timaty rophy

$24-\mathrm{ft}$. Tunnel Tests on a Rotol Wooden Spitfire Propeller. Test Results, and Data for Single Radius Calculations

By
A. B. Haines, B.Sc. and P. B. Chater
Communicated by the Principal Director of Scientific Research (Air), Ministry of Supply

Reports and Memoranda No. 2357 April, 1946*

Abstract

Summary.-This note contains the results of tests made in the Royal Aircraft Establishment 24-ft. tunnel on the Rotol hydulignum propeller RA. 10046 designed for the Spitfire IX aircraft. The overall thrust and torque measurements have been analysed to give mean lift-drag data, and these have been compared with those for other propellers. When account is taken of the comparative root thickness and pitch distributions, it is shown that in general, the present results confirm conclusions from earlier analyses particularly as to the large influence of root thickness on the start of the stall. The blade has however a higher $C_{D \text { min }}$ at low Mach number than was expected. For the take off condition on the Spitfire IX, the propeller gives almost 25 per cent. more thrust than does the corresponding Rotol metal design. ${ }^{3}$ Part of this increase results from the 15 per cent. greater solidity of the wooden propeller.

1. Introduction.-Previous notes ${ }^{1,2,3}$ have given the results of tests in the Royal Aircraft Establishment 24 - ft. tunnel on various propellers designed for Spitfire aircraft. The present note continues the series by giving the results for a Rotol hydulignum propeller designed for the Spitfire IX. The results have been analysed to give mean $C_{D}-C_{L}$ data and these are compared with those derived ${ }^{3,4,5}$ from the test results for the previous propellers.
2. Details of Propeller and Range of Tests.-The propeller tested was a two-bladed version of the Rotol compressed wood design. This propeller is of $10 \cdot 75-\mathrm{ft}$. diameter, has a solidity per blade of 0.0338 and is 9.3 per cent. thick at the 0.7 radius. Over most of its length the section shape is Clark Y. The thickness distribution, plan form and pitch distribution are shown in Fig. 1. The thickness and pitch distributions are compared in Figs. 2 and 3 with those of other propellers previously tested in the $24-\mathrm{ft}$. tunnel.

The propeller was tested at four pitch settings $10 \cdot 1$ deg., $15 \cdot 1$ deg., 22 deg., and 27 deg. at $0 \cdot 7$ radius. For the two lower settings, measurements of overall thrust and torque were made for minimum tunnel speed and also for values of advance ratio (J) of $0 \cdot 2,0 \cdot 3,0 \cdot 4,0 \cdot 5,0 \cdot 6$ approximately for a range of tip speeds up to the speed of sound. At the two higher pitch settings, the tests had to be restricted owing to the severe flutter of the blades particularly at incidences corresponding to the beginning of the stall. Strain gauge measurements ${ }^{6}$ were made by S.M.E. Department, R.A.E. to determine the limiting safe r.p.m. at these incidences under tunnel conditions. As a result, it was not considered possible to exceed safely a tip Mach number of about $0 \cdot 7$ ($N=1,400$ r.p.m. $)$ at 22 deg. or $0 \cdot 6(N=1,200$ r.p.m. $)$ at 27 deg. Also, the tip Mach number of 0.7 at 22 deg. could only be achieved at tunnel speeds equal to or greater than $120 \mathrm{ft} . / \mathrm{sec}$.

[^0]The strain-gauge measurements had to be made on the propeller without spinner. To produce a consistent set of performance data, it was considered essential to run with the spinner fitted, hence the two sets of measurements were not made simultaneously.

The above range of tests corresponds to a variation of mean blade incidence from -3 deg. up to 16 deg. at low Mach number and up to about 4 deg. at tip Mach number greater than $0 \cdot 6$ (see Fig. 5).
3. Results of Tests.--The results have been reduced to the usual coefficients, details of which are given in the list of symbols. The propulsive thrusts are derived by the formula

$$
T_{p}=(T-R)+R_{0}
$$

where
$T_{p} \quad$ Propulsive thrust
T " free air" thrust,
$R_{0} \quad$ drag of nacelle and pylon without a propeller,
$R \quad$ drag of nacelle and pylon with propeller running,
$T-R \quad$ tunnel balance reading.
This propeller in its original four-bladed form has to absorb the take-off power ($1,375 \mathrm{H} . \mathrm{P}$.) of a Merlin 61 engine while running at 1,430 r.p.m. (propeller). It can be deduced from the experimental results that the two-bladed propeller will absorb half the above power i.e. 687 H.P. giving a thrust of 2.77 lb . $/ \mathrm{H} . \mathrm{P}$. at a mean take-off speed of $75 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. The considerable improvement over the performance of the metal propeller ${ }^{3}$ for the Spitfire IX which only gave $2 \cdot 24$ $1 \mathrm{lb} . / \mathrm{H} . \mathrm{P}$. thrust at $70 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. is principally due to the 15 per cent. greater solidity and the increased thickness ratio both of which delay the stall to a higher power absorption.
4. Analysis of Results.-The results have been analysed by Lock's single-radius method (R. \& M. 1849) into $C_{D}-C_{L}$ polar curves (Fig. 4) and C_{L} against α curves (Fig. 5) (up to tip Mach numbers of 1.0 at low incidence and 0.6 at the stall and beyond). The scatter of the experimental results is indicated in the figures which include both the actual points from the analysis and also mean curves. As in Ref. 5 it was found that for values of C_{L} corresponding to the beginning of the stall, there was a certain discrepancy between the results from two different pitch settings. This was more marked on the C_{D} against C_{L} curves than on the C_{L} against α curves, but it was possible to draw satisfactory mean curves in both cases. The general features of the curves were as expected: a rise in C_{D} with Mach number at moderate C_{L} values but an increase in stalling C_{L} with Mach number. Other features to be noted are the high values of $C_{D \text { min }}$. even at low Mach number (see also section 5.1), and the fact that $C_{D_{\text {min. }} \text { occurs at an increased }}$ C_{L} at high Mach numbers (i.e. $C_{L}=0.46$ at $M_{T}=0.5$ and $C_{L}=0.62$ for $M_{T}=0.9$).
5. Comparison with Other Data.-Figs. 6 and 7 compare the C_{D} against C_{L} curves for tip Mach numbers of 0.5 and 0.9 respectively for the five different propellers whose thickness and pitch distributions are plotted in Figs. 2, 3. For ease of reference in the following discussion, the propellers are listed here:

I R.A.E. wooden propellers ${ }^{4},(t / c)_{0.7}=12.5$ per cent.
II Rotol hydulignum propeller of present note, $(t / c)_{0 \cdot 7}=9 \cdot 3$ per cent.
III de Havilland standard Spitfire I propeller ${ }^{4,5}(t / c)_{0 \cdot 7}=7 \cdot 6$ per cent.
IV Rotol metal propeller, ${ }^{3}(t / c)_{0.7}=7 \cdot 1$ per cent.
V Thinned version of III, $(t / c)_{0 \cdot 7}=6$ per cent.
It is clear from Figs. 6 and 7 that for neither low nor high Mach number, is it possible to consider the thickness ratio at 0.7 radius as the only important criterion. This conclusion is particularly true, when applied to behaviour at the stall.

The plan forms of the five blades can be treated as reasonably similar except for the fact that blades III and V have thicker roots with smaller chords than the other blades. (An increase in the blade chords by a proportionate amount at all radii is allowed for by the single radius method.) The differences in the C_{D} against C_{L} curves for the various designs must therefore be principally correlated with the thickness and pitch distributions.
5.1. Comparison at Low Mach Number.-5.11. Below the Stall.-From Fig. 6 which compares the C_{D} against C_{L} polars for low Mach number, it can be seen that $C_{D \min }$. occurs at a higher value of C_{L} for the thicker sections and that except for the propeller considered in this note, $C_{D \text { min. }}$ itself increases steadily with thickness ratio. The exception follows from the fact that $C_{D \text { min. }}=0.023$ for the present propeller (II) but only 0.020 for the much thicker R.A.E. wooden propellers (I). Since $C_{D \text { min. }}$. for the latter propeller occurs at the extreme lower end of the incidence range covered, it is possible that the 0.020 value is not very accurate. The shape of the curves of Fig. 6 for propellers I, II suggests the difference is one of profile drag and hence it is unlikely that the differing pitch distributions of the propellers (which would affect their relative induced drags) is the cause.
5.12. Stalling Behaviour.-The stalling C_{L} is very dependent on the thickness and pitch distributions at the roots. The following double comparison is of interest, where the stalling C_{L} is defined as the value of C_{L} when C_{D} has risen to $0 \cdot 1$.

Blade Design	$(t / c)_{0.3 \mathrm{R}}$	$(t / c)_{0.7 \mathrm{R}}$	$\theta_{0.3 \mathrm{R}}-\theta_{0.7 \mathrm{R}}$	C_{L} for $C_{D}=0 \cdot 1$
	per cent.	per cent.	deg.	
II	$21 \cdot 3$	$9 \cdot 3$	$19 \cdot 8$	$1 \cdot 155$
IV	$21 \cdot 3$	$7 \cdot 1$	$15 \cdot 5$	$0 \cdot 99$
III	36	$7 \cdot 6$	$18 \cdot 4$	1.155
V	$34 \cdot 7$	6	$18 \cdot 4$	0.97

Since blade IV has a smaller value of $\left(\theta_{0.3}-\theta_{0.7}\right)$ than blade II, it will operate with its root sections at a lower incidence. Hence it can be expected that if blade IV had had the same pitch distribution as blade II, the value of C_{L} for $C_{D}=0.1$ would have been less than 0.99 . The results of the above table would then be roughly consistent if it were assumed that
(i) an increase in $(t / c)_{0.7}$ of 1 per cent. increases the mean stalling* C_{L} by about $0 \cdot 1$ (assuming $n o$ difference in $(t / c)_{0.3}$ or in $\left.\left(\theta_{0.3}-\theta_{0.7}\right)\right)$,
(ii) the difference in pitch distributions of II and IV accounted for a difference in mean stalling* C_{L} of about 0.06.

Further by comparing III and IV and using both assumptions (i) and (ii) above, it follows that a drop in mean stalling C_{L} of about 0.15 results from thinning the root sections such that the blade is 30 per cent. thick at $\gamma / R=0.24$ (blade IV) instead of $r / R=0.32$ (blade III).

Finally it should be noted that for very high incidences and C_{D} values, the thinnest blade may ultimately give the best C_{L} value. This is discussed in Ref. 5 but the tests on propeller II described here did not extend to this range.

[^1]5.2. Comparison of Mach Number Effects (Fig. 7).--The change in performance resulting from an increase in tip Mach number from 0.5 to 0.9 is given in the following table :

Design	Increase in $C_{D \text { min. }}$	Increase in C_{L} for $C_{D}=0 \cdot 1$
I	$0 \cdot 019$	-0.34
II	0.012	0.025
III	0.007	-0.01
IV	0.004	0
V	0.002	0

It will be seen that the effect on $C_{D \text { min }}$ increases steadily with blade thickness. Also, for thin blades, Mach number effects on the stall are negligible (though as shown by Monaghan ${ }^{5}$, when the blades are badly stalled i.e. for mean C_{D} values of 0.2 or more, there is a definite fall in $C_{L}{ }^{*}$ with Mach number). Since under tunnel operating conditions it is only the outer half of the blades that suffer appreciable compressibility effects, it would not be expected that the form of the inner parts of the blades would have much influence on Mach number effects. However, it appears that there is an increase in $C_{L \text { max. }}$, with Mach number for the relatively thin root sections of blade II of the present note. As can be seen from Fig. 4, the condition $C_{D}=0 \cdot 1$ corresponds to the highest incidence reached for $M_{T}=0.9$ for propeller II in the tunnel tests and therefore too much reliance should not be placed on the above conclusion.
6. Conclusions from Analysis.-1. At low Mach number, for the hydulignum propeller (II) considered in this note, mean C_{D} min $=0.023$ (which is unexpectedly high) and C_{D} has risen to $0 \cdot 1$ for $C_{L}=1 \cdot 15_{5}$.
2. The results at low Mach number can be considered to be roughly consistent with those on propellers previously tested.
3. By comparison with other Spitfire propellers tested, it appears that
(a) an increase in $(t / c)_{0.7}$ of 2 per cent. with no change in root thickness gives an increase in mean stalling $C_{i, \text { mux }}$ (for $C_{D}=0 \cdot 1$) of about $0 \cdot 2$,
(b) an increase in $\left(\theta_{0.3}-\theta_{0.7}\right)$ of 3 deg. may result in a loss in mean stalling C_{L} of about $0 \cdot 04$.
(c) a thinning of the roots such that a 30 per cent. thick section is produced at $\gamma / R=0.24$ instead of 0.32 with no change in outboard t / c reduces mean stalling $C_{l \text { max }}$ by about $0 \cdot 15$; this shows the importance of the root thickness distribution.
4. An increase in tip Mach number from 0.5 to 0.9 increases $C_{1, \text { nin }}$ for this propeller (II) from 0.023 to $0 \cdot 035$ and increases C_{L} for $C_{0}=0.1$ from $1 \cdot 15_{5}$ to $1 \cdot 18$. These figures are in general agreement with expectations.

[^2]
LIST OF SYMBOLS

D propeller diameter
n propeller rotational speed (revs./sec.)
V forward speed
$\rho \quad$ air density
$K_{T} \quad$ Propulsive thrust coefficient $\frac{\text { (Propulsive Thrust }\left(T_{b}\right)}{\rho n^{2} D^{4}}$
$K_{Q} \quad$ Torque coefficient $\frac{\text { Torque }}{\rho n^{2} D^{5}}$
J Advance ratio $\frac{V}{n D}$
n Propulsive efficiency $\frac{J}{2 \pi} \frac{K_{T}}{K_{Q}}$
$M_{T} \quad$ Tip Mach number $\frac{\text { Resultant tip speed }}{\text { Speed of sound }}$

REFERENCES

No.	Author	Title, etc.
1	Diprose ..	Effect of Compressibility on the Performance of Propellers. Preliminary Tables of $24-\mathrm{ft}$. Wind Tunnel Results. R.A.E. Tech. Note No. Aero. 977 . A.R.C. 6078. June, 1942. (To be published.)
2	Monaghan.	Effect of Compressibility on the Performance of Propellers. Tables of $24-\mathrm{ft}$ Wind Tunnel Results (4th series). R.A.E. Tech. Note. No. Aero. 1607. A.R.C. 8556. February, 1945. (To be published.)
3	Haines and Chater	$24-\mathrm{ft}$. Tunnel Tests on a Rotol Metal Spitfire Propeller. Test Results and Data for Single-Radiụs Calculations. R.A.E. Tech. Note No. Aero. 1728. A.R.C. 9378. November, 1945. (Unpublished).
4	Haines	A Comparison of Aerofoil Data for use in Single-Radius Propeller Performance Calculations. R. \& M. 2188. January, 1947.
5	Monaghan.	The Performance of Stalled Propellers. Results and analysis of some 24-ft. Tunnel Tests. R. \& M. 2340. March, 1946.
6	Sterne, Ewing and Kettlewell	Wind Tunnel Tests of a Fluttering Propeller. Strain Gauge Investigation of Propeller Flutter. R. \& M. 2472. January, 1947.
7	Lock	A Graphical Method of Calculating the Performance of an Airscrew. R. \& M. 1849. August, 1938.

TABLE 1
Propeller 34
Number of blades $=2$ Diameter $=10 \cdot 75 \mathrm{ft}$. $0_{0.7}=10 \cdot 1$ deg.

J	M_{T}	K_{Q}	K_{T}	η
$0 \cdot 170$	$0 \cdot 500$	$0 \cdot 00343$	$0 \cdot 0532$	$0 \cdot 421$
0.157	$0 \cdot 624$	$0 \cdot 00367_{5}$	$0 \cdot 0574$	0.390
0. 155	0.750	$0 \cdot 00399$	$0 \cdot 0620$	$0 \cdot 384$
$0 \cdot 203$	$0 \cdot 558$	$0 \cdot 00343$	$0 \cdot 0500$	$0 \cdot 471$
$0 \cdot 197$	0.709	0.00383	$0 \cdot 0542$	0.445
(). 198	$0 \cdot 826$	0.00409	$0 \cdot 0575$	$0 \cdot 445$
(0. 201	$0 \cdot 847$	$0 \cdot 00417$	$0 \cdot 0569$	$0 \cdot 436$
$0 \cdot 196$	0.906	$0 \cdot 00445$	$0 \cdot 0584$	$0 \cdot 411$
0.199	0.951	$0 \cdot 00461$	$0 \cdot 0559$	$0 \cdot 386$
0.200	0.984	$0 \cdot 00475$	$0 \cdot 0548$	$0 \cdot 369$
$0 \cdot 302$	$0 \cdot 372$	$0 \cdot 00300$	$0 \cdot 0354$	$0 \cdot 585$
$0 \cdot 299$	$0 \cdot 567$	$0 \cdot 00316$	$0 \cdot 0344$	$0 \cdot 520$
$0 \cdot 301$	0.658	$0 \cdot 00326$	$0 \cdot 0353$	$0 \cdot 518$
$0 \cdot 300$	0.755	$0 \cdot 00334$	$0 \cdot 0347$	$0 \cdot 497$
$0 \cdot 299$	0.808	-000382	$0 \cdot 0348$	$0 \cdot 434$
$0 \cdot 301$	0.849	$0 \cdot 00352$	$0 \cdot 0341_{5}$	$0 \cdot 465$
$0 \cdot 299$	$0 \cdot 900$	$0 \cdot 00364$	$0 \cdot 0333$	$0 \cdot 437$
$0 \cdot 300$	0.944	$0 \cdot 00380$	$0 \cdot 0317$	$0 \cdot 399$
$0 \cdot 299$	0.987	0.00397	$0 \cdot 0303$	$0 \cdot 364$
$0 \cdot 400$	$0 \cdot 426$	$0 \cdot 00238$	$0 \cdot 0176$	$0 \cdot 486$
$0 \cdot 400$	$0 \cdot 569$	$0 \cdot 00253$	$0 \cdot 0158$	$0 \cdot 398$
$0 \cdot 399$	0.640	$0 \cdot 00257$	$0 \cdot 0153$	$0 \cdot 380$
$0 \cdot 400$	$0 \cdot 710$	$0 \cdot 00261$	$0 \cdot 0146$	$0 \cdot 355$
$0 \cdot 399$	$0 \cdot 783$	$0 \cdot 00269$	0.0135_{5}	$0 \cdot 321$
$0 \cdot 400$	$0 \cdot 856$	$0 \cdot 00283$	$0 \cdot 0130$	0.292
$0 \cdot 400$	$0 \cdot 928$	$0 \cdot 00303$	$0 \cdot 0098$	$0 \cdot 207$
$0 \cdot 399$	0.949	0.00309	$0 \cdot 0061$	$0 \cdot 126$
$0 \cdot 398$	$0 \cdot 974$	$0 \cdot 00315$	$0 \cdot 0049$	$0 \cdot 098$
0.401	$0 \cdot 997$	$0 \cdot 00313$	$0 \cdot 0042$	$0 \cdot 092$
$0 \cdot 499$	$0 \cdot 453$	$0 \cdot 00164$	-0.0004	-
0. 499	$0 \cdot 514$	$0 \cdot 00165$	-0.0015_{5}	-
$0 \cdot 500$	$0 \cdot 570$	$0 \cdot 00171$	-0.0023	-
0.498	$0 \cdot 629$	$0 \cdot 00172$	-0.0032	-
$0 \cdot 499$	$0 \cdot 687$	$0 \cdot 00175$	-0.0039	-
0.502	0.745	$0 \cdot 00183$	--0.0041	-
0.501	0.799	0.00183	-0.0056	-
$0 \cdot 500$	$0 \cdot 859$	$0 \cdot 00192$	-0.0070	
$0 \cdot 500$	0.903	0.00202	-0.0089	-
$0 \cdot 498$	$0 \cdot 944$	$0 \cdot 00217$	-0.0115	-_
$0 \cdot 500$	$0 \cdot 972$	$0 \cdot 00214$	-0.0261	-
0.498	$1 \cdot 002$	$0 \cdot 00218$	-0.0297_{5}	-
$0 \cdot 599$	$0 \cdot 479$	$0 \cdot 00073$	-0.0203	--
$0 \cdot 602$	$0 \cdot 576$	$0 \cdot 00068$	-0.0225	
$0 \cdot 600$	$0 \cdot 624$	$0 \cdot 00075$	-0.0220	_
$0 \cdot 602$	$0 \cdot 670$	$0 \cdot 00072$	-0.0227_{5}	-
$0 \cdot 602$	$0 \cdot 718$	$0 \cdot 00074$	-0.0228^{5}	-
0.601	0.763	$0 \cdot 00085$	-0.0368	-
0.600	$0 \cdot 814$	$0 \cdot 00114$	-0.0374	-
$0 \cdot 600$	0.838	0.00091	-0.0377	--

TABLE 2
Number of blades $=2 \quad$ Diameter $=10 \cdot 75 \mathrm{ft}$.

$$
\theta_{0.7}=15 \cdot 1 \mathrm{deg} .
$$

J	M_{T}	- K_{Q}	K_{T}	η
0. 199	$0 \cdot 706$	$0 \cdot 00729$	$0 \cdot 0942$	$0 \cdot 410$
$0 \cdot 200$	$0 \cdot 844$	$0 \cdot 01095$	$0 \cdot 1142$	$0 \cdot 332$
$0 \cdot 200$	0.903	$0 \cdot 01156$	$0 \cdot 1137$	$0 \cdot 309$
$0 \cdot 198$	0.948	$0 \cdot 01135$	$0 \cdot 1101$	$0 \cdot 308$
0-199	$0 \cdot 982$	$0 \cdot 01111$	$0 \cdot 1075$	$0 \cdot 307$
$0 \cdot 307$	$0 \cdot 371$	$0 \cdot 00553$	$0 \cdot 0670$	$0 \cdot 592$
$0 \cdot 299$	$0 \cdot 565$	$0 \cdot 00613$	$0 \cdot 0728$	$0 \cdot 568$
$0 \cdot 300$	$0 \cdot 655$	$0 \cdot 00651$	$0 \cdot 0760_{5}$	$0 \cdot 560$
$0 \cdot 301$	$0 \cdot 751$	$0 \cdot 00702$	$0 \cdot 0810^{5}$	$0 \cdot 552$
$0 \cdot 298$	$0 \cdot 806$	$0 \cdot 00716$	$0 \cdot 0877$	0. 580
$0 \cdot 300$	$0 \cdot 846$	$0 \cdot 00814$	$0 \cdot 0930$	$0 \cdot 546$
$0 \cdot 297$	0.894	$0 \cdot 00914$	$0 \cdot 0948$	$0 \cdot 492$
$0 \cdot 300$	0.938	$0 \cdot 00948$	$0 \cdot 0922$	$0 \cdot 466$
$0 \cdot 298$	0.984	$0 \cdot 00916$	$0 \cdot 0868{ }_{5}$	$0 \cdot 450$
$0 \cdot 399$	$0 \cdot 425$	$0 \cdot 00508$	$0 \cdot 0550$	$0 \cdot 690$
$0 \cdot 399$	$0 \cdot 566$	$0 \cdot 00544$	$0 \cdot 0574$	$0 \cdot 660$
$0 \cdot 399$	$0 \cdot 637$	$0 \cdot 00570$	$0 \cdot 0607$	$0 \cdot 662$
$0 \cdot 399$	$0 \cdot 706$	$0 \cdot 00598$	$0 \cdot 0619$	$0 \cdot 658$
$0 \cdot 404$	$0 \cdot 779$	$0 \cdot 00631$	$0 \cdot 0644$	$0 \cdot 658$
$0 \cdot 400$	$0 \cdot 850$	0.00676	$0 \cdot 0679_{5}$	$0 \cdot 642$
$0 \cdot 400$	0.923	$0 \cdot 00698$	$0 \cdot 0658_{5}$	0.603
$0 \cdot 399$	0.946	$0 \cdot 00695$	$0 \cdot 0630$	$0 \cdot 577$
$0 \cdot 400$	0.991	$0 \cdot 00685$	$0 \cdot 0578$	$0 \cdot 539$
$0 \cdot 499$	$0 \cdot 456$	$0 \cdot 00441$	$0 \cdot 0400$	$0 \cdot 722$
$0 \cdot 500$	$0 \cdot 512$	$0 \cdot 00444$	$0 \cdot 0397$	$0 \cdot 712$
$0 \cdot 499$	$0 \cdot 568$	$0 \cdot 00459$	$0 \cdot 0410$	$0 \cdot 710$
$0 \cdot 506$	$0 \cdot 625$	$0 \cdot 00461$	$0 \cdot 0408$	$0 \cdot 713$
$0 \cdot 500$	0.685	$0 \cdot 00475$	$0 \cdot 0413$	$0 \cdot 692$
$0 \cdot 502$	0.738	$0 \cdot 00473$	$0 \cdot 0407$	$0 \cdot 688$
$0 \cdot 500$	$0 \cdot 794$	$0 \cdot 00483$	$0 \cdot 0408$	$0 \cdot 674$
$0 \cdot 502$	$0 \cdot 851$	$0 \cdot 00487$	$0 \cdot 0399$	$0 \cdot 655$
$0 \cdot 501$	$0 \cdot 904$	$0 \cdot 00492$	$0 \cdot 0362$	$0 \cdot 588$
$0 \cdot 498$	$0 \cdot 940$	$0 \cdot 00496$	$0 \cdot 0334$	$0 \cdot 536$
$0 \cdot 495$	0.969	0.00492	$0 \cdot 0301_{5}$	$0 \cdot 488$
$0 \cdot 492$	$0 \cdot 997$	$0 \cdot 00498$	$0 \cdot 0303$	$0 \cdot 485$
$0 \cdot 598$	$0 \cdot 477$	$0 \cdot 00317$	$0 \cdot 0223$	$0 \cdot 673$
$0 \cdot 598$	$0 \cdot 574$	$0 \cdot 00322$	$0 \cdot 0210$	$0 \cdot 624$
$0 \cdot 600$	0.620	$0 \cdot 00318$	$0 \cdot 0200$	$0 \cdot 603$
$0 \cdot 600$	$0 \cdot 667$	$0 \cdot 00317$	$0 \cdot 0192$	$0 \cdot 579$
$0 \cdot 602$	$0 \cdot 714$	$0 \cdot 00317$	$0 \cdot 0182$	$0 \cdot 553$
$0 \cdot 599$	$0 \cdot 761$	$0 \cdot 00317$	$0 \cdot 0177$	$0 \cdot 534$
$0 \cdot 600$	$0 \cdot 811$	$0 \cdot 00324$	$0 \cdot 0151_{5}$	$0 \cdot 447$
0.588	0.834	$0 \cdot 00328$	$0 \cdot 0149_{5}$	$0 \cdot 433$
$0 \cdot 591$	$0 \cdot 859$	$0 \cdot 00335$	$0 \cdot 0161$	$0 \cdot 458$

TABLE 3
Number of blades $=2 \quad$ Diameter $=10 \cdot 75 \mathrm{ft}$.

$$
\theta_{0.7}=22 \mathrm{deg} .
$$

	M_{r}	K_{q}	K_{T}	η
0.232	0.403	0.01078	0.1097	0.376
0.414	0.406	0.01020	0.0954	0.617
0.552	0.409	0.00960	0.0791	0.727
0.690	0.412	0.00807	0.0583	0.795
0.828	0.415	0.00563	0.0341	0.798
0.969	0.420	0.00255	0.0110	0.665
0.213	0.502	0.01169	0.1111	0.323
0.333	0.504	0.01130	0.1066	0.500
0.444	0.506	0.01077	0.059	0.631
0.553	0.508	0.01008	0.0821	0.718
0.666	0.511	0.00875	0.0636	0.772
0.776	0.516	0.00680	0.0441	0.803
0.883	0.519	0.00452	0.0253	0.787
0.942	0.521	0.00319	0.0136	0.642
0.210	0.599	0.01291	0.1101	0.286
0.278	0.600	0.01252	0.1108	0.391
0.371	0.603	0.01218	0.1072	0.520
0.464	0.605	0.01160	0.0984	0.628
0.556	0.606	0.01086	0.0860	0.703
0.649	0.609	0.00950	0.0694	0.755
0.739	0.614	0.00787	0.0544	0.784
0.788	0.615	0.00678	0.0428	0.792
0.447	0.705	0.01292	0.1036	0.609
0.556	0.708	0.01194	0.0922	0.684
0.634	0.711	0.01056	0.0770	0.737
0.676	0.713	0.00971	0.0682	0.760

TABLE 4
Number of blades $=2 \quad$ Diameter $=10.75 \mathrm{ft}$.

$$
\theta_{0.7}=27 \mathrm{deg} .
$$

	M_{F}	K_{Q}	K_{T}	η
0.239	0.403	0.01693	0.1130	0.255
0.413	0.405	0.01505	0.1118	0.489
0.555	0.408	0.01460	0.1064	0.645
0.690	0.411	0.01369	0.0926	0.746
0.830	0.414	0.01185	0.0715	0.798
0.971	0.419	0.00940	0.0509	0.839
1.109	0.423	0.00608	0.0287	0.835
1.185	0.428	0.00368	0.0159	0.819
0.225	0.505	0.01810	0.1155	0.229
0.332	0.506	0.01688	0.1141	0.359
0.444	0.508	0.01588	0.1125	0.502
0.554	0.510	0.0552	0.1090	0.620
0.668	0.515	0.01481	0.0989	0.710
0.780	0.517	0.01347	0.0834	0.770
0.219	0.603	0.01914	0.1150	0.211
0.278	0.604	0.01875	0.1144	0.270
0.372	0.605	0.01765	0.1129	0.380
0.464	0.608	0.01690	0.1116	0.490
0.558	0.610	0.01670	0.1107	0.591
0.650	0.613	0.01618	0.1049	0.673
0.742	0.616	0.01500	0.0932	0.737

Fig. 1. Dimensions of Rotol Hydulignum Propeller for Spitfire IX Drg. No. R.A. 10046.

Fig. 2. Comparison of Thickness Distributions of Propellers Tested.

Fig. 3. Comparison of Pitch Distributions of Propellers Tested.

Fig. 4. C_{D} against C_{L} Polars at Constant $M_{P}-(t / c)_{0 \cdot 7}=9 \cdot 3$ per cent.

Fig. 5. $\quad C_{L}$ against α at Constant $M_{T}-(t / c)_{0.7}=9 \cdot 3$ per cent.

Fig. 6. Comparison of C_{D} against C_{L} Polars at Low Mach
Number for Different Propellers

Fig. 7. Comparison of C_{D} against C_{L} Polars at High Mach Number for Different Propellers.

Publications of the Aeronautical Research Committee

TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COMMITTEE-

1934-35 Vol. I. Aerodynamics. 4os. (40s. 8d.)
Vol. II. Seaplanes, Structures, Engines, Materials, etc. 40s. (40s. 8d.)
1935-36 Vol. I. Aerodynamics. 30s. (305. 7d.)
Vol. II. Structures, Flutter, Engines, Seaplanes, etc. 30s. (30s. 7d.)
1936 Vol. I. Aerodynamics General, Perfurmance, Airscrews, Flutter and Spinning. 40s. (40s. 9 d.)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 50s. (50s. rod.)
1937 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (4.05. 9d.)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 6os. (6is.)
1938 Vol. I. Aerodynamics General, Performance, Airscrews, 50s. (5Is.)
Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 3os. (305. 9d.)

ANNUAL REPORTS OF THE AERONAUTICAL RESE*ARCH COMMITTEE-

1933-34	Is. 6d. (is. 8d.)	
1934-35	Is. 6d. (1s. 8d.)	
April I, 193	December 3I, ${ }^{1936 .}$	4s. (4s. 4 d.)
1937	2s. (2s. 2d.)	
1938	1s. 6d. (Is. 8d.)	

INDEXES TO THE TECHNICAL REPORTS OF THE ADVISORY COMMITTEE ON AERONAUTICS-
December I, 1936-June 30, 1939. R. \& M. No. 1850. is. 3d. (Is. 5d.)
Tuly 1, 1939 - June 30, 1945. $\quad \mathbb{R} . \& 2 \mathrm{M}$. No. 1950. is. (is. 2d.)
July 1, 1945 - June 30 , 1946. \quad R. 8 M . No. 2050. Is. (is. id.)
July I, 1946 - December 3I, 1946.
R. \& M. No. 215 jo . is. 3 d. (1 s. 4 d.) January I, 1947 - June 30, 1947.
R. $\& \mathrm{M}$. No. 225 j . is. 3 d. (Is . 4 d.)

Prices in brackets include postage. Obtainable from

His Majesty's Stationery Ofice

London W.C. 2 : York House, Kingsway
[Post Orders-P.O. Box No. 569, London, S.E.I.]
Edinburgh 2: ${ }^{1} 3^{\mathrm{A}}$ Castle Street Manchester 2: 39 King Street
Birmingham 3: 2 Edmund Street Cardiff: I St. Andrew's Crescent
Bristol I : Tower Lane Belfist : 80 Chichester Street or through any bookseller.

[^0]: * R.A.E. Technical Note No. Aero. 1780, received 13th June, 1946.

[^1]: * Mean stalling C_{L} is here taken to imply mean C_{L} corresponding to mean $C_{D}=0 \cdot 1$.

[^2]: *For given C_{l}.

