5 it = (e trg) Hon (a—fr@) ~tG (54 o) = — X, (30
-9 [dv E 0 (ov ou o (ouw v dw 0
g o) Tl wle s T Om ey b e 66 (6 He) = — 7 @80
' 0 [ow | ou d (0w , ov
Ght,;a—x(% +8—z> + Gl (E-y—,+5§) ——Z. (3

Since, in all practical cases of wing loading, both forces X and Y disappear, it is theoretically
possible, to eliminate # and v and so express the displacement w in terms of the loads Z applied
normal to the surface. This, however, would introduce differential equations of the sixth order,
as well as the necessity of subsequently evaluating # and v in order to obtain the stresses. Such
raising of the order of the differential equations appears to be regarded by Benscoter and MacNeal®
as unavoidable if a digital computer is used for their solution, in contrast with their own method
of solution by ‘ analog computer ’, in which first-order difference equations are alone used. The
method presented here of taking the three displacements at each station as independent variables

shows that this difficulty need not arise.
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4.2. Boundary Conditions—The boundary conditions in this method of approach are similar
to those discussed in section 2.2.3 in so far as the direct stresses are concerned. For example, in
Fig. 1,if CC'is a free edge, the direct edge load must be zero, 1.e.,

o1 A, (ou v
El Ax%-]—l_“(a—x—l—v@) =0
or .. .. . .. (38)
on — vA, ov
ox A, + (1 — N4, 3y’

since the shears 7,, and 7,, must each be zero.

As regards boundary shear displacements, for a free edge the shear stress, as just noted, is
zero, so that at a free edge parallel to the y-axis,

ov ou ow %

a_'x_"—'a_j)J a'—'_iz/_z'- .. .. .« .. o . (39)
At a fixed edge, such as the wing intersection with the plane of symmetry, the boundary

conditions, both for direct and shear displacements, are even more simple, in that the wing may

‘be imagined joined on to its symmetrical, or antisymmetrical, image as already discussed in
section 2.2.3.

4.3, Form Taken by Stiffness and Flexibility Matrices—When the X, Y and Z reactions have
been obtained for each of the stations concerned in terms of the displacements, we can write
down the complete set of 3» equations as follows, where, for example,

¥%,; denotes the reaction in direction x at station # due to unit displacement in direction x
at station s

¥x,, denotes the reaction in direction y at station » due to unit displacement in direction x
at station s

zy,, denotes the reaction in direction z at station » due to unit displacement in direction y
at station s,
etc.

1= (mllul + Xygtts + ...+ W11{’/’/7;) -+ (7@-’117)1 + XYt + ..+ x_yln'vn) +- (ﬁllwl + .. ) R
2 = (mm%l + Xgstty + ... ﬁ2;1%71) -+ (x_yzlvl + Xaula 4 . .. 9—55)-2;{%) -+ (%Zw; + . . )

............................................

w— (ﬁnlul _I_ ﬁnz'% + e _I— ﬁnn%n) ’}— (.x__y-nlvl + x_yn2v2 + .. -' _l— @mbvn) + (ﬁnlwl —I— L ) ‘

Pd P

17 (y—xu%l + Xty 4 . .. +W1n%n) -+ V(Wuvl + YVl + ... +_W1uvu) -+ (ﬁllwl + .. )
2 = (VEatty ’I‘sz”f% + o VEat,) A (Vs - YVerle + - A TVeav) + (P L) L (40)

............................................

n (ijleul —{_ _'}-)_'anMZ' _}" A +j.)—xnn%n) _!_ (Wﬂlvl +W1L2‘v2 _[_ R +375}-7111v7b> + (Wﬂlwl + v )

(4= (Z_xll%l + Xty ... ﬁm%n) -+ (Z__',V-uvl + BVt ..+ -Z—ylnvn) + (_Z—zuwl + ..
Ly, = (ﬁm%l + Bogtts + . .. %2;{1%) + (Emvl + Yty 4+ .. Eyanvn) + (ﬁﬂwl + .. )

Mo

B

......................................

Zn = ('&_xnlwl + EEnZMZ _!— L + —'z-'Tcnnun) _{—‘ (-@nlvl + -@nzvz + LA + @vmvn) + (z_lznlwl —[_ . ) J
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or, in partitioned matrix form:

X (%% xy X2 ﬂ ‘
Y| =|v ¥y ¥z v .. .. . .. .. (40a)
Z| \m m B! w '
where, for example
X =TX7, w = [u,]
X, U
X, U, | : : A
> . . . . . ..o (41)
X% = [Fhu  F - - - XK, :
XXy1  KXap « - - Xhay
| XXy Xpg o o Koy |

By virtue of the Reciprocal Theorem, the n-sided square sub-matrices %%, 3y and 2z are
symmetrical, and the square sub-matrices 7%, 2% and Zy are respectively the transposed forms
of xy, ¥z and ¥z.

Inversion of the 3n-sided square stiffness matrix of (40a) gives the corresponding flexibility
matrix, which allows the displacements to be expressed in terms of the applied loads in a set of
3% equations similar in form to (40). The partitioned-matrix form of this set may be written as:

u EE & I X :
v 7€ mn nl V.. .. . . .. (42
w TE Iy IC Z
where, for example
gg: ?511 ‘-E—Elz 511» P .577: -‘-5_7711_5]-12 57_’/.11;
Z':Em ﬁm . E_ég” ) 521 57722 e :’_7-22” L. (43)
) la:nl EHZ A -5_5'111; 5_17‘111 57-7-:7.2 o -E_n-nn
Here E” — displacement in direcrion x at station # due to unit load in direction ¥ at station s
%y, = displacement in direction x at station  due to unit load in direction y at station s,

etc.

The consequences of the Reciprocal Theorem noted above for the stiffness coefficients are equally
applicable to the flexibility (or influence) coefficients.

4.3.1“. Consequence of external loads in wing plane being zero—In practice there are no X and
Y external loadings at the wing stations, and therefore the first two columns of the square matrix
of (42) disappear. - That equation then takes the form:

u € 14]
v = 1|9t (44)
w 133
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which gives %, v and w at each station in terms of the applied loads Z. To visualise the final result
better, we may expand the three component parts of (44) to give the #’s, v’s and w’s separately
as follows:

—%1_ I 2—5.11 Z':Z:m é&_é:m ] —Zl. w ‘

Uy §21 ‘522 - E_Czn. Z,
_wbn_ _Z:—Elll .5712 < 5,”, . L Z}l_
i 7)11 —ﬁn 77—512 R 7—7—51J -ZJ

‘2)2 ;E 77—C 22 e :'7_C' 7 ZZ

SRRl B B I (45)

L 7)"_ ;7—5;;1 77._C712 U,—Cizrt_ L~ n_|
_wl_ _—C—é-ll Z’_—él2 EE]IZ_ -Zl-

Ws _Cm —C_Ezz Ezn Z,
_wn_ L Enl En‘z C_Znn | _Zn_

-~

With all the displacements found, the direct and shear stresses everywhere can at once be
evaluated.

4.4. Shear-lag Problem Implz'citly Solved.—The shear-lag problem is automatically solved in
this method of approach, as may be seen by considering the simple structure of Fig. 7.

<U
S

F1G. 7.

This represents a closed box having two internal ribs R, R,’, R,R,’, but no spanwise webs other
than the sides of the box. If, further, the box has no corner flanges and the skin is heavily re-
inforced with stringers, we have a structure in which, under transverse loads P, shear-lag effects
must dominate the picture. However, the fact that the surface has a number of stations, such
as those marked in the figure with a cross, distributed over it ensures that full account of shear
lag and section-warping is automatically taken by the above ‘ three variable per station’ method,

17



5. Concluding Remarks.—Three methods are described in Part T of this report for deriving

the influence coefficients of wing structures on the supposition that a digital computing machine
is available.

The first (described in section 2) applies to heavy-skinned thin wings for which the shear
flexibility of the vertical shear-carrying ribs and spar webs can be legitimately neglected. This
involves a straightforward adaptation of elementary plate theory as originally described in the
appendix to Ref. 1, and needs no particular comment.

In the second method (described in section 3) shear flexibility is taken account of in an approxi-
mate way, in accordance with which shear deflections are allowed to take place under a certain
amount of external constraint. The deflections of the wing normal to its plane obtained by this
method are accurate enough for use in all dynamic and aero-elastic calculations whatever the
type of wing construction. They are also probably accurate enough for stressing purposes in

the case of thin wings, and certainly good enough for the preliminary stressing of any kind of
wing. ‘

For the meticulous stressing of any kind of wing structure the more rigorous method of Section 4
can be brought in. This unfortunately does mean a threefold increase in the number of degrees
of freedom if every station is given three instead of one independent displacement. It can well
happen, however, that in many wing structures only those stations that are situated in parts of the
structure that are ordinarily difficult to stress, need be given the added two degrees of freedom.
Moreover, it is to be remembered that the machine is supposed to do the work, a fact that makes
a substantial increase in the number of degrees of freedom not a very serious matter. The
important point is that this method of deriving influence coefficients does not require a stressman

to possess a profound knowledge of structural theory to enable him to deal satisfactorily with
wings of any type.

REFERENCES
No. Auwuthor T;'tle, etc.

1 D. Williams Recent developments in the structural approach to aero-elastic problems.

J. R. Ae. Soc. June, 1954,

Bending of wide beams of doubly symmetrical section. Technical Report
No. 4 (American Air Forces Contract).

2 Murray and Niles . .

R. V. Southwell .. .. .. Theory of Elasticity. Oxdord University Press.
S. Timoshenko .. . . Theory of Plates and Shells. McGraw-Hill Book Co. 1940.

5. U. Benscoter and R. H. MacNeal ~ Equivalent plate theory for a straight multi-cell wing. N.A.C.A. Tech.
Note 2786. September, 1952,

18



APPENDIX TO PART I

Deflections of a Stmple Box under Various Conditions

A i
f L7 —
L |
K
. F1e. 1A.
Let [ = depth of box
nl = length and breadth of box
A = cross-sectional area of booms
t, = thickness of side panels ‘
t, = thickness of top and bottom panels
f; = thickness of end panel (or rib)
S: = shear per unit length in side panels
S. = shear per unit length in top and bottom panels
Ss = shear per unit length in end panel
%,9,2 = co-ordinates as shown
u, v, = displacements as shown
w, = bending deflection
w, = shear deflection
v = G|E, the ratio of the elastic moduli
P = applied loads.
Equilibrium requires that
Sa =Sy . 4
and .
WSy + Ss) =US1+ Ss) =P. .. .. .. .- . .. .o (24)
Neglecting shear deflection, we have for side AB":
ou , 0w,
0z ox
% ow % 2 (S; — S\ (%*
W IR — 7 () (=),
giving for x = nl:
wb=:§nsz2(%§2). L 4
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The corresponding shear deflection:

Snl

wszﬁ,..' .. .. .. .. .. .. .. (44)

and the total deflection:
| B Spl [ 2 (S — S, -
(W)AB'—«wb—i—ws-——-tl—G—}—B%l (W) .. . .. .. (514.)

In similar fashion for the top (and bottom) panel:

B Syl 2 (S —S,
(v)AC_‘vb+vs—t2—G'_g%l( Ak ) (64)
Shear strain in end panel (or rib):
’}/—ts—G . . « ‘.. .. .. .. . . (7A)
and for compatibility of displacement :
S, _ 2 ((w) ap
[Xe R e (V)ac - (84)
Substituting for w and » from (54) and (64) gives
| 9 8w
s & 7y S (94)
, = 1+2%+8n2m Si. .. .. . .. S
by ' 4, 34 -
Using (24) and (54), we obtain the upward deflection at B in the form:
e (b 242 2o
- 3 - 2 1 1 \%3 2
Yr=Gl" T 20 2 . - - (104)
g+ E +3) + 16 «
: ty 2 b
where
_ nip '
@=gr. . .. .. .. .. .. . . . (114)

What is called the bending deflection w, is at once obtained by putting 4 = #;, = o in (104)
whence :

P 4nPo
The shear deflection.w, is similarly obtained by making ¢, = A = o, whence:
P 7 : '
ws:@(m) .. .. .. . .. “ ..(13A)



It follows that under the conditions of bending deflection :

‘ P 215%‘}"8“ ,
2

and under the conditions of shear deflection:

(sl)szg(tlf_—;%). s

In either case, from (24):

P
52 _ - — Sl .
{
D S (o
A [ B $ Sl
Y PLs 3
- S
-
-~
A S 8
Fic. 2A.

The out-of-balance forces induced by the removal of the constramts are now seen to be a
constant tractive force per unit length of edge of amount:

Sy = (Sy), — (S1)s -- . . .. . .. .. (164)
along the longitudinal edges, and:
S, = — (Sa)s + (S2), .. . .. .. . .. (174)

along the cross edges.

It follows at once from (24) that:
S,=S,=S (say), . . . .. . . .. (184)

the distribution of which is shown in Fig. 2A.
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PART 1II

Notes on the practical application of the method described in Part I

Summary.—In Part T a method for deriving the influence coefficients of any type of wing, and hence of deriving the
deflection and stresses, was described in outline. The practical application of the method, however, raises a number of
minor problems (mostly concerned with boundary values), which have all to be overcome if the method is to become
popular among stressmen. Some of the more important of these problems are treated in this part.

1. Introductron.—In Part I of this report a general method of calculating the deflections and
stresses in any type of wing has been outlined. Only a brief reference was made to the boundary
problems involved and to the problem of adequately taking account of such reinforcing members
as stringers, spar and rib booms. These problems are now discussed here in detail.

Boundary conditions.—A more convenient method of treating the boundary conditions at free
edges and corners than that normally used is described in the first few paragraphs. This method
has two advantages ; it derives the relevant reactions more directly than does the classical method,
and is at the same time a physically more obvious approach in terms of finite differences than the
standard approach associated with the name of Kirchhoff. Applied to the problem of the plate
of constant thickness, this suggested alternative approach is shown to give identical formulae for
the reactions as those derived by the more familiar standard method. This may be taken as
inferential proof that the boundary formulae derived for reactions in terms of displacements for
more complicated cases, such as wings with oblique stringers and shear webs, are equally sound.

The boundary conditions discussed here, ostensibly applicable to wing structures, are in fact
applicable to any flat or plane structure under transverse loading. Such a structure, if held all
round its periphery, either encastré or simply supported, offers little difficulty in the matter of
boundary conditions. If, however, it is held cantilever-like along one edge only, as an aeroplane
wing 1s held, the rest of the boundary constitutes a free edge, frequently of irregular plan-form.

In the case of the wing the supported edge may be encastré at the plane of symmetry, or it
may be simply supported where it meets the fuselage sides. In either case the boundary condi-
tions are straightforward and do not require the careful consideration they do over the free edges.

A main difficulty in dealing with the free edges of a wing arises from the often irregular plan-
form. The view has been taken that the most convenient way of approximately representing the
true plan-form is to mark off the boundary in a series of steps as described in para. 3 and
indicated in Fig. 5. 1In this way every free edge is parallel either to the x or y co-ordinate axis,
so that every station located on the boundary must lie either on one or other of these free edges
or on a corner common to both. It follows that, in deriving standard formulae for the station
reactions, it becomes necessary to consider four distinct types of boundary stations:

(@) A station located on a free edge parallel to the x-axis ‘
(b) A station located on a free edge parallel to the y-axis

(c) A station located on a free projecting corner

(d) A station located on a re-entrant corner.

In point of fact, the boundary conditions appropriate to a station of type (a) can easily be applied
to derive those appropriate to the other three types.

‘The boundary conditions for each type of structure are discussed in the main text, but it was
considered better to relegate the derivation of the formulae appropriate to the varous types

(@) . . . () of boundary stations to a series of appendices. These not only give the formulae, but
also their derivation.
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Payticular cases considered—The first part of Part II of this report describes the alternative
method advocated for deriving the reactions at boundary stations,.and applies it to the case of
the constant-thickness flat plate, in which it is legitimate to neglect transverse shear deflections.

The second part considers the case of the hollow wing reinforced by one or more sets of parallel
stringers. Shear deflections are again neglected.

The third part describes an approximate method of deriving shear deflections when the shear is
carried by one or more sets of shear webs.

For thin wings a combination of the above two methods should give resultant deflections, the
one due to bending and the other due to shear, that are satisfactorily accurate for the purpose
of aero-elastic calculations. The bending stresses should also be accurate enough, although they
are unaffected by the shear deflections obtained by the approximate method.

The fourth part describes a more accurate method of deriving the stresses and deflections of a
wing. This method may be necessary for obtaining the wing stresses for the thicker type of wing
though not for obtaining the wing deflections required for aero-elastic calculations. Neither for
deriving stresses nor deflections is it necessary to use this more refined approach in dealing with
thick-skinned wings of low thickness-chord ratio.

Appendices A, B, and C follow and are concerned with the detailed derivation of various
formulae. Appendix D describes the application of the method to the practical problem of
deriving the influence coefficients of a thin cantilever plate of constant thickness and square
plan-form. Although the plan-form is simple and the thickness constant, it seems a fair assump-
tion that the degree of accuracy obtained should be representative of what is attainable in a thin
wing of variable thickness.

Relative accuracy of stresses and deflections derived by the present method.—In discussing the
relative accuracy of stresses and deflections, it may be well to summarise briefly the basis of the
present method of approach. In essence, the method consists in defining the deflected shape of
a wing by the deflections of a fairly large number of stations uniformly distributed over its surface.
Under a hypothetical set of displacements these stations are held in their displaced positions by
reactions that can at once be written down. The set of linear equations connecting displacements
and reactions can now be solved to give the displacements in terms of any set of reactions or
applied load. - The method has been criticised on the grounds that, whereas the displacements
are obtained directly, the stresses are derived only indirectly by differentiation of the displace-
ments. At first sight this seems a valid criticism but an examination of the special factors
involved has demonstrated (Ref. 1) that in the present case it is not valid, and that stresses are
unlikely to be less accurate in general than displacements; indeed in many practical examples
they are found to be more accurate.

9. An Alternative and more Convemient way of Expressing the Boundary Conditions at a Free
Edge or Corner.—At the end of this Part IT of the report (Appendix D) a numerical example is
worked out to illustrate the kind of accuracy obtained by the method of the report. The problem
considered is that of the square plate mounted along one edge as a cantilever. The boundary
conditions assumed tor the other three edges express the fact that the bending moment across a
free edge must be zero and that the resultant shear, as first expressed by Kirchhoff, must also be
zero. In addition, special consideration has to be given to the conditions at the two free corners.

The method here put forward short-circuits the Kirchhoff condition and, instead of the
conditions at a free-corner station being more complicated, they become even simpler than for
an internal station. Moreover, the whole procedure becomes straightforward and no subtle
reasoning of any kind is required. All that is done is to discard the notion of a free edge and,
instead, to imagine the plate (or wing) to extend beyond the free edge in the form of a real plate
of zero stiffness. : '

To appreciate the simplicity of this method of approach, we may consider the case of a free-
corner station in the square plate of Appendix IT (Case (d)) of Ref. 1.
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2.1. Reaction at Free-corner Station by New Method.—We first write equation (1) of Appendix IT?
in the form:
o*M, M, o*M,,
8x2+ ay2+28x8y—q°’ . .. .. . (1)
which gives the reaction g, per unit area at the corner station 0 in terms of the moments per unit
width of plate. The usual 12 stations, surrounding the station for which the reaction is required,
are marked in Fig. 1. Supplementary stations a, b, ¢, d, are also introduced, later to disappear.

1 |
l i ac : ob : |
; J:J2 /,‘::3 / 0_______#______#9_ e x
l ! ed ea ! :
! |
__48__.__&,4____45,5__
: |
.__,4.?___
Ay
Fic. 1.
We write :
, 02M, . :
L * M ~
PR =00+ (M) —200), . . @)
227 9(M,), + (L), — (M), — (M), @
axay xyja av)e xy/b xytl' .« ’ . P .

In equation (2), (M,), is zero and (M,), drops out because the plate stiffness is zero leaving

therefore only (M,);. Similarly (3,), and (M,), disappear from equation (3), and in (4) only (M.,),
has a value. Thus '

go = {(M.)s + (M), — 2(M )1 . .. .. .. .. .. (85)

It is noted that here only the second differentials of the deflection have to be considered,

whereas in equation (1) the fourth differentials are involved. A direct result is that deflections
wy, and wy; do not now enter.

Now a line of stations along a free edge represents a strip of plate half of whose width has the

I of the plate proper and the other half the zero I of the infinitely flexible plate beyond the
boundary.

The average I per unit width at a free edge station is therefore only half the actual I of the
plate.

Since
_ E(1); (o*w oMy
) , (My)g - 1 _y,pz (W —I_ v W)s =0
and ’ ' , .. .. .. .. .. (6)
N E(L), (o oM\
(L) =T (5 + 0 558), =0
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we can write:

__E(l); (0w 02w
M= 72 (G + 7 558), = |
and . . .. . (7)
_ E(I 0% o%w 02w
(My)4 = 1 (—y)’:z (-a‘y—z —]— 7}8—962)4 s E(Iy)él (8—3/7)4 '

HUsing equation (7) in (5) we have:

- rn ()

- 0%w 0%w 2FEI, ( ?*w .
o= [m0 G), () - el ®
For a plate of constant thickness, we have, by the above argument:

I, = Iyand (1) = (I,). = %1, , . . .. . .. 9)

where I, is the constant I per unit width of plate. For such a plate the reaction per unit area
at the corner station, after substituting B for EI/(1 — »%):

Go = %(1 — ) |:(1 —|2— v) (s + w12 — 2w5)
—+- (1——12_1}) (wo + Wy '—'2w4) — 2w, — W, — ws + w3):l ) .. (10)

To obtain the total reaction at station 0, We now multiply the reaction ¢, per unit area by /* in
order to take account of the complete square of side I surrounding station 0. The fact that
three-quarters of that square is taken up by a plate of zero stiffness has already been allowed

for by making the I over that area equal to zero. The total reaction is therefore:
B(1 — 1
Ry =gt = 2L (3 4 )y — g — ) o+ 2 () (o ] o (D)

which is identical with that given by equation (15) of Ref. 1, Appendix II, after the substitution
of the solid plate bending stiffness D for B. . ‘

'2.2. Reaction at Free-Edge Station by New Method.—For the free edge shown in Fig. 2, the
corresponding procedure is as follows:

___j,"___
‘ l
1
D A ¢ EN 2
| {
{ |
! P °® |
i I . | !
-_._l.'_z___ _73_~__,;9____|¢L____¢!°_.__._x
i |
A | od o { |
|
I i
___?B__ﬁ_,:*_.____#_S___
i 1 |
i i
___,0_9___
)
y
Fic. 2.

The basic equations (2), (3) and (4) again apply. Using the fact that (M), (M.)o, (M.), are
each zero by virtue of the free edge, and that (M), (M.,). (M), are each zero because of zero
plate stiffness, we have:

i = [0+ (L) + OL), — 200)0 + 20Lo). — WL)3] . - o (12
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Since, at stations (2), (0) and (4),

0w 0%w
ot - Tt
and since the average (/,) at these stations is only half that for interior stations, (12) becomes:
E I
o = 23 |:1————11—2 {(wo + @y — 2w3) ~+- V(w*l + wy — 2w3)}
1 I
-+ 1= 72 {1 — ") (wy 4wy — 2w,)} + _2{(1 — 7’2)(’% + wy, — 2w,)}
21 .
— m{(l — v (w, + w, — 2w}
+—£— (o 4wy — w, — wy) — (W, + Wy — Wy — w;)} ‘ ’(1‘%
(1+W){ 0 . 3 A ., - w, o w_S)J. .. .. At)
“The total reaction is therefore, after putting B for EI/(1 — »*) :
Ry = ¢J* = ;—3[(8 — 4y — 3wy, — (4 — 2v — 20%)(w, + w,) — (6 — 29)w,
11— :
+ (2 — )+ ) + 1 (w9+wn)+wm}, R ¢ 01

which is identical with that given by equation (6) of Ref. 1, Appendix II, derived by using the
Kirchhoff condition for shear. .

Free edge parallel to x-axis—The corresponding formula for a station 0 located on a free edge
parallel to the x-axis is at once written down by turning the pattern of stations through a right
angle. Thus: '

Ry = ;ﬁ [(8 4y — 3%, — (4 — 20 — 20w, — w,) — (6 — ),
(2 — ), + w5) + (1 - ”2) (0 + i) + w,] . L (l4a)

To obtain the corresponding formula for the other free edge parallel to the x-axis, it is only
necessary to turn the pattern of stations round through 180 deg, and then re-number the stations.

2.3. Reaction at Re-entrant Corner.

__4;11._._
7
,7 2 6
______ A — — —
i Y t
1 | oc 7 o I
.| .
e e s
| { |
I } o0 | ea | !
{ ] !
__Ta_____Tﬂ'____._TS__
| | I
[ .
IS
§
L
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In equations (2), (3) and (4) (which are universally applicable) we have this time
E 0%w -
(M) =5 (I (553),

_E(l)s (o*w o%w
()= 725 (3 + 7 %),

o= 3 5+ 7)

(Note: The proper I at station 0 along the line of statlons 4, 0, 2 is greater than its value {(1,),
between 0 and 2 and smaller than the full (,), that is its value between 4 and 0. The value
3(1,), seems therefore the best average value to take).

0L), = 1 (37),

oy
(L) = £ (3 +v§272”) ,
0z) = 120 (2240 53)
(M,), =0 .
(M) = lildv ai%gy)d’
0L =2 (dizawy) ’
(Mxy)0=1]f‘v(§%)c. L s

Using these values in equations (2), (3) and (4) and expressing the second derivatives of w in
finite difference form, we obtain from (1) the reaction at station 0 for a plate of constant thickness:

Ry =t = 1 [(15 — v, — (4 — b — v, + w) — (73 — »[2)(ws + w)

B
+ (2 — v)(ws + wy) + (wy — wyo) + 2w + (1 —2 1}2) (w1 + Z")11):| . (16)

If the plate is not of constant thickness the approprlate I’s at the various stations must be
used as shown in (15).

2.4. Re-entrant Corner in Stepped Boundary.—TIf the re-entrant corner is situated on a * stepped ’
boundary as station 0 would be in Fig. 2if the free boundary were marked by the station sequence
7,2,0, 1,5, we should have (M,),, (M,), and (M,,), dropping out of equations (2), (3) and (4), and
the reaction (with local variation of neglected) given by:

RO = (Mx)3 — 2(Mx)0 + (My)4 - 2(My)0 + 2{(Mxy)a + (Mxy)c - (Mxy)d}
EI

” ” ” p 3 ., "
={—>* [wx + rw, )s + (wy + »w, )4— Q(l -+ v)(w,, ,—|—.wy )o

+2(1 = () + (7). — (,)3)]

R, = —ZB; [141% — 7 + »)(w, + w,) — (15 — »)(ws; + w,)

+(2<—v)(ws—i-w7)—|—2w3—]—(wg+w12)}. L
. 27
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2.5. Standard Form of Reaction at an.Internal Station—~When the plate (or wing) moment of
inertia of cross-section [ is constant the formula quoted in equation (17) of Ref. 1 is applicable.

If the I varies appreciably within a single pitch length of station 0 the appropriate I for each
station may need to be taken. In practical cases this will rarely be necessary. The procedure
(Fig. 4) is briefly as follows: : :

ot ab .
le 3 o - y Lo

I T I

___1;9._

FIYG. 4,
Using equations (1), (2), (3) and (4) above we have:
9" = {(M.)s + (M)s — 2M)o} + (M) + (M,)s — 2M,)o}
_I_ 2{(Mxy)a '+‘ (Mxy)c - (Mxy)b - (Mx?)d} .

On putting w,” for o*w/0x’, etc., we obtain: =~ = =

Ry= gt = 5[ Bl + w4 Buw,! + vl — 2B + v, o
+ Bi(w,” -+ o, )2 + Biw, + w0, — 2Bofw,” + 0w,y
+ 21— ){Bulw)e + Blws). — Bulws)s — Bd(wxy"),,j. L(18)

All that now remains is to write down the second differentials in finite difference form. The
first term in the square bracket for example becomes:

Bl{(wo + wlo - 272)1) "'|— 'V(W5 + ws - zwl)}/lz
and the first element in the last term B,(w,,”), becomes:
Bfw, + w, — w, — wg}[l*.

The reaction ¢,* at station 0 is thus obtained in terms of the deflections at the 12 surroundmg
stations and the I at stations 4, b, ¢, 4, 1, 2, 3, 4.

It is to be noted that, in the above, it is assumed that I, and I, are equal at éach station. If
they are unequal due to stringer reinforcement of the skin of a wing, for example, the effect of

such stringers on the required reaction is best determined separately from the skin. This is
discussed in section 6.

When, as in most practical cases, the I can be regarded as constant over the area included

by the square enclosed by stations 1 2, 8, 4 the reactlon reduces to that g1ven by equatlon (17)
of Ref. 1,4

Ro=l—2(1_ )[20w.,—82w +zzw+z ] R -
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3. Representation of Wings with Edges Oblique to the Co-ordinate Axes—In most practical cases
the wing plan-form will entail leading and trailing edges oblique to the co-ordinate axes.

The easiest way of allowing for such boundary conditions is to replace the actual boundary
by a stepped boundary. Take for example the 45-deg delta wing of Fig. 5a and the 263-deg swept
leading edge of Fig. 5b.

(6}

FiGs. 5a and 5b.

The square grid is here easily arranged so that in both cases the straight leading edge is replaced
by a stepped edge. The projecting and re-entrant corners of the successive steps are arranged
so that the actual edge hes rmdway between them 2.e., the true edge lies midway between the
straight lines 4, b, ¢, and a’, &', ¢

To apprec1ate the degree of approximation introduced by this, we need only to imagine how
the behaviour of the wing (the deflections and stresses) would change if the edge were physically
cut up into steps in the way suggested.

One expecfs, by the St. Venant’s Principle, that whereas the stresses and deflections very near
to the edge may depart somewhat from the correct values those not adjacent to the edge should

have satisfactory accuracy.

An important point to note is that the loss of accuracy at the stepped edge is likely to be of
much less significance for a wing, and particularly for a thin wing, than for a plate of uniform
thickness. This is because the imaginary modification to the wing plan-form, ¢.e., the steps cut
in the oblique edge, is made only at the leading (and trailing) edges where, owing to the tapered
cross-section of the aerofoil, the wing section is very shallow, and where, therefore, any slight
deviation from the true plan-form does not matter. One is confirmed in this view when one
remembers that the aerodynamic loading also drops to zero at the leading and trailing edges.

It is seen that this method of representing oblique edges by a series of steps enables all boundary
stations to be regarded as situated either on a free edge, a free corner or a re-entrant corner.
The expressions for the reactions at such stations have been given by the above formulae.

It is to be remembered that bending moments M, for a station located on a free edge parallel
to the x-axis and moments M, along a free edge parallel to the y-axis are associated respectively
with moments of inertia /, and I, per unit width that have only half the corresponding values
for an interior station. This, as already explained, is because an edge station is associated with
half a pitch of real plate and half a pitch of the infinitely flexible plate we imagine to extend
beyond the free edge. At a re-entrant—corner station the appropriate 7 along both x and y directions
is three-quarters of what it would be for an interior station.

4. Hinge Moments Due to Ailerons, Flaps or Wing-tip Fins—The moments that are applied
to what would otherwise be a free edge by ailerons, flaps or wing-tip fins would seem at first sight
to-vitiate the condition of zero bending moment- along such an edge. This difficulty. is readily
overcome by imagining the couple introduced by such control surfaces to be applied as up and
down forces at the approprlate set of edge stations and the set 1mmed1ate1y 1nb0ard parallel

to the edge.
29
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5. Commection of Wing and Fuselage.—The root rib of the wing may be regarded just as much
a part of the fuselage as of the wing itself and any deformation of the rib in its own plane is
resisted partly by the chordwise bending stiffness of the wing and partly by the bending stiffness
of the fuselage. A reasonable practical procedure is to consider two stations on the wing-root
chord as being fixed in space. The reactions at these two stations and at the other stations on
the root chord-line can then be derived on the basis of the wing and fuselage bending stiffnesses.

6. Treatment of Oblique Stringers and Shear Webs—In a straight wing the stringers and shear
webs are usually parallel to the co-ordinate axes (¥ being normal and y parallel to the plane of
symmetry of the aircraft), and then the method described in Part I, section 4, can be applied.

For swept wings and deltas the stringers and webs are usually oblique to the axes and need
special consideration.

When considering thin wings, and other cases where flexibility in shear can be neglected, the

problem of oblique shear webs naturally does not arise and only the problem of oblique stringers,
spanwise and chordwise, need be treated.

- 7. Wings, Infinstely Stiff in Shear, Reinforced by Obligue Strimgers—It is clear that a set of
hypothetical deflections determines the curvatures not only of the wing skin but also of the
stringers attached to it. At an internal station, therefore, the reaction necessary to hold the

wing contour is made up of two independent parts: that due to the wing minus stringers, and
that due to the stringers themselves.

At a station located on a free edge the reactions due to skin and stringers can still be expressed
separately but the boundary condition for each depends on the interaction between the two
brought about by the free edge. Subject to taking account of this interaction it is possible to
form the stiffness matrix for skin and stringers independently and the two matrices then added
before inversion. Alternatively, the two reactions (the one due to the skin and the other to the
stringers) can be added together at each station as they are obtained.

7.1. Reaction Forces due to Stringers Alone—Given the contour of the transverse displacement
. of the wing, one can express the curvature of the stringers along their own direction. This gives
the bending moments and hence the reactions at the several stations due to the stringers.

Let »n = direction of stringers
« = angle between the » and x directions
I, = I of stringers (about wing neutral axis) per unit width normal to #
w,” second differential of w with respect to 7.

Then
M,=EIlLw," .. .. .. .. ce .. .. .. .. ('19)

and, using the standard formula for curvature in the # direction, we have:
M,=EIlw, = EI[( w, " + s w,”+ 2s,cw,”), .. . .. . o (20

where ¢, and s, are written for cosine « and sine «.

Having obtained M, in terms of curvatures and twists along the x and y axis, we can resolve
it into its components M, M, and M,,. Thus:

M,=c’M,, M,=s>M,, M,, = s.c.M, . .. .. .. .o (21
: : 30



We can now write down the reaction per unit area at any point of the wing in the standard form:

azM 20°M,,
0* 0* 0®
= (¢ = S2 = + 25,6, .. .. . . 22
(Clx axz | Stx ayz |‘ sacoc dx d:v) Mn . ( )
24 19 11 i8 23
2{0 7 2 ] 117
oc eb
12 3 o [ 1{o ~x
a
od ea
n
3 8 4 5 1|6
21 1j4 79 1|S 2|2
y
F1c. 6.

7.1.1. Typical internal station—For the internal station 0 of Fig. 6 we write (22) in finite
difference form to give the reaction (R,), as:

(Rl = Plgola = ¢{(M.)s + (M.)s — 2AM.)o} + s.{(M)s + (M)s — 2(M.)o}
+desd(M)s + (M) — (M) — (ML) .. .. .. .. (29
= cE{(L)(w,): A (L)@, — 2L)ow.")o}
+ S2E(L):(w,")s + (L)u(@,): — 2(L)olw,")o}

+ %CocsE{(In)S(wn”)Ei + (In)7(wn”)7 - (I;t)ﬁ(wnll)s - (In)S(wn”)S} . .. (23@)
Since w,” = cw,” + s,2w,” + 2¢,5 wxy , equation (23a) in finite-difference form gives the
reaction R in terms of the deflections of the group of stations 0, 1, 2, . . . 24, shown in Fig. 6.

If, as in practical cases, the I of the stringers can be regarded as constant over the inner square
defined by stations 5, 6, 7, 8, the quantity 7, in (232) becomes a common factor and we can
write :

o'w ot 9%
(RO)str = lz(qo)str == leIn Coc4 8? + 30:48_3)? _I— 6 azz czz a 2 8y2

4w 0w
3
-+ 4e, 8“838 —{—4“,8 ¥y .. oo (24
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with the result that the deflections at stations 21, 22, 23, and 24 no longer enter the expression
for R,, which now takes the form

(Rar = Eh [(6 126,752 w, — 4c2(1 4+ 25,7 (w; + wg) — 4s.2(1 + 26.3(ws +- w5)

— 2¢,5,(1 — 3¢,8,)(ws + wy) + 2¢,5,(1 + 3c,8,)(ws + ws)
-+ 3u4(w9 + wu) + Cac4(w10 -+ wlz) -+ Caasu(wlﬂ + Wy — Wiz — Z?}17)
+ €83 (W5 + Wiy — Wiy — wls)] . .. .. o .. (25)

To obtain the total reaction we need to add to this the reaction due to the skin alone given by
equation (18a).

7.2. Boundary Conditions at a Free Edge—The first boundary condition at a free edge requires
that the resultant bending moment, of skin and stringers, normal to the free edge must be zero.

Free edge payallel to the x-axis—The bending moment in the skin is:

EI ” I4 .
(My)skin == ﬁ (wy + Y, ) .. . .. .. .. .. . (26)
(where I stands for the I of the skin per unit width), and that in the stringers is:
(MJ’)S'I = SMZEI;L(Coczwx” + Sazwy” + 200<so<wxy”) . .. .. .. . s (27)
Thus o
'(My)skin _l— (My)str = O . .. .. (28)
or
(2t Loded)wl + (gt oL w) o+ QesiLywy =0, . . (@)
The second condition requires that the resultant twisting moment 34,, should be zero, i.e.,
(Mxy)skﬁx 4— (sz)str - O ) v . . (30)
or , |
EI 4 . 2 /} 2 " " N
I—_T_——; wxy + Elnsacu(ca W, + Se wy "'— zcasuwxy ) - O 3
or : ,
Les.(cw,” + s w,”) + (i% + 2c,2s 21 ,,) w,," = 0. . .. .. (30a)

By means of (29) and (30a4) we can express w,” and w,,” in terms of the known value of w,”.
Thus:

) wy// — lexll !
, ’ (31)
w,," = Huw, B
where - I S , o . e
i (L v T, 1 . Iy -
do'a (20} Th 2.9 ) 20 2770
H_ansa(f) (1_v2+lsmca)(1+y+26as“ I) a2
H;, = L g2 da ( 1 +s4£”)‘_'20'286(_f_n)2- e (39
<1—‘—'—’V sailege O T) '1—__—72 , o I o Ve I . o g ’_ »
' Clxsacs (£L) ( : 2 + ;[lL Caczsocz) - Szxctxa E ( 1 2 + Soc4 L})
I/\1 —» " 1 I\l —» " "I/ -
H2 _ 1 I _[ — .« .. (33)

A 1 9 3 In 4 kg - 2 (] (J 2 ’
(1—|—v—|_26“8“7)(1—v2+§“7) 26,54 [)

both quantities depending only on the ratio I,/1. ' ‘
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Free edge pavallel to the y-axis.—For a station located on a free edge parallel to the y-axis the
corresponding formulae (obtained by merely substituting s, and c, respectively for ¢, and s,) are :

Z?}xyll' — H4wyll
where ,
2.5 (' ) ( g ocrt ) (1 tensa )
: — IJ\1 — I
H3 - 2 (35)
I ( 2 Ill) . 2C Ss <I71)
(=t e 7) sty ]
I o I L INT
- cagsu (“‘ 2 + cazscxz _”) - Casoc5 ( .2 + czx4 _”) —y
H, — I 1 — I 1 v i) I (36)

1 4 I” 2. 2 I” ' 6o 2 I“ B
(st =) R 7) =2 (7)
both again depending only on the ratio [,/7.

7.3. Boundary Condition at Free Corner.—At a free corner conditions (31) and (34) are both
applicable, which means that:

w' =w =w, =0. .. .. .. .. .. .. (380

* 7.4. Boundary Condition af Encastré Edge.—At an encastré edge the curvature along the edge
is zero and that across the edge is obtained by imagining the structure to extend beyond the edge
as.a mirror image of itself in the plane that passes through the edge and is normal to the plane
of the wing.

7.5. Formulae for Reactions at Typical Stations.—The above boundary conditions are used to
derive the formulae for the reactions at typical boundary stations in Appendix A.

8. Approvimate Method of Taking Account of Shear Deflections (as described in Ref. 1) with
Oblique Shear Webs.—For most wings, and particularly for thin wings, the approximate method
of taking shear deflections into account, as described in Ref. 1 should be accurate enough for all
practical purposes. The essence of the method consists in ignoring the shear strains represented
by ou/9z and dv/oz and taking account only of dw/dx and dw/dy. It allows the shear deflections to
be derived independently of the bending deflections, which therefore are those obtained on the
basis of infinite stiffness in shear. This means that the bending stresses derived on the latter
basis remain-unaltered. - For thin ‘wings they are'considered to be dccurate enoiigh, and the main
purpose of bringing in the shear deflections is to provide more accurate data for aeroelastic
calculations. Since the approximate shear deflections as above defined can be derived
independently of the bending deflections, we here consider the transverse displacements due to
shear alone .

On deriving all the shear reactions the next step is to invert the stiffness matrix so formed
in order to derive the corresponding ﬂex1b1hty matrix, which then gives the shear deflections at
all stations in terms of any given applied.load.- The total deflection (that due to shear and bending)
is finally obtained by mere add1t1on of the tvvo flexibility matnces the one for bendmg and the
other for shear.
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Referring to Fig. 7, let

s = direction of oblique shear webs
B,y = angle between directions of s and x axes for two separate sets of webs
p = displacement of skin in direction s '
t5 1, = thickness of shear webs normal to s per unit width for webs at angles g and y
to the x-axis
7, = shear stress in webs f
¢ S = symbols for cos # and sin
w = displacement normal to wing plane (positive upward).

[

3= X

L
4

J | s
Y
Fic. 7.
For the g webs, the upward shear per unit width normal to the direction s can be expressed in

the form:

MG = Tysay, .. .. . (3

since we are now neglecting the shear strain 9p/2z.

Resolving ow/9ds along the co-ordinate axes, we have:

dw _ow ox  dw Oy
3 ax ds T3y as
ow ow
:Cﬂa—i—sﬂ@’ (39)
so that ‘ ,
0w ow ~
Tﬂ:htﬂG<cﬂE+Sﬁé};}_). . .. .. . .. (40)
8.1. Typical Internal Station.—The normal reaction per unit area of wing is given by:
_ 0Ty (aTﬁ ox |, 0T, @_/)
="% "\ a5y as
0T, oT
2"«%€f+%3fy R 750
Substituting for 7, from (40), we have: ' ‘
gp = — ht,G(ciw,” + sifw,” + 2c5.w.,,") e e .o (42)

(where second derivatives of w are indicated by double primes).
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In finite difference form, the reaction (R), at station 0 (Fig. 1) due to shear flexibility alone is
therefore given, for any internal station, by:

w Wy — 2w, . (w w, — 2w
(Ro)s = gol* = — ﬂz( Lt laz o + 5" 1 T 124 o

25, e T 1 T w")f

= G | 2w, — CA(wy + wy) — 2w, + w,)

CsSp

—{—7(106—1,—108—-10)5—1@7) . (43)

(Ry), is given by the same expression but with y substltuted for 8. The total shear reaction is

then : .
(Ro)ahear = (Ro)p + (Ry), . .. .. .. .. .. .. .. .. (44)

8.2. Boundary Condition at a Free Edge.—The boundary condltlon that must be satisfied at a
station located on a free edge is that the resultant shear across the edge for the two sets of shear
webs must be zero. Where only one set of shear webs is present the shear carried by it at the -
free edge must be zero by itself.

For a free edge parallel to the x axis therefore we must have:

sﬂTﬂ _l" S,,Ty = O .« .. .. . .. (45)
or, from (40),
dw 2 2, OW .
(tacsSs + 1,0,3,) ax T (gt -+ 8,%,) By = 0. . . . . .. (46)

This gives the derivative dw/0y in terms of the known derivative ¢w/dx. Thus

ow ow
@Z——'kx% . .. ' .. .. .. -.. .. (46@)
where
— CsSp "l" cvsvtv/ tﬂ) :
kx—(“——sﬂwsﬁy/zﬂ : TSP ()

For a free edge parallel to the y-axis the corresponding equations are:

. ¢Tp+c¢,T,=0 .. .. .. .. .. (48
from which :
: w ow _
E—gz—ky@, . | .. .. .. .. .. .. .. (49)
_ (G858 + C,,S,,ty/ tﬂ) - '
ky_(_———cﬂ2+cy2ty/tﬁ - 0)

8.3. Boundary Conditions at a Free Corner—At a free corner conditions (464) and (49) must
both be satisfied, which can only mean that:

ow ow ,
.8_x—=@=0' .. e .. .. .. .. .. (81

The formulae for the reactions at stations located on the free edges, on free and re-entrant
corners, etc., are derived and given in Appendix B. : '
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9. Procedure for Taking Account of Oblique Stringers and Shear Webs by the Move Exact Method
of Ref. 1—To take account of oblique stringers and webs by the more exact method described
in Part I, it is necessary to define the resultant displacement of each station on the wing surface
by three independent variables: the displacements # and » in the plane of the surface (assumed
equal but opposite in sign to corresponding displacements on the opposite surface, or underskin)
and a displacement w of the neutral plane normal to itself. The number of variables is thus
multiplied by three, as are the sides of the relevant matrices.

For thin wings, which are necessarily covered by heavy-gauge skin, the refinement introduced
by the present method is not, in the writer’s view, worth seeking, the approximate approach
above described being considered adequate.

For completeness, however, the method of taking account of oblique stringers and webs by the
more accurate procedure is given here in detail.

9.1, Obligue Stringers.

Let # = direction-of stringers
« = angle between # and x directions
p = displacement in direction %
uw,v,w = displacements in x, y and z directions
6, = tensile stresses in stringers
A, = area of stringers per unit width across direction #

h = depth of wing
T, = A,0,= tensile load in stringers per unit width across.#
75 = shear stress in # webs A
S, ¢, = symbols for sin « and cos «
other symbols = those defined in section 7.

The displacement p of the stringers in their own direction « is given by

p=cu+ s, L T L . .o (52)
The strain:

8p (D ox, @ By |
| on = (i 50+ 33 ) 0 52

= (e sy o+ )

ou 0v ou | Qv
— 2 2 ¢ I
- _ccc ax_l—scc ay—i—cocsu(ay—l—ax)' (53)
Since the Poisson’s ratio effect on the skin does not affect the stringers
=EL . T 2]
and the traction along # per unit width normal to » for stringers at'angle « to the x-axis is:
- T, = (4..) B
: ou 0V . ou | 0v e
_ 2 U 2 YY) v i R
= Ed.jc. ox + 5. oy + S (8y + ax> T (55)
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- It follows that the traction per unit width normal to the x direction is given by: -

(T)o= ciT.. o )
and that normal to the y-direction by:
(T)e=38To. ... .. .. R ( 74

The shear traction by the same convention is:
I 0 T M €

The resultant forces per unit area of wing skin in the x and y directions exerted‘by the 'Stringefs
can now be written in the form: .

T,

2(T). B
x 9y . ,_'X"‘
2T,  o(T.) &)
y) o xyje
. y - ox Y.
Substituting for T,, etc., from equations (55) ef seq. we have finally:
, O 0 5 0U ou , 0v
(Xac)str == EA(Z (C“ a_x + CoSa @) Co 5—96 —I'_ « ay + o: o (ay + -é};) (60)

, 0 0 87} dv
<Yoc)str:EAo:(Soca_+Cusoc'@) C [+ Ve ay—[— o:cz(y+ )

Second set of stringers.—If there is a second set of stringers or skin remforcements such as rib
flanges, at angle -4 with the x-axis, tractions X,, Y, are given by the same equation (60) with
A,, ¢, s, merely substituted for 4,, ¢,, s,. We continue, however, on the basis of oneset of stringers
although clearly a second set can- be brought in with no extra comphcatlon

9.2. Obligue Webs—Dealing next with the oblique webs, we write down the upwa1d shear T
in the webs per umt width normal to their dlrectlon s as:

T, = htgy = Wt,G (ap + 83) ’

(au']"ax) (8z+8y)E .. .. (81)

The tractive force in the plane of the skin exerted by the Webs in the direction s per unit area of
sk1n is: T . o o
) E ‘ Sﬁ —“ tﬁ‘cﬂ .. o .« C .. ‘ -. . >. . 7 . . e .. . (62)

This force has components along » and y of’
(Sp)r = €556 . and } P
(Sp)y = 5555 . _ , :
Substituting in (63) the value of S, given by (62) and (61), we have, .in the x and y directions:
o 2 ou  Bw 0 Bw ‘
(S = =56 |0 (55 + 75) + 99 (55 +5&) KRN
and S I . .. (64)
oy ov ou |, ow
O = =56 37 (5 + 35) + o 35 + 57
37
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Considering the corresponding vertical forces, we see that the upward force P, exerted by the
~ webs per unit area of skin is given by: '
e

zy:fh%wm+@@%. L e

Parallel equations to (65), with y substituted for 8, give the shears for a second set of shear webs |
at angle y to the x-axis, and hence P,.

We can now write equations (26), (27) and (28) of Part I (which, as they stand, apply only to
webs and stringers lying along the co-ordinate axes) in the form (assuming that there are no
terms X;and Y,) : ' - : -

(o +5) o Ede S+ ) =
do, | 07, _ . .. .. (66)

£, (@ a—x)smn + (Vo) + %(Sﬂ)y + (Sy)ygwebs = Ty

Pﬁ + Py = — 4,

To put equation (66) in terms of the three independent variables », v and w, we note that, for
the skin itself:

E ou oy
O'le——- vz(@+ 'V-aj/) |
- FE ov ou '
aﬁﬁt34@+vaﬂf e @)
ou oV
Tay = G(@*I‘ é})

Substituting these values, and expanding the other quantities by means of the previous equations,
we have finally the following set of three equations. '

9.3. General Formulae for x, y and z Reactions (per unit avea).
In direction x: |

[ wl s o sl
a6 (2 ) o (B4 )
6] a5 ) e (5 )
cofg—Z—Fs JA c“s;x(

R }:—%;ww

ou Bv)

G, 0
2 - —
+ EAoc [(Ca 'a_'x —I_ CoSe aTy‘) ay + ax

In direction y:
E 0 (ov u 0
i + 53] + G

0 ou  0v\T

— B \y x(a—yw)-
- 5 (OV | 0w ) (6_7/3 0w\
LG [sﬂ (a—z - @) +- CgSp 5 -+ @)_

_ o {0V _Biw) ) (au W\
LG [s,, (é—z -+ 5y 4- ¢,8, PP + P )_

2 O 0 , O , 00 du . dv
+ EAUC [:(sﬁ @ + Cas«x é}) jcu é} su -83/ "'I"' Cacsac (—a._y + a—x_)
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In direction z.

0 0\ (ou , w 0 o\ [ov ow
kGiﬂ |:(C'82-5—}_§ —'{_ Cﬁsﬂ-a_j)) (5_*— é—x_) + (Cﬂsﬁa—x —!— Sﬂz @) ('a_'z + @—):l

s O 0\ (0w , ow 0 , 0\ (0v | dw\] _
+thy[(cya—x-{—cysy@) (54—8—5)—[—0,,3,,@—{—3? @) (a—z—l——@ﬂ———qz. (68¢)
Here

P )

oz~ B2, 9z W2

In finite difference form the above equations (68) can be written in terms of the displacements
of the nine stations 0, 1, 2, . . . 8 of Fig. 6.

9.4. Boundary Conditions—Free edge—At a free edge the resultant direct stress normal to
the edge, the resultant shear stress along the edge in the plane of the skin, and the resultant web
shear stress must all be zero.

Resultant (skin and stringers) divect traction acvoss a free edge parallel to direction x.—For stringers
~ the traction per unit length of edge is given by (57):

(T)ese = SPEA fol Gt 02 gt e 55+ | T 40
For skin it is: T _
E v o A
(Ty)skin: tsm(—aj/—l— ”V'é—g'c) . .. .« . P (71)
Therefore we must have:
(Ty)ocstr "I‘ (Ty)skin =0 3
or ,
dor ) (ot ) 2 s, (B 2
(saAacu + — 1}2) ax_l_ s2A, + e aerc,,,s‘,,A,,L 8y+ 5 =0. .. (72

(Note: If there is a second set of stringers another expression like (70) appears in (72) but with
the difference only that a direction 4 replaces direction «). o

Resultant shear along edge in plane of skin.—For stringers, per unit length of edge, by (55) and
(58): ' ' ' '

BN LS N
. k. (sz)str - CasaAaE C ox —l_ S 5‘37 + CoSe ay + ax) . (73)
or skin:
ou  3v
(Txy)skm:?sG(@+—a—§). L
. E
Therefore we must have (puttmg G = m) :
i et B (it ) (B )0
(c. sa4u) 57T (c.s.*A.) 3y + (e.2s.24. + ai ) 5y +5:) = 0. .. (75)
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Equations (72) and (75) enable us to express the two v derivatives du/dy and 8v/dy in terms
of the known derivative ou#/0x. Thus:

ov . ou ;
dy  lox i
Y , (76)
u v
(ay"'" ) U. 5, ax'
where
A 2 A -‘—'V - 4 A T 1
do 4 (£le) 2, 247« 2o 24ta
edsit () = (easa e 2 (e ¥ gy 5)
Ul = 2 (77)
(84é—l— 1 )(02321&—*— 1 )_csz(Au)
“ T, T T — )\ T2 ) “Fe \ g
A A v A [ A 1
3 4te 2,24 o — 8¢ = i
= (005 + o) et (1 =)
. 2

e e ) e (5

both qu’mtmec dependlng therefore only on the ratio 4,/¢, of strlnger to skm area.

Free edge pamllel to y axis—The correspondmg formulae for a free edge parallel to the y axis
are now at once* given by:

, (79)
where - |
2
s () — (cfsféf‘ + ) (e Be o )
U. — Z, ¢ 1 — 2 £, —l— (80)
T ) ) - ()
C, — Co Sy — _l— - C“ S e
1 —. 2 1 —{— v , ¢
. ¢, 44" (cf&ééf 4+ )?Caisf 4, (0? = + 1 )
ts ts 1 J— yz Z‘s zs 1 — ’VZ
U4 = A 1 A : 2 ot (81)
14l 1 2 2 e 1) sg 2 (Ae\" o
(o o fomede Ty e (B ‘
£, 1 — »? £, 21+ » AN '

In practice Uy, .U,, U,, U, being constants; are represented by a sing»l_e number. .

Web-shear at free edge—In addition to the boundary conditions for direct stress and shear in
the ‘plane of thé skin, we must also-have zero resultant transverse shear in the shear webs.

From (45) therefore, for a free edge parallel to x: A
| sTy+sT,=0 . .. 0 T8y
and, from (46), but substituting the full shear strains {(8v/9z) + (9w ay } and { ou/0z) -+ (Bw/ 0x)}
for the approximate strains dw/dy and dw/ox there used: : -

('fﬂsﬁ “|‘ ,,s,, ),, (5% + e o

U T - N
* Requiring only the substitution of ¢ by s and vice versa.
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This gives the derivative dw/2y in terms of known derivatives. - More concisely,

v | 0w ou |, ow , o ,
ot gy =T (5 +8_x) B T
where ' ’ R
) V - (Cﬁsﬂ _I_ cvsvt?/tﬁ)/(sﬁ + Srzty/t) o . oo (85)

Correspondmgly, for a free edge parallel to the y direction, we have, from (48), after substltutlng '
the full shear strain for the approximate strain: :

o [ OW ou ow o0V - S
N (b + zycf,)_(a_x+8—Z)+(tﬂcﬁsﬁ+zcs)(ay +az) =0, .. (86)
from which : ’ ' - IR T S
o4 ow ow oy B o - ' '
where o ' _ |
_ CsSp + Cvsvtv/ iS)
v, = (—_c,; e 7 P TR PSR €

Boundary condition at f?ee corner—Since a free corner is the meeting point of the two free edges
above considered, equations (76) and (79) must both be satisfied, as must equations (84) and (87).

It follows that:
ouw  ov 0w . 0v ou | ow ov |, 0w
55 mrw mra)-Ery) =0 - - e
at a corner station.
The free-edge conditions expressed by equations (76), (79), (84), (87) and (89) enable us to
write down the reactions at any station located either on a free edge or a free corner, and this is
done in Appendix C.

10. Gaps or Breaks in Skin Continuity—There are two ways of dealing with gaps or breaks in
skin continuity. If the gap is small, 7.e., of the order of the pitch of the stations, the most con-
venient method is to neglect the dlscontmmty while setting up the stiffness matrix and deal with
the local modification in the stress distribution as a separate problem after the general distribution
has been computed. If, on the other hand, the discontinuity extends over several pitches the
most convenient method is probably to take account of it by regarding the edges of the break
as free edges and applying the appropriate edge conditions.

11. 4 Few Concluding Remarks—Many of the formulae derived here appear undesirably
cumbrous. What should be remembered is that in applying them they reduce to a single number
which in many cases, once calculated, is common to all stations with only slight modification.
Typical cases are the formulae for H,, H,, H, and H, in section 7.2. Since the angle « of the
stringers is usually constant the quantities H vary only with the ratio I,/I of stringer to.skin
moment of inertia. To the extent that this tends to be constant the H’s vary but little from
station to station. Similar remarks apply to the formulae for k in para. 8.2, for U in para. 9.4,
and for V" also in section 9.4.

That the stiffness coefﬁc1ents required for settmg up the stiffness matrix are well adapted to
computation by digital computer will be gathered from equation (25) for example. This gives
the reaction at any internal station due to the stringers and it is seen that with the angle « usuallv
constant only the factor I, varles from statlon to station. - ‘
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APPENDIX A (Supplement to Section 7 of Main Text)

Stringer-Reinforced Wing of Infinite Shear Stiffness—Station Reactions
at Free Edges, Free Corners, eic.

For an internal station the reaction due to the stringers alone is given by equation (25) and
that due to the skin alone by (184). In this appendix the reactions at stations variously situated

on (or near) the boundary of the wing are derived by means of the boundary conditions expressed
by equations (31), (34) and (37).

1. Free Edge Parallel to x-Axis—Suppose the station 0 to be located on the edge AB of the
plate (or wing) ABCD which is held along the edge AD of Fig. 1A.

1} 24 19 It 18 23 B
r'___l__"["'""_l_""‘ r"'"l—"""""—l_'_—l
L o g ‘ bo 17 =6 7
s iy e T i
!lz 3 o i o iz 13 lo 1 o
Y a | ol oal | R :
7 :13 _}_a :5 ML} _=I6 l3__:li___.‘$__l+t5_7;|l6
2 ha o ds e al ha fo sl
7
1
A
b c
Fic. 1A.
The resultant reaction at station 0:
R(] = (‘RO)Skin —l'— (RI))str . .« .. .. PN .. . e .. .. (].A)
1.1. Reaction from Skin.—TFrom the general equation (1) we have:
oM o*M,
(R)skm_q.,iz_-l2 2—f— ”—|—28xay - .. .. .. .. .o (24)

Referring to Fig. 1A and using the supplementary stations a, b, ¢, d, we write equation (24) in
finite-difference form as:

(Ro)ain = {(M.)1 + (M)s — 2AM.)o; + {(M,); + (M,)s — 2(M )}

oM.+ (M), — (M) — (M3 - . .. .. .. (34)

Moments (M,),, (M,,), and (M,,), drop out because stations 2, b and ¢ are outside the boundary.
We can also leave out (M,), because, when (Ry)qq, is later added to (R,), the resultant (M), for

skin and stringers is, by (28), equal to zero. In terms of tvwsts and curvatures, (34) as modified
by (31) takes the form :

(R = 2L (1 4 5 (w.2), +(w/>3—2(w/)o}'

EI " EI
+ s {7 + e,

— P{(wy")e — (@,)d} - o (44)
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Converting second differentials to second differences, we have:

(£0)skin = ZT(—lE_I—vz) [(8 + 3vH; — 4vjwy, — (4 + 2vH, — 2v)(w, + @3)
(6 — )w, - (2 — 2)(ws - W) + w, (1 +2le) (w10 + wm)} ... (54)

1.2. Reaction from Stringers—In the general equation (23), where incidentally it is not feasible
to use supplementary stations, (M), (M,)s and (M,), drop out, together with the term
{— 2s,%(M,)o}, which, in combination with the term {— 2(M,),} of (84), has a zero resultant.

i3
Thus
(Ro)atr = c{(M,)s + (M,)e — 2(M.)o} -+ S5 (M,)s + Feus{(M.)s — (M,)s} - .. (64)
Since, by (20),
M, = EI(c v, + sw,” + 2¢,s,w,,") ,
conditions (31) enable us to write, for stations 1, 0 and 3:
M, = EI(c+ His,? + 2Hyc,s,)w,”

=ELFw", .. .. .. .4
where . _ _
F,=(c?+ Hs,' + 2Hye,s,) . .. .. .. .. .. .. .. (84)

Using (74) in the first term of (64), which alone requires the application of the boundary
- conditions (31), we have

I ' " - ” ”
(R = E () Fae)s + () — 2w}
+ EInsaz{Caz(wxl/) _9_ sz('wy”) —I_ ancsocw,\:y” 4

E‘Z—ﬂ GCSOC " " ”
-+ Tc{cuz(wx ) + sk(w,”) + 250, s, .. .. ..o (94)

or, in terms of the deflections w :

Ry)yr = % 3F,0,% + 5.t 4 3c.8.)w0 — 2F,c.2 (w, - ws) — (252w,
! :

- (Cocsoc _ Cazsaz)w5 _l— (C;xsac _1_ Cazsaz)ws + (su4 - %Cazsag)wg
+ (§F.c — 16,787 (o + Wia) + 6.5, (1016 — Wyg) + €,8,° (105 —10y)
12wy 4 w22)J . S € 02

- The resultant R, is now obtained by adding together (54) and (104), to obtain : _
Ry = (Ro)ain + (Ro)sir - e . . . . . .. (114)

2. Opposite Free Edge—If the station lies on the opposite free edge DC, the above formulae,
(54) and (104), are directly applicable so long as the pattern of stations is swung round through
180 deg and then renumbered so as to face the right way.

3. Free Edge Parallel to y-axis.—If the station lies on the edge BC of Fig. 8, formulae parallel
to (54) and (104) are derived by the simple expedient of turning the pattern of stations round
through a right angle. On the basis of this pattern ¢, and s, are interchanged, H, is substituted
for H, in (84) and J, is substituted for F,in (104), where:

Jo=(¢’Hs + 5.2 + 2¢,5,H) . .. - .. .. .. . .. (124)
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Finally the stations are renumbered to face the usual way. The resulting formulae are as follows:

ET
(Ro)sin = PO —

(8 + 3vH; — 4v)w, — (4 + 2vH; — 2v)(w, + w,)

— (6 — 2v)w, + (2 — »)(w, + w,) + 1 +2vH3 (wy + w1) + wis . .. (184)
El,
(Ro)str - ~_l‘§‘ (3]ocszz2 —l_ sz4 _|_ %cocsoc)w() - 2]asoc2(w2 + wel) — ZCmeS

— (Clxsfx - Cazsocz)wii —1' (Cocsrx + Co’,zszxz)w7 —I_ (Cu4 - %Cuzsaz)wl2
+ (%]asuz - %cmzsaz) (w!) _l_ wll) + %sascu(wm — wls)

+ €28, (s — Wyy) + 16282 (wey + W) . .. .. .. .. .. (144)

4. Station on Free Corner—-If the station stands on a free corner (corner B, say, in Fig. 14),
the boundary conditions are given by (37). In the general equation (34) for the skin reaction,
moments (M), (M.)o, (M,)e, (M,)o, (M), (M,,), and (M,,), all drop out, so that:

(RoJswn = (M)s + ML)y — 20M)a. .. oo o oo . (154)
Using (31) and (34), we write (154) in the form:

E(I/2)

(Roha = 0200 [ (1 s+ (14 oH) 0] — (7250 (1= )

1 — »®

or, in terms of deflections w:

Wy —

EI 3 . ¥
(Ro)skin zlz(l——vz) DQ -+ Q(Hl + H; — 1)

3
5+ (H — P v
- 35 b ow(H, — %)}m + B — vy 31+ vHow,

1

2

+(1-—[—vH1)w12]. R 6 (77

Correspondingly

(R()>str - Cocz(Mn)3 —I— Suz(M1z>4 - %Casa(M1L)é.
= 2B F.() + 52F (3) lw) )

. 2 n 2 n . "
— ¢85, EL{c,w,” + s, w,” — 2c.5,w,,"}s
or, in terms of the deflections w:

(Rojac= g [102F. 52 + Bouswg — (02F. + ey

— (2s.%]. + s.el)w, + (2¢,5,)ws - (Sazja — szgxz) Wy

_l— (CuzFoc + Coczsocz)wlz - (sacag)wla - (cocsrxs)w14 —i_ (C—ES‘_“) wzljl . .- .. (1714)

The resultant reaction is now expressed by the sum of ([2y)y, and (R)y, as in (1 14).
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5. Station Located at a Re-entrant Corner.—For a station 0 located at a re-entrant corner of the
type shown in Fig. 2A, equation (37) loses the terms (M,),, (M,), and (M,,)s.

‘-—_——f _____ 3
f |
N i !
S 6
TR -
: : ec []] I
l12 13 o ! 10
T’“‘“T"" 7 ““‘!' X
; E od { @a !
#3___#____!L___ 5 JII6 .
i | r I ' :
i | i | l ,
2 g4 e ds 4l
b |
F1c. 2A.
For the skin reaction, we then have:
(RO)SkiH = {(Mx - 9 0} _l— { (MJ')O} + 2{(M:ry)a + (Mn'y)c - (Mxy)d} . (ISA)
or
EI " /4 2E 3I ” ” I
(R )skm — 1 — {(wv )3 —I_ (wy )4} - 1* 4 {( V(wy )0 + (wy )0 + ”(wx )0}
E‘[ I /" 7
+2( )(l—v) (w,,")0 + (w,"), — (")l , L 194)

where, in the second term of the R.H.S. of (194), 27 has replaced I as a better average value
of I at station 0.

In finite-difference form:

(Rﬂ)skin = Z% |:28w0 - (7 - 11)(w1 -+ wz) - (15 — 57))_(1% + 0,)
21 — »)(ws - @, 1 wy) - 2w, + wm)J.. L (204)

For the stringer reaction we have, on substituting ¢,2M,, s,°M,, and ¢,s,M, for M, M,and M
respectively by (21):

_ (Ro)str = {C ( ) + S 11)4} - Z{C“Z(M”)O —+ 312<Mn)0}
+”“2“{<Mn>5+ Oy — @) ()

Y

(Ri)aw = 5 [o e, - 5. hw, 4 2,5, ),
+ 8.2 (¢.’w,” + 8.0, + 2¢,5,0,,"),
— 2(cw," + s.fw,” + 2c,5,w,,"),
+ 0 (e, - s, Zc“saw,w”)m} 2
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The appropriate fraction of I, is associated with each station located on the edge. Also, in
writing down the finite difference form of (2*w/ox 2y) for station 0, for example, use is made of
the fact that at station 1, by (37), this derivative has the value zero. This means that (dw/dy),
can be taken equal to (9w/dy),, ¢.e., equal to (w, — w,)/2/. The same argument applies to station 5.

In terms of deflections w, (224) becomes: »
(R(l)str - El_f-ﬂ [(4 - gcazsaz) W, _I— (cocsac3 - gcaz - %Ca?sm2> w,

H 3
2. 2 3 ¢ 2
+ (%Ca Sa + CoSa + _2" ‘C“Sa - %C_afsa - Qs(x ) Wy

(83c.Yws — (335." + ¢85, — §es)wy + (e.%s." — $e.5.)ws

l

(e et — bots, — Hies 2w, + 2cs, + 0,50,
+ (81 — et )we + (eF — 26,75, ) wi — (§6.°5.)wis — (.5.%)wn,
T (Feus + dets s + (Jeso |
(3605, 4 FHicst - 1o Hwe + (%cjsf)wm] o (e84)
Addition of equations (204) and (234) gives the resultant reacﬁon (Ry). ‘ |
If, in Fig. 2A, the free edge is defined by 5, 16,_22 instead of by a continuation of the edge 5--16,

the above formula is unaffected. It is affected, however, if the edge turns up at station 7 to
station 19 instead of extending to station 20. Formula (234) is then modified to the form:

(Rﬂ)str = %L |:<4 - gcmzsxz)‘wo + (Cocsoc3 - g‘czx2 e icazsaz) wl

3
-+ (cusu — 58— %cufsa) wy — (336,° — $¢.8.° — $¢.°8.%)w;
(3%—8042 + Cozsoz - %Cocgszx)wtl _l_ (Crxzsocz - %Cmsm)wﬁ

cmzsocz —[_ CoSy ™ %Coagsoc)w7 _}— Z(Cacsoc + Ca28a2>w8

€S W1 + (£6,8.° + 26,28, ) wis + ($6,%5,) W16

+
+ (8.5 — e85 we + (0" — 56.°8," — w1y — (§6.°5.) s

(

(8c,s.> — 2c,28.2)wye + (F6.°S,)1Ws —l— (i—cfsf)wm} . .. .. .. (244)
(Ry)en 1s still given by formula (204), so that the resultant reaction at station 0 for the slightly
changed geometry is obtained by adding (204) and (244). It may be noted that the coefficients
of the w’s inside the square bracket of equation (244) are constant for all similarly situated
stations, only the factor 7, outside the bracket varying from station to station. -
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APPENDIX B (Supplement to Section 8 of Main Text)
Boundary-station Formulae for Approximate Method of Deriving Shear Deflections

The boundary conditions expressed by equations (46a) and (49) are here used to derive the
appropriate formulae for the reactions at typical boundary stations.

1. Free Edge Parallel to x-axis.—Suppose station 0 to be located on the free edge AB of Fig. 1B.

. 2
}-3-8 T8 g
A — ! Lg, : : | -
3 gl 94004l
IR 9 '
ﬁ L _tL 1 H
—_—— ¢ —_
4 8 4 5 3 |4 "fs
7
7_1l2__
% =7 ?I
I
3*___9___1“
I i
L !
o
D c
FiG. 1B.

- From equation (42), we have:
(qo)s = — AtsGlofw,” + ssw,” + 20,550.,")

which, by using the supplementary stations 7, g, 7,, g, we can write in the form -

32

(qﬂ)ﬁ = htﬁG ljc%? {(wx’)j - (wx’)g} =+ Jlg—{(wa’,)jl - (wy,)gl}
+%%%%%MJ....... .. L. .. .. (1B)

Since (w,"),; drops out, and since (w,’), and (w,’); are equal respectively to (w,’),(-- %) and
(w,”);(— k,), we have:
2

(Ro)p = lz(‘]O)p = — htG {% (0, + wy — 2w,) +- s5%(wy — w,)
— 20555k, (w, + wy — ZW)} ,

where the first term in the square bracket is divided by 2 to take account of the reduced average
in the x-direction. Rearranging the w’s we have:
2

(1 — degspk,)wy — (—cf- — ZCﬂsﬁkx) (@i + ws) — s’w, . .. .. (2B)

(Rﬂ)ﬁ = htﬂG 9

The corresponding reaction for webs at an angle y to the x-axis is given by the same expression
with y substituted for g throughout. The resultant shear reaction is then:

(R = (Ro)s + (Ra)y - - .. .. .. .. .. .. .. .. 3B
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2. Free Edge Parallel to y-axis.—If the station is located on the free edge BC (Fig. 1B), the
reaction is at once obtained by rotating the station pattern through 90 deg, interchanging ¢, and
s, and finally renumbering the pattern to make it face the right way. This gives:

2

(Ro)y = htyG ) (1 — dsyegh)w, — (% ~ 2sﬁcﬁky) (s — w) — csws|, .. .. (4B)

and similarly for (R&,), .

3. Free Corner—-If the station is situated at the corner B in Fig. 1B, the terms in (w,’)
(w,")¢: and (w,”); drop out of equation (1B) so that:

71

ht,G , ) )
(Ro)p = 1%(qo)s = — —% — cw,’), + s5(w, Jin — 2c585(w, )g(
= hiZG : (1 — 2c85k,)w5 — (c5° — 2ey85k,)w, — s;mg . .. .. (5B

4. Re-entrant Corner—For the re-entrant corner shown in Fig. 2B, we use equation (1B)

7 2 5
?,___.._.ﬁ _______ T
ll % |
[ !
?—-—09—-——0—01———2’ —_—=X
| | |
1 . |
| TJ, i
- SO S —
8 4 5
ly )
Fic. 2B.

but do not use the supplementary stations j and g for the ¢;s, term.

Thus .
(90)p = — @%—G [Cﬁ{(wx/)j — (@) + sH(w,));1 — (@)1} + cse(w,))s — (w,,’)z}] . (6B)

* Noting that, by (51), (w,’), is zero, we write:

(RO)ﬂ = (%)ﬂlz = htﬁG [3@00 — %cﬂzwl - %sﬁng + Cﬁzw:i -+ Sﬁ2w4 + %Cﬁsﬁ(ws — ws)} . (73)
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APPENDIX C (Supplement To Section 9 of Main Text)
Boundary-Station Formulae Appropriate to the Move Exact Method

The boundary conditions appropriate to the more exact method have been deduced in section 9
and what is done here is to use those conditions to derive the formulae for the reactions at stations
situated on various free edges and corners.

1. Free Edge Parallel to the x-axis.—As before, let the free edge be represented in Fig. 6 by the
line of stations 12, 3, 0, 1, 10, which separates the real structure below that line from the
infinitely flexible structure above it. As before, the average I of skin and stringers in the
direction of the free edge is taken to be half that for an interior station, in order to take account
of the half-pitch width of the strip associated with the free-edge stations. ‘

It is to be noted that, in using equation (68) to write the down «, y and z reactions for a free-edg
station, we do not need, in the case of some of the terms, to introduce the boundary conditions.
For example, in (68a) there are two such terms. The firstis:

o (Oou  0v
46@65+ay.1 L
and the second is: ‘
0 ,0u 5 00 ou , 0v
EA.c,s, 5& gcoc 5% + Se @ + oS (@ + 8_x) ()

For station 0, the first may be written in the form:

“and the second in the form:

EA.c.s, , OU , 0V
ZZ [gca —é}_{—sa& a_y_!_crxsoc<

oun ov
oy T i)

on oY ou | oY
2 77 e 27" . _ — . b,
iyt sig o (5t 5o) | ®)
Since station 2 is located on the infinitely flexible extension of the real plate, expression (a’)
and (b') reduce respectively to:

tG (0w 0v EA.c.5.( ,ou 5 00 ou  ov
g(a_y‘—l“—)(l dT 01@4‘3“‘@‘1—0“3“(@—[‘@)

ox
and since station 4 is an interior station all the first derivatives in these expressions can be written
down without reference to the boundary conditions. '

The result is that equations (68) may be written in the following form, for a free edge parallel
to the x axis :

i, E 1 /[0ou v tG (ou  Bv
s et ) o (5 A,

ax oy)5= oy ' ox

~belor (24 7)o ()]

~yolar (3 3, +en (250
+%“§ﬁ%+*%+%4%+%ﬁq
+M$%#%+ﬁ%+%4%+%L:~%.” .. (1C)a
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du  ow dv  ow
g [ U il e 2= _
K (az T ax),—_— " %% (az+ ay)j—_—g
thG | ou | 0w , [0V ow
+ 557 1o (57 Jfa_x)4 T (a—ﬁ@l%
1 , ou  ow ov |, ow

+(h6) g jer (5 + %)j—_g + a5 + )

thG ou | ow\ , ,[{0v . dw
oo (5 + o)+ o ),
where the suffix 7= signifies the value of the relevant expression at supplementary station
7 minus its value at supplementary station g, and where

(32)== 2 2)
0z 'j——_g'_ 2\ 0z T‘_'g'

The above equations contain only the first derivatives of #, » and w with respect to the co-
ordinates. - Of the four stations involved, station 4 is an interior station for which, as already
-stated; the derivatives can be written down in finite-difference form without reference to the
edge conditions. The remaining three stations (0, 1 and 3) are located on the edge and here the
boundary conditions (76), (79), (84) and (87) apply in conjunction with (69). On this basis
equations (68) take the form: ' '

tE. : ou t.G (du  0v
[2_](1 __ yz) (1 + ”Ul)(a_-x)j__g + *27‘(@ + 8—96)4
G A
(locs® + 4,6,°) + Valtscsss -+ £,0,8,)

2
Edyer, . dus
+ 9] (Coc + Ulsoc _{“ Uzcusa) (%):g.

(7)

= —gq, ... (10)e

20,

EAd.ccs,{ ,ou , 00 ouw Qv
+ 9] 30“. 55_!—8“ @_f_cocsu(—@—!—a_x)

tE ov ou\. | t,G ou
= ), O )

— G

JZ_Q" .. .. (ZC)a

(tscsSs ~+ 4,6,5,) + Villssy® -+ 4,5,

5 (&)

LAs.6,, . - o0
_|_ 2[ (Ca _|_ Ulsrx _l" U2Cocsoc) (ﬁ)m
EA;s,( L ou 5 00 ouw  0v .
+ 2l gczx a_x+ Sy é‘j‘) + CoSe (8__’)) —{—7) 4} - 93' (zc)b
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hG
&

(Fscs® + 4,6,%) + Viltscsss + tycysy)g

P ()

| _l_hZCZ; (tﬁcﬂsﬁ—l— 4,6,S,) ‘Z-Z“l‘l‘ (g—f)J
+ 2% st o 15 2_;:%+(%”)H:—q 20

In finite differences form this becomes:

BLE(I + 2T

A 052 2 2 '
——2(1—) T E ( ) Clz (C“ + U,s.? + Uzcrxsax) (%1 + s — 2%0)

G 2 1
— 5 3 (805" 4 1,6,") + Vltscsss + £,6,5,) 7% T (w; — ws)
| EAws.| 2
=+ 4; S lc, (15 — g) + S, (v — o)

EA | |
+ ( 4?2 S + 4l2) ( g — Yo + V5 — 7)8):| IP= — (qx)ﬂlz = (Rx)ﬂ' '(3C)“

t.G EAs.c,
[izzz U _I— 2l2 ( ac + Ulsoz + Uzcaso:)

(2y + 25 — 201,

— G § (’fﬁcﬂsﬂ + 4e,8,) + Viltsss -+ £,,%) 7 Mo + 9] (w, — w3)§

;2 1

o (2 Aues?) e — ) o g (e A (o — o4

E
+ B g — g0y — )| B = — (g)a = — (R), .. (80)p

G A
[ﬁ 3 {tocs® + 4,6, + Viltsesss + £,,5,)

G G
+ 7 (#sCeSs + 4,6,5,) s 4 7 (Zs85” + 2,5,%)0s “I“ 4l2

(%1 — %3) ~+ ? (w1 + Wy — 21(7}0)%

(tscsSs - tc ,Sy) (Ws — Ws)

(s 4 45, (ws — @) ﬂ Pe= (@)l = — (R)e. .. .. (30)

2. Free Edge'Paleel to y-axis.—The corresponding formulae for a station situated on a free
edge parallel to the y—axis are as follows:

(7)4 + v, — 2'”0)

[zlzz §z GU, + EAosclUs + 5.2 4 Uscs.)

— G % Valtes® + 2,6,7) + (£ecess + tycysy)g

E o t ' '
— =7 ‘—_S 2 At (7//'0 —'%12) + s s 1 4.8, (7)8 - 7)7)
472 1\1 ¥y 1] —

2 1
Zvo_l“ﬂ(wz;_wz)‘

A5ty — sy 4 1y — vm)ﬂ P=— (@)= —(R)o .. .. (4C)a
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(vy + vy — 20,)

[2£l2 31 __tj 72 (1 + 71U3> —|_ EAMSOLZ(C«ZU3 + Saz _+~ C;xsocUll)

G l
~ g7 (Zss” + 45,°) + ValtaCsss + 4,6,5,) A -+ $wy — w,)
E (G

v E (SF + Aocsoczcucz) (vo — w12 + 25 — 14y)

2T 2
+ A.s.¢. (Coc Uy — Uyp + Sy~ Vg — 7)7)

[2Gl (tesg® + 1,5,7) 4+ Viltaesss + 4,6,5,) { (v — vs) + ? (wy + wy — 2w,) |
G hG |
— "+ 60,25 = (55 + 4,6,5,)05 Mm+ ) (0, — w55
+ (fcess + 1,6,8,) (ws — wy) H IP= —(g.)d* = — (R.)o - (4C)ec

3. Reactions at a Fyee -corner Station.—The boundary conditions for this case are given by
equations (89). Taking the free corner to be defined as the meeting point of the lines 12, 3, 0
and 9, 4, 0 in Fig. 6, we can now write equations (68) as follows:

[Jﬁsl fwz(l +z2vU2> (v = 145 +252GU( R

B EAc”

g (6" A Uss® 4 Uncosa) (tha — tt3) -

s |
+7%m@¢+g+mMmeﬂp:—mw=—mm6ml

Tt E :
Lo s (L 7T 0 — 90) — 57 GUslto — )

“ (¢ + Uls + Use,S,) (g — 1t5)

EA,s,? '
+ 25 S (Use 4 52 4 Useas,) (0 — vo)} P=—(g)=—(R)s (5C)b
[— <y 5 (cs® + Vicsss) (Z— Uy + wy — wg) + (Vacgsy + s5°) <%v4 -+ w, — wo)‘
— 2 {(cy2 + Vis,) <% u}, + w, — wS)

X ( 5+ 5, ) (%v T ow, — w)” P — (gt = — (R)y. .. (5C)c
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4. Reaction at Re-entrant Cormer—For a re-entrant corner of the type shown at station 0 of
Fig. 1C, we expand equations (68) in the usual way.

t
!
|
10
_— +___ 6 Tl %
| I 1
% | |
|
e+_ _ +£ — — 45
|
|
|
19
by
Fic. 1C

That is, the expansion is done in two steps only, in the second of which the reduced areas and
moments of inertia of section are taken into account. This is because only at that stage do the
appropriate amounts of reduction become obvious.

Thus, for the reactions (per unit area of surface) in the x, y and z directions we have:

e =15 (5 )+ O (5 B
— Gy’ (z—? -+ g—f) — tre,S, (a_z + %3})0
\ G ( +g§f) tGe,s, (;”Jrgz’)
+EAac:§ . 8u+ S, a L H<aZ+av) —
| =
R R (A i (6C)e
W= 5+ )t 6 (5 + B
. — Glysy? (g—z + 2—;5)0 Glcs53 (g + Si’)
— Gts (a”+ %”) thyy<a%‘+ gf)
+ EAs? 22 P + s,,fg—; + caéa (az + 87)) —
+ Edues, o 0 +2;+(@+Zz)_ (60)s
()0 = WG, [Cﬁz (Z_zt+g%)m 4 C5Sp (% + g_;@)r
+cﬁsﬂ(g"z’+'%”) +ﬁ(a”+%”) } S (80

(where, as before the suffix 7= stands for the value of the expression concerned at stat1on m
minus its value at #).
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Expressing the above in finite-difference form and using conditions (76), (79), (84) and (87), we
have: : '

(= (3) g7 00— ) + 75— gy (00— ) + 0 — )
Sl — ) + (0, — ) |
— @076 (2 ) — (e (2 - )
— (@) (5 + 25 — a6 (o + )

EAc?
S | — )}

- %Caz(%o — ) + 5.(ve — vg) + Cusu(%s — Uy + Vg — Uyy)

]

o BASe omy — a) 4 5200 — 0) + sl — 10y 05— 1) (7C)a
(4,)0 = ZZ(ItS—Evz) (vg — Vo) + v(2t5 — 24) ‘»—l— (%s)gl (02 — )

65 Gt 0 G 0o

— (3t)55°G (Z—ZO 4 2 i ZW2> — (§)cossG (Z—ZO + 'L%ﬂa)

— (@)576 (5 + 2™ — ees (50 + L)

B0 o 2ty — 1) + 82000 — 00) + a5l — 1y + v — 59

4 gl (%‘) CoSe | I (119 — 1)

— B ety — )+ 520 — )+ e — 41— 0] . (OB

(g0 = K6 [0 + 1)

Qs Wy — W Qu W, — W
l —0 10 0 . _‘_E 1] 12
4h+ m) U+ m‘“

2u,  w; — w8>

+ (e85 + 6,5,) (7 + —or
nGe ) = ()
+w+w@u%%%]._.... .. {0

It remains now only to regroup the various deflection terms so as to associate each particular
displacement such as #, with a single coefficient. '

+ (585 + ¢,5,)

- If the free boundary of Fig. 1C is slightly modified so that from station 1 it drops to station 5
instead of continuing to station 10, station 1 becomes another free corner. The effect on equations
(6C) is that all expressions having 1 as a suffix disappears as well as those with suffix 2, with a
consequent simplification of equations (7C).
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APPENDIX D

Solution of the Problem of the Cantilever Square Plate by the use of Influence
Coefficients and a High-speed Digital Computer

1. Choice of Example.—The methods described in this report enable us to derive the stresses
and deflections of wings (or of any flat structure transversely loaded) by the use of influence
coefficients in conjunction with a digital computer. The methods vary according as the shear
deflections of the structure are, or are not, negligible compared with the bending deflections. The
approach is simplest naturally when shear deflections can be neglected, and an initial practical
trial of the method is perhaps best made under that condition.

A suitable example seemed to be the problem of the square plate of constant thickness fixed
along one edge so as to behave as a cantilever under transverse loads. This problem has not so
far been solved in finite terms, and therefore a check on the accuracy of the method by comparing
it with the theoretical solution is impracticable. As it happens, however, this same example
was recently taken by R. H. MacNeal® for checking the accuracy of the ‘electric analogue”
method of approach. In the absence of a theoretical solution he compared his results with those
obtained from experiment. It is therefore possible to compare results obtained by the present
method with his experimental results and also, if desired, with those given by the * electric
analogue ' method (both for a particular load distribution).

2. The square plate was divided chess-board fashion into small squares, the corners of the
squares locating the stations whose deflections determine the contour of the plate. Fig. 1D shows
the plate DABC (each side of which is divided into six equal lengths to accommodate six stations)
encastré along the edge DA which coincides with the y axis.
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Fi1G. 1D.

The plate is supposed deflected into an arbitrary contour, by assigning an arbitrary deflection
w, to each station 7, except of course the stations along the fixed edge DA, which by definition
have no deflection. It is then possible to write down the vertical reaction that must be applied
at each of the thirty-six mobile stations to hold the plate to the chosen contour. The system of
loads necessary to hold any given contour is thus obtained, and can be expressed in terms of a
set of simultaneous linear equations, each of which gives the reaction at a particular station
“in terms of the displacements of the others and of itself. By inverting the corresponding matrix,
the machine (the digital computer, 7.e.) converts this into a set of equations giving the deflections
in terms of the reactions, or applied loads. Once the deflections are known the corresponding
stresses are readily derived.

3. The reaction at any station 0 in a pattern of stations numbered as in the figure can be written
~down at once by using the formulae derived in section 2 of the main text (Part II).
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3.1. For all Stations not Nearer than Two Pitch-lengths I from an Edge we have the Formula
(18a), 1.e

D ‘ 4 8 12
Ri=75 20w —83w,+2>w, +>w|, .. .. . .. (D)
h D= " iiness of plat | (2D)
where =0 = ss of plate . . .. .. - -

3.2. For Stations on a Free Edge, such as BC, not nearer than two pitch lengths to the corner
C or B, the reaction is given by formula (14) z.ce.,

Ry = g [(8 — 4y — 30w, — (4 — 20 — 20°)(w, + w,) — (6 — 2v)iw,

+(2—v)(w7+ws)+1“2”2(w9+wn)+wm] ... .. 3D

The corresponding formula for a station on the edge DC parallel to the x-axis is obtained by
simply turning the pattern of stations through 90 deg to give:

R, = g [(8 — 4y — 30w, — (4 — 2 — 2% (w, + w,) — (6 — 2)w,

1 . 2
+ (2 — )y + ) + (wm+wl2)+w9] ... .. (3D
Similarly for stations on the edge AB: '
R, — z@ [(s 3wy — (4 — 29 — D) (wy + ) — (6 — 20)w,
1 — 52
+ (2 — )+ w) + 5 (g + 1) +wu]. .. .. .. (3D}
3.3. For Stations on a Free Corner, such as C, the reaction is given by formula (11), 7.e.,
D 1
Ry=7% [(3 + v)(wy — wy — w,) + 2w, + (w—"g ”) (g + wlzﬂ T € 22
Similarly, for corner B:
D (1
R=1 [(3 ) (@ — @, — w3) + 2w, 4 <-—J2L'”) (0 + wlz)} ... .. (4Dj

3.4. For Statrons Distant one Prich Length from a Free Edge, such as station E in relation to the
free edge CB, we see that, on superposing the standard pattern with station 0 coinciding with E,
station 10 is the only station outside the edge of the plate. Thus, in the standard formula (1D)
above for an interior station, all the %’s are known except wy,. Using the fact that '

*w[ox® = - »0%w [ 0y?
for the edge station 1, we find : 7
wyo = {2(1 4 »)w;, — v(ws + ws) — w,} . . .. .. .. .. (8D)
The standard formula for an interior station may therefore be used with w,, replaced by expressmn

(5D).

The same procedure is followed for stations one pitch length from either of the other two free
edges.
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3.5. For a Diagonal Station such as F one Pitch Length from each of Two Free Edges, if we
identify the central station 0 of the regular pattern with F, stations 10 and 11 are both outside
the plate edge. - However, by using formula (5D) above for w,, and the parallel formula:

wll == {2(1 —I“ V)W2 - ’V(wG + wr7) _ wo} - . . . . ‘. (GD)

for w,;, we can again use the standard formula (1D) above for an interior station.
3.8. For Stations at or Within one Pitch Length of the Fixed Edge AD, we need only imagine
any stations that spill out to the left of AD to be the mirror image of those on the right of that

line as explained in the text. The standard formula, as modified by proximity to a free edge,
then applies. ,
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4. Comparison of Results Obtained by Present Method with Those Obtained by Experiment.—
In Ref. 2 MacNeal compares the deflections he obtained by the electric analogue method with
measured deflections. He does this for the particular case in which the transverse load takes the
form of a concentrated load at one of the two free corners—a stiff test because the plate is thereby
subjected to bending and twisting at the same time. He makes the comparison by drawing the
relevant two sets of contours for the deflected plate, each contour line being marked with its
appropriate deflection. Apart from these contours no figures are quoted for the experimental
values with the exception of the deflection at the loaded corner. One would have expected the -
present method to give better results than MacNeal’s if only because of the finer mesh (25 sub-
squares to his 9). This expectation is amply confirmed, as a glance at Fig. 2D shows.

This figure shows the contours obtained by the present method as full lines and the experimental
values as dotted lines. The agreement is satisfactory on the whole; the deflection at the loaded

_ corner works out to be 0-49Pa*/D as against 0-46 by experiment and 0-52 by the analogue
method. To give an indication of the kind of accuracy obtained by the analogue method the
contour line for 0-2Pa/D? is included as a chain-dotted line; the discrepancy shown by this is
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typical of the other contours obtained by the analogue method. No doubt a better result would
have been obtained if a finer mesh had been used, but the increase in the number of stations
entailed by this would have meant a corresponding increase in the amount of electrical apparatus.

5. Further Work.—The method shown here to be practicable for a plate of uniform thickness
should be equally satisfactory for plates in which the thickness is not constant and in which the
plan-form is not regular. Work on these lines is proceeding.

6. Acknéwladgmems.—The writer is indebted to Mr. P. C. Birchall for his work in setting out
and programming the various formulae for the R.A.E. D.E.U.C.E. machine and for obtaining the
numerical values here recorded.

58

(74341) Wt. 53/2293 K.7 5/59 Hw. . PRINTED IN GREAT BRITAIN



