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Summary 

The incompressible second-order theory for two-dimensional aerofoils is extended to finite swept wings. 
The flow field is represented by distributions of sources and 'lifting singularities' on the 'chord surface' which 
contains the chord at each spanwise station. 

The strength of the source distribution is obtained as the sum of the distribution from first-order theory 
and a correction which is derived from the second-order boundary condition. This involves the computation 
of the velocity which planar singularity distributions induce on arid off the plane; the computation can be 
done by computer programs developed at the R.A.E. 

It is suggested that the determination of the strength of the lifting singularities aims from the start at the 
solution for the wing of finite thickness. 

First a generally applicable solution is derived. By means of Taylor series expansions, this solution is 
simplified for the part of the wing away from centre and tip. 

The problem of designing a wing, of given thickness distribution, which has a prescribed pressure dis- 
tribution on the upper surface is also treated. 

The Report describes only the calculation procedures, but does not give actual sample calculations. One 
of the procedures suggested for determining the pressure distribution has been applied successfully by C, C. 
L. Sells to untwisted uncambered wings 17 and to wings with camber and twist.t8 

*Replaces R.A.E. Technical Report 72171--A.R.C. 34 469. 
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1. Introduction 

The present Report is concerned with methods for calculating the pressure distribution over the surface of 
three-dimensional swept wings of given geometry. The aim is also to provide a method which can be applied 
to design wings with given properties, for example, a prescribed pressure distribution on the upper surface. 

The Report deals only with inviscid, incompressible flow; as a consequence the problems can be solved 
by means of distributions of singularities: sources, doublets or vortices. 

There exist several methods for determining the pressure distribution over wings of given shape, which use 
singularity distributions on the surface of the wing, as for example those by A. M. O. Smith 1 and A. Roberts? 
(The method of Ref. 1, which deals only with non-lifting wings, has been extended by several authors to lifting 
configurations.) 

With the method of A. M. O. Smith, the surface of the wing is approximated by a large number of plane 
quadrilateral 'facets', on each of which is placed a source distribution of constant density. The boundary 
condition of zero normal velocity is satisfied at one particular point on each facet and the tangential velocity 
is computed at the same point. The method cannot compute sensible values near the edges of the facets, since 
the slope of the panels and the strength of the sources vary generally in a discontinuous manner. The pressure 
distribution at the centre section of a swept wing can only be derived by extrapolation, and it is not possible 
to check the accuracy of the solution. 

These difficulties are avoided by the method of A. Roberts. He uses curved panels and ensures that all 
quantities involved (the surface ordinates and the strengths of the sources and doublets used to represent the 
flow) are as smooth as possible, by approximating all the variables by a double cubic spline system. As a 
result, relatively accurate results can be obtained and the accuracy can be examined, but the computing time 
can be large. There arises, therefore, the requirement for a simpler and faster method. 

There also exist cruder methods, based on first-order theory, where the flow is represented by singularity 
distributions in a plane, which satisfy an approximate boundary condition with respect to the velocity normal 
to the plane, and the pressure distribution is derived from the velocity tangential to this plane. The methods 
have the advantage that they can use smooth functions for the strength of the singularity distributions, are 
much faster than the panel methods and can also provide a solution to the design problem. 

However, it is known for two-dimensional aerofoils that the accuracy of the results from first-order theory 
can be insufficient. (For example, the lift slope for a I0 per cent thick symmetrical aerofoil can be too low by 
8 per cent.) 

The R.A.E. standard method, 3'4 which is based on first-order theory, therefore includes some second- 
order terms; but they are derived from a second-order theory for two-dimensional aerofoils and hence may 
not be applicable in three-dimensional situations as they can occur near the centre section of swept wings. 

The aim of the present Report is therefore to consider methods which are more accurate than those from 
first-order theory (and the R.A.E. standard method) but less time consuming than the Roberts method. It ig 
also intended to derive a method for the design of wings, which the Roberts program, in its present form, 
does not deal with. 

It is of course true that the effects of viscosity and compressibility, which we ignore here, can be of a similar 
magnitude as the difference between an exact inviscid, incompressible pressure distribution and the pressure 
distribution from first-order theory. But it is clear that to determine the pressure distribution in viscous flow, 
we need to have an inviscid solution of sufficient accuracy. 

Our aim is a 'second-order theory' by which we mean that we intend to compute the perturbation velocity 
at the surface of the wing to the accuracy 0(~ 2) where E is a geometric scale parameter which is related to the 
thickness-to-chord ratio, the camber-to-chord ratio, the angle of incidence and the angle of twist. (We shall 
see that, in contrast to the second-order theory for two-dimensional aerofoils, 5-7 we cannot express every- 
where on the wing all components of the perturbation velocity in powers of ~.) We require the accuracy 0(e z) 
only where the components of the perturbation velocity are of 0(e), which means away from the leading and 
trailing edges. 

The methods to be considered use singularity distributions which are situated in a single surface inside the 
wing. For the two-dimensional aerofoil Lighthill 5 has shown that, to obtain a valid solution from a dis~ 
tribution of singularities on a straight line, it is necessary that the line passes through leading and trailing 
edges. We extend Lighthill's approach to the three-dimensional wing and choose therefore singularity dis- 
tributions on the 'chord surface' which contains at each spanwise station the chord of the section. 

To derive a fairly simple method we intend to make use of the computer programs derived by Ledger 8 
and Sells 9 for computing the velocity field induced by given singularity distributions. These programs apply 
only to planar distributions. For the general wing shape the leading and trailing edges are not coplanar so 
that the chord surface is not a plane. We discuss in Section 2.1 how we can obtain an approximate solution 
by means of planar singularity distributions. 



The condition for the strength of the planar singularity distributions is derived in Section 2.2 from the 
boundary condition that the flow is tangential to the wing surface. With the assumption that the perturbation 
velocity is small, the boundary condition is approximated to second-order accuracy by an equation in terms 
of the velocity components induced by planar singularity distributions. Such an approximation is of course 
not necessary when the spanwise derivative of the ordinate of the mean surface of the wing is negligible, as 
for an untwisted, uncambered wing. 

The strengths of the singularity distributions are determined by an iterative procedure. The further dis- 
cussion is restricted to wing shapes for which the local dihedral angle is of second-order magnitude. The 
trailing vortices are assumed to lie along the extension of the wing chord. As a consequence the velocity field 
can be expressed in terms of a source and a load distribution, q(x, y), l(x, y), in the plane z = 0. 

In Section 2.3 we first ignore the fact that the small-perturbation assumption breaks down near the leading 
and trailing edges and derive a formal solution. We express the unknown q(x, y), l(x, y) as the sums of the 
solutions from a first-order theory, q~t)(x, y), l~ll(x, y), and second-order correction terms Aq(x, y), Al(x, y) and 
derive the equations which determine Aq, At. The source distribution Aq and the velocity component  
Av~,(x, y, z = 0) normal to the plane have a strong singular behaviour near the leading edge. It is therefore 
suggested to shift the singularity distributions rearwards (similar to the Lighthill technique for two- 
dimensional aerofoils); to compute all velocity components, at least near the leading edge, at the surface of 
the wing; to examine whether the solution satisfies the boundary condition with sufficient accuracy; and 
when necessary to modify the singularities. 

It is not essential to begin with an exact solution of first-order theory, and it may prove beneficial to use 
as input for the first step of the iteration approximate source and load distributions which would already 
take account of 'some of the second-order effects, as for example given by the R.A.E. standard method. In 
Section 2.4 such an iterative procedure is discussed for the simple example of an uncambered untwisted wing 
since this is a suitable example to examine the convergence of the iterative procedure. For uncambered un- 
twisted wings C. C. L. Sells tv has shown that the iteration cycle converges to acceptable accuracy after two 
steps. 

For the two-dimensional aerofoil the method has been simplified by expressing the values of the velocity 
components off the plane z = 0 in terms of the values in the plane by means of Taylor series expansions. We 
do not introduce Taylor series expansions from the start, because they are not permissible at the centre section 
of a swept wing for the velocity component v=, induced by the source distribution qll)(x, y). But since the use 
of Taylor series expansions can reduce the computing effort, we discuss in Section 2.5 how Taylor series 
expansions might be used at least for the part of the wing away from centre and tips. 

The solutions derived by Taylor series expansions are not valid near the leading and trailing edges. By 
comparing the exact solution for a parabola or an ellipse with the formal solution, van Dyke 6 and Gretler v 
have derived rules for modifying the formal solution for two-dimensional aerofoils. Following a suggestion 
by R. C. Lock, t° we make use of direct results for ellipsoids to derive a formula for three-dimensional wings 
which produces valid results near the leading edge, except close to the centre section. The accuracy of such a 
procedure can be examined by a comparison with the results obtained from the previous method where we 
compute the velocity components at the surface of the wing and determine the error left in the boundary 
condition. We do not attempt for inviscid flow, to satisfy in detail the conditions very near the trailing edge 
or the tips since the real viscous flow departs there a great deal from the inviscid flow field. The same is true 
for the methods of A. M. O. Smith and Roberts, (though Roberts method deals properly with the trailing edge 
and can incorporate a curved wake of given shape). 

Finally, the problem of designing a wing, for which the thickness distribution and the pressure dis- 
tribution on the upper surface are prescribed, is discussed in Section 3. Part of the solution requires the design 
of a wing for which the load distribution, l(x, y), in z = 0 is given. This task is therefore discussed first, in 
Section 3.1. 

2. Wings with Given Geometry 

2. i Approximations Involved in the use of  Planar Singularity Distributions 

We consider in this Report only wing shapes for which the mean surface does not depart much from a plane, 
i.e. the angle of twist, the maximum camber and the angle of dihedral are assumed to be small. 

We consider a rectangular coordinate system x*, y*, z*, where the plane z* = 0 is a reference plane close 
to the wing. The wing shape is specified by the ordinate z*(x*,y*), the leading edge by the coordinates 
X*~ *~ * * L~Y ~, zL(Y )- The 'chord surface' is then given by 

- x* * ( l )  ~c " ,y  ~ =  zL(Y ) - t a n ~ r ( Y * ) E x *  L(Y )], 



where C~r(y* ) is the spanwise twist distribution. Wing thickness and camber are given for each spanwise station, 
y* = const., in the form used with two-dimensional sections, i.e. as ordinates zw normal to the chord 

z.,(x; y*) = + z,(x ; y*) + z~(x; y*). (2) 

where t,he x-axis (i.e. z(x;y* = const.) = 0) contains the wing chord, z,(x;y*) is the thickness distribution 
and zs(x;y* ) the camber distribution. Both z~ and z~ vanish at the leading edge and at the trailing edge. The 
relations between x*,z~* and x, z w read 

We choose 

so that 

x*(x, y*) = x*(y*) + Ix - xL(y*) ] cos c~r(y* ) + Zw(X, y*) sin C~r(y*), 

Zw(X, y ) = z*(y*) -- [X -- XL(y*)] sin C~T(y*) + Zw(X, y*) COS aT(y*). 

x~(y*) 
XL(y*) COS aT(y* )' (3) 

x*(x, y*) = x cos C~r(y*) + Zw(X, y*) sin C~r(y* ), (4) 

Zw(X, ) ) = z~(y*) + x~(y*) tan :Or(Y*) -- X sin ~r(Y*) + z~(x, y*) cos ~r(Y*)- (5) 

We assume that the maximum thickness-to-chord ratio as well as maximum camber and twist are small. 
We restrict the discussion further to configurations where the spanwise gradients of the angle of twist, aT(y*), 
and of the ordinates of the leading and trailing edges z~(y*), z*(y*), are small. We consider only such wings 
for which the spanwise derivatives ?,zw(x,y*)/Oy*, d~T/dy*, dx~/dy*, dz~/dy* are continuous except at the 
centre section, y* = 0. 

The undisturbed flow is parallel to the planes y* = const, and at small angle :t* to the plane z* = 0; the 
velocity V o of the undisturbed flow is taken as unity. 

We intend to determine the pressure distribution on the wing by means of distributions of singularities 
inside the wing and intend to extend to three dimensions the simple approach to the two-dimensional problem 
which uses a singularity distribution on the chord extending from the leading edge to the trailing edge. 5'° 
A summary of the two-dimensional theory is given in Appendix A. 

In the three-dimensional case any surface which joins the leading and trailing edges is generally non- 
planar. The projection of the wing onto the plane z* = 0 produces a planar surface which may be partly 
outside the wing, so that we cannot use this surface directly as the location for the singularities. For this we 
take the warped surface through the leading and trailing edges generated by straight lines joining the leading 
and trailing edge of any spanwise station y*. 

We make then the assumption that a singularity distribution on this warped surface produces at a small 
normal distance h (including h = 0) from the surface at any point x*, y* the same velocity--to second-order 
accuracy--as the same singularity distribution in a plane z = 0 produces at x*, y*, z = h. Such an assumption 
has to be made here, since we intend to make use of the computer programs of Refs. 8 and 9, which apply 
only to singularity distributions in a plane. (If one were to use non-planar distributions, then it becomes 
questionable whether any gain in computing effort can be obtained compared to solving the problem by means 
of surface singularities.) We have however not yet examined the errors involved in the assumption; the error 
will of course depend on the values of the first and higher spanwise derivatives of the functions Z*t"*~Lty j, z~(y*), 
at(y*). 

The assumption need not hold at a station where the spanwise derivative of z c (x , y*) changes discon- 
tinuously, as for a wing with dihedral or for the centre section of a wing for which the twist varies near the 
centre section. It may then be necessary to use singularity distributions in more than one plane to approxi- 
mate to the chord surface. The computer programs of Refs. 8 and 9 can be used with several planar singularity 
distributions, but in the present Report we shall consider mainly wings for which the local dihedral angle is 
of second-order magnitude so that the approximation by one planar singularity distribution is sufficient. 



2.2 Conditions for the Strength of the Singularity Distributions 

The strength of the singularities has to be determined such that the boundary  condit ion of zero normal  
velocity at the wing surface is satisfied, at least approximate ly .  

When the wing surface is defined by F(x*, y*, z*) = 0, then the condit ion that the componen t  of the total  
velocity V normal  to the wing surface vanishes can be written in the form 

OF OF OF 
vx,~Ex , + v,,~y, + Vz ,~ ,  = o. 

With F(x*, y*, z*) = z* - zw(x , y ), this condi t ion reads 

* * Y*)[cos &w(x , c~* + vx.(x*, y*, z*~)l + 
~,x* 

8z,,,(x , y*) 
#y.  vy.(x*, y , z.)  = sin :~* + v~.(x*, y*, z*), (6) 

where vx,, vy., vz, are the componen t s  of the per turba t ion  velocity along the various axes, computed  at the 
surface of the wing. 

We have stated above that we approx imate  the velocity induced by the singularity distr ibutions in the 
chord surface by the velocity derived from the same singularity distr ibution in a plane which is tangential  
to the chord surface at the point  x*, y*, z*(x*, y*) under considerat ion.  

We resolve the velocity induced by the singularity distr ibutions in the tangent plane into the componen t  
normal  to the chord surface, of strength v., and a componen t  in the tangent  plane of the chord surface; the 
latter is resolved into a componen t  parallel to the chord, of strength v~, and a componen t  normal  to the 
chord, of strength v t. 

At the point  x*, y*, z*(x*, y*) the unit vector normal  to the chord surface, n, can be resolved in its three 
componen t s  parallel to the x*, y*, z*-axes : 

n = 
tan 0~Ti* - -  tan q/j* + k* 

x/1 + tan 2 c~ r + tan 2 q/ '  

where i*, j*, k* are unit vectors parallel to the x*, y*, z*-axes and 

t~Z* X ~ * ~( ,y  ) 
tan q/(x*, y*) -- (7) 

8y* 

The  unit vector  parallel to the chord, i, can be written as 

i = c o s  ~T i*  - -  sin ~T k *  

and the unit vector which is normal  to the chord and lies in the tangent plane, j, can be obtained from 

With the nota t ion  

j = n × i .  

K" = 
~/1 + tan 2 0~ T --t- tan 2 q/' 

j = ~c sin ~T tan q/i* + - -  
K 

j* + x cos a r  tan q/k*. 
COS O~ T 

(8) 

The per turba t ion  velocity vector  v can therefore be writ ten as 

v = v.n + vxi + v~i 

= [v.K tan ~T -t- /)x COS ~T "-t- UtK sin cc r tan q/Ji* + 

[ + - v . ~ c t a n 0 + v t  i +[v .X--VxSineT+V~KCOSC~ r t a n 0 l k * .  (9) 



The derivatives 8z~,(x , y )/8x and 8Zw(X , y*)/Oy*, which occur in equat ion (6), can be obtained from the 
following relations 

&w(x , y*) &w(x, y*)/ax 
ax* ax*(x,y*)/ax' 

* * * * * * 8z~,(x , y*) &w(x , y*) Ox*(x, y*) &~,(x, y ) 
- + 

3y* ax* Oy* Oy* 
(10) 

By using equations (4) and (5), we obtain 

azw(x, y*) 
, , , - sin a T -~- c o s  a T 

8z~(x , y ) ax 

ax* azw(x , y*) 
cos a r + sin a r Ox 

(11) 

By using equations (1), (5) and (7), we obtain 

&*(x, y*) 8 de r a 
ay* - ay* [zt + x~. tan aT] -- X COS ardy ,- + ~y, [COS arz,~(x, y*)] 

azw(x, y*) 
= tan ~ + cos a T 0y* 

d a  T 
"q- IX COS a T "-[- s in  a r Z w ( X  , y*)] t a n  2 c~rdy ~ . (12) 

Using equat ion (10), we can write the boundary  condit ion in the form 

Oz>,, y,) [c a* 
ax* L°S + G* - vy, 8y* .J + 

azw(x, y*) 
~y, Vy, = sin a* + G*. 

By inserting the velocity components  given by equat ion (9) and using equations (4), (11), (12), we obtain 

. 8z~\ ( 
- -sana T + COS aT--~-X / / 
. . . . . .  m / < c o s  a* 

• a z ~  I | 
c o s a r  + S m a r ~ -  / I  

GX t. 

+ v.K t a n  3{ T --1-/)x cos  ~T -1- UtK s in  a T t a n  ~ + 

I K 

-]- U t ~ o  S a T 
v.~:tanO]I(xsinar - z~cosar)d~.r - s i n a r ~ l  + 

8Zw 2 dar) {,  
+ t a n O + c O S a r s y  ~ + [ x c o s a  r + z  wsinar]tan a r d ~ j ~  V,~osar 

= sin a* + v.~c - vx sin a r + v?c cos a r  tan O. 

- -  - v.~c tan @ 

This equat ion can be written in the form 

[ 1[ ( 8xx ].cos(~* + ~ r ) +  v~ + v ~  v.Ktan~,  s i n ~ r t a n ~ ,  + x t a n ~  r - z ~ ] ~ y , j ;  + 

+ Lay* + z~ tan ar J %o--7-a r - v.~c tan g, 

~/1 + tan z a r + t anZ0  
= s i n ( a *  + a r ) + v .  1 + t a n  z a  r 

(13) 

(14) 



To elucidate equat ion (14), we consider the special case where locally ~z T is zero, which means that x = x* 
at the stat ion considered. The per turba t ion  velocity has the componen t s  

Fur ther  

/fiX* ~ /)X, 

v y , = v  t c o s ~ - v . s i n O ,  

v~, = v, sin ~ + v, cos O. 

Oz,~.(x , y*) Ozw(x, y*) 
OX* OX ' 

(?zw(x, y*) 
- t a n  ~p + Oy* 

c~zw(x, y*)  

Oy* ' 

?x*(x, y*) , dc~r 
- ~ ( x ,  v ) ~ .  

O y *  " ay" 

When we insert these relations into equat ion (13), then the boundary  condit ion can be written in the form 

?zw F dar  ] 
? x  L c ° s a *  + - cos  

~'Z w V n + x~(v  t cos ~ - v, sin ~p) = sin a* + - - -  
CV COS Ip 

We consider only such wing shapes for which aT, dc~r/d(y*/c(y*)) and ~ are at most of first-order magnitude.  
The velocity componen t  v, is everywhere of a magni tude comparab le  to e,; it does not behave like 2zw/?x 
which is a term of formal order c but tends to infinity at the leading edge. The velocity componen t  v, is close 
to the leading edge of a magni tude  comparab le  to one and away from the leading edge of a magni tude com- 
parable  to ~:. We may  therefore write equat ion (14) in the form 

OZWox os (a* + a t )  + v~ + 0(v,elp) + 0 v,e,d(y./c(y.) ) + ~y~kU!  Av 0(/;I//) --[- 0(u ,~ /2) ]  

= sin (a* + c~,) + v, + 0 ( ~  2) "+" 0(/),~ 2 daT I 
d( y* / c(y* ) )] (15) 

where all the terms 0(Z) are of a magni tude  comparab le  to Z even near the leading edge. Equat ions  (14) and 
(15) can, within second-order  accuracy,  be approx ima ted  by the equat ion 

~Z w ~Z w 
c5~- x [cos (a* + C~r) + Vx] + --@. • vt = sin (a* + aT) + V,. (16) 

We note that, away from the leading edge, the term daT/d(y*/c(y*)) occurs in equat ion (14) only in terms 
which are of fourth order, whilst ~ occurs in terms which are of third order. This means that for wings with 
large dihedral, where ~ is of zeroth order, we must not reduce equat ion (14) into equat ion (16) if we intend 
to satisfy the boundary  condit ion to second order. When ~ and dar/d(y*/c(y*)) are 0(~fl) then equat ion (16) 
is correct  to 0(e,3). 

The compute r  p rograms  of Refs. 8 and 9 are written for singularity distr ibutions in the plane z = 0, for 
which v. corresponds  to v z and v~ to vy. 

When we compute  the per turba t ion  velocity for given values of x and y*, then (in the context of a second- 
order theory and fo~ small values of ~k) we need not differentiate between the point on the wing surface which 
lies on the normal  to the chord surface and the point on the wing which lies in the plane y* = const. 

Within second-order  accuracy, we may also ignore the difference between y* and y, the spanwise coordinate  
in the tangent  plane for the chord surface. 



The task is thus to determine a planar singularity distribution which satisfies, to second-order accuracy, 
the boundary condition 

(•Y)[cos (e* Ozw(x'Y)vy(x,y,z~) = s i n ( a *  + er(y)) + v~(x,y,z~) (17a) ~z~ + ~ )  + vAx, y, z~)] + 0 ~  

o r  

Ozw(x, y) 
[1 ÷ v~(x, y, Zw)] + - -  

Oz,Ax, y) 
Oy vy(x,y, Zw) = e* + er(y ) + v~(x,y,z~). (17b) 

The centre section requires some further consideration since, for some wing shapes used in practice, the 
function O(x*, y*), equation (8), is not continuous at y = 0. We consider only symmetrical flow conditions 
(zero sideslip) and symmetrical wing shapes. For these configurations, vy.(x*, y* = 0, z*) = 0, so that the 
boundary condition for y* = 0 reads 

, • O)[cos e ,  Oz~(x , y = 
Ox* + v~.(x*, O, z*)] = sin e* + v~.(x*, O, z*). (18) 

Brebner and Wyatt  zt have determined the velocity induced by two semi-infinite source- and vortex- 
distributions in two half-planes z = ]y[ tan ~9 (with constant O(x, y)) and have shown that the velocity com- 
ponent v~ induced at y = 0, z = 0 contains besides the term for ~ = 0 also terms of order 0. This means that, 
when the values of [3z*(x*, y*)/Oy*]y.= o are of first-order magnitude, we ought to approximate the pertur- 
bation velocity at the centre section by the velocities induced by two planar distributions (instead of one 
planar distribution), if we require the pressure distribution to be correct to second order. 

At y* = 0 the velocity components vx,, v,. are related to the components parallel and normal to the chord 
line, v~, vz by the relations, similar to equations (4) and (5): 

vx,(x*, O, z*) = cos errs(x, O, zw) + sin CCrV~(x, O, zw), (19) 

vz,(x*, 0, z*) = - sin CCrV~(X, O, zw) + cos erVz(X, O, Zw). (20) 

When equations (14), (19), (20) are introduced into equation (18), then we obtain for y = 0 the equation 

W[COS(e * + er) + v~(x,O, zw)] = sin(a* + er) + vz(x,O, zw). (21) 

We note that equation (21) agrees with equation (17a). 
The general problem is thus to find the strength of planar singularity distributions which satisfy equation 

(17). When 0(x, y = 0) is of first-order magnitude, then vx(x, O, zw) and vz(x, O, zw) are to be derived from two 
planar singularity distributions in z = lYl tan 0. 

The values of the velocity components induced at y ¢ 0 by a singularity distribution in the two half-planes 
z = lYl tan ~ differ from those induced by the same singularity distribution in z = 0; the differences decrease 
of course with increasing lYl. With a source distribution or a vortex distribution of constant strength along 
the span, the differences between values of vx(x, y, z = lYl tan ~) and v~(x,y, z = lYl tan ~) computed for 

:~ 0 and ~, = 0 are approximately proportional  to the strength of the singularity at x. This means that we 
can expect to improve the accuracy of the approximate values for vx(x, y, zw) and vz(x, y, zw) by computing 
them also for y ~ 0, at least for small values of y, from singularity distributions in z = lY] tan O(x, lyl) instead 
of in z = 0. We must of course expect relatively large inaccuracies when the spanwise and chordwise gradients 
of qs(x, y) are fairly large. 

We may note that it is sufficient to derive values for the spanwise velocity component,  v~, or v,, from 
singularity distributions in z = 0, since, in a second-order theory, we require to know vy only to first-order 
accuracy, both with respect to the boundary condition and to derive the pressure distribution on the wing. 
We require to know v~ to second order when we determine the total velocity and v~ to second order to satisfy 
the boundary condition. 
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In the following Sections, 2.3, 2.4 and most of 2.5, we restrict the discussion to wing shapes for which 
¢(x, y = 0) is of second-order magnitude, so that we have to deal only with singularity distributions in z = 0. 
We shall compute the velocities induced by the singularities in the plane z = 0, both in that plane and at a 
distance zw = _+ z t + z,. The latter are to approximate the velocities at the surface of the wing, whilst those 
at z = 0 are to approximate those at the chord line of each spanwise station. 

The assumption that any chord line joining the leading and trailing edge lies wholly inside the wing im- 
plies that we restrict the discussion to wing shapes for which z,(x,y) + z~(x, y) is everywhere positive and 
- z  t + z, is everywhere negative. However, for two-dimensional flow, the derived formulae give meaningful 
results also for sections with large camber, where part of the chord line lies outside of the section. A similar 
interpretation of the formulae seems possible in three dimensions. 

2.3 Solution derived by Using Results from a First-Order Theory 

We represent the wing by a source distribution and a vortex distribution in the 'chord surface'. This means 
that the shape of the wake is not taken into account. Cross-sections y = const, through the stream surface 
which leaves the trailing edge are actually curved, because the vorticity distribution induces behind the wing 
velocity components v z which vary with distance from the trailing edge. The present approach is thus based 
on the assumption that the pressure distribution on the wing, for small values of ~ and [z~J, depends less on 
the curvature of the wake than on the differences between the values of the velocity components on the wing 
surface and the values in the chord surface. 

We make the further assumption that the trailing vortices are lines y = const. This implies an approxi- 
mation because the source distribution, which represents a three-dimensional wing, induces velocity com- 
ponents v v which are in general non-zero. The streamlines leaving the trailing edge are therefore curved in 
plan view. The vortex distribution induces also a non-zero spanwise velocity component  at the trailing edge. 
Since the contribution to Vy from the vortices is of opposite sign on the upper and the lower surface of the 
wing, the magnitude of v~, at the trailing edge has different values on the upper and lower surface. To satisfy 
the condition of zero pressure difference at the trailing edge, the chordwise velocity components at the 
trailing edge on the upper and lower surface must not both vanish (see Mangler and Smith12). We do not 
intend to represent these features of the inviscid solution. With an exact solution, the spanwise velocity in- 
duced by the source distribution is small near the trailing edge except for a very narrow region. This exception 
is connected with the fact that the chordwise velocity varies rapidly over a very short chordwise distance 
near the trailing edge. This behaviour of v x and vy is completely altered by viscosity. We therefore do not 
intend to solve the inviscid thickness problem or the lifting problem correctly near the trailing edge. 

The velocity potential related to a planar distribution of bound vortices and straight trailing vortices can 
be written 9 as an integral, extending only over the wing area S (i.e. the projection of the wing into the plane 
z* = 0), where the integrand is a kernel function multiplied by the load distribution t I(x, y) in the plane z = 0 

z l(x', y') 1 + . . . .  dx'  dy', 
y, z) = (y 7+ z 2 , / ( x  - x') 2 + (y - y')2 + z 

S 

where 

/(x, y) = 4 [  + o )  e4 ,(x, y, -o)] 
L ~x c~x ' 

(22) 

(z = + 0  refers to the upper surface and z = - 0  to the lower surface of the plane z -- 0). 
The task is thus to determine the strength of the source distribution, q(x, y), and of the load distribution, 

I(x, y). 
We intend to solve the problem to second-order accuracy, i.e. to determine the velocity at the surface of 

the wing to the accuracy 0(e2), where e. is the maximum value of the various functions z,(x, y)/c(y), z~(x, y)/(c(y), 
~r(Y), c~*. We require the accuracy 0(e. 2) only away from the leading and trailing edges, where the components 
of the perturbation velocity are of 0(~). Near the leading and trailing edges (and also near the tip of a wing 
with finite tip chord), we allow a reduced accuracy. 

t In the present Report, the term 'load distribution' is used to denote a distribution of lifting singularities, 
as in equation (22); it should be realised that this is in general only the same as the physical load distribution 
- A C p  in first-order theory. 
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We consider first the derivation of a formal solution of equation (17), where we ignore the fact that the 
perturbation velocity is not small near the leading and trailing edges; we discuss later how one may derive 
a solution which is valid also near the leading edge. 

In this section, we intend to determine q(x, y) and l(x, y) in two steps, by determining first a solution 
qm(x, y), ltl)(x, y) which is accurate to first order and then a solution q(2)(X, y), l(2)(X, y) which is correct to 
second order. 

One possible choice for qtX)(x, y) and/(1)(x, y) would be given by the singularity distributions which satisfy 
the first-order boundary condition 

c?zt(x, y ) Oz~(x, y) ~,  vg)(x, y, +0). (23) ± + - -  - + ~r(Y) + ax ~x 

The upper sign applies to the upper surface of the wing and the lower sign to the lower surface. We denote 
by the superscript (1) the velocity components induced by q(t)(x, y) and Ira(x, y). The superscript (2) denotes 
the velocity components induced by q(Z)(x, y), l(2)(x, y). 

v~l)(x, y, +0) can be expressed as the sum of two terms where one term is symmetrical with respect to the 
+ v~, (x, y, plane z = 0, • (1)ix 0), and the other term is antisymmetrical, (1) 0). The antisymmetrical distribution , ~ z l ,  , Y, 

(1) x _0)  + Ozt(x' y) (24) 
v=, ( , y, + = -  ex 

can be represented by the source distribution 

q(1)(x, y) = 2 ~z,(x, y) 
Ox 

The symmetrical upwash distribution 

(1) x v=~( ,y,  0 ) -  - -  

(25) 

tOzs(x, y) 
ct* - aT(Y) (26) 

~X 

is represented by the load distribution Ira(x, y), which satisfies the equation 

1 ((l¢l)(x',Y')F1 x - x '  ] v(1)rx 0). s x/(x - x')2 ÷ (y - y,)2 dx' dy' =l~ ,Y, (27) 

It is not yet certain what conditions must be satisfied with respect to the shape of the mean surface to 
ensure the existence of a physically meaningful solution, Itl)(x, y), of equation (27). For example, we do not 
yet know whether l(1)(x, y) exists for a swept wing (with straight leading edges up to the centre section) with 
the same chordwise camber shape along the span. For such wings, Oz~(x,y)/~y is discontinuous at y = 0, 
which means we seek a load distribution for which Ovz/Oy is discontinuous at y = 0. We shall discuss in the 
next section how we might overcome this difficulty. In this section, we assume that l(1)(x, y) exists, which is 
certainly the case for regular planforms, and that we have a method for computing l(a)(x, y). 

We express the second-order singularity distributions in the form 

q(Z)(x, y) = q(l)(x, y) + Aq(x, y), (28) 

l(2)(x, y) = l(ll(x, y) + AI(x, y). (29) 

The velocity components induced by Aq(x, y) and Al(x, y) are denoted by Av x, Av~, and Av=. The boundary 
condition, equation (17), 

~Zw ~Zw "1) 
[1 + v~a)(x, y, zw) + Avx(x, y, zw)] + ~,y[V~ (x, y, z~) + Avy(x, y, zw)] 

= ct* + ~r + v~a)( x, Y, zw) + Avz( x, Y, z~) (30) 

11 



can be approx ima ted  to second-order  accuracy by 

(2Zw C3Z~v(1)(X Zw) 0~* V(zl)(x, y, Zw) A v z ( x , "  +_0). 
~ [ ~ + ~ ' ( ~ , y , ~ ) ] + ~ f , , . , y ,  = + ~ +  + v, (3~)  

For  the two-dimensional  aerofoil, the task has been simplified by expressing v~ll(x, zw) as a Taylor  series 
expansion in terms of the velocity componen t s  induced in z = 0; but such a Taylor  series expansion is not 
always possible on a three-dimensional  wing, for the following reason. Let us consider a swept wing which 
has the same symmetr ical  chordwise section along the span. At the centre section, the values of v~l~l(x, 0, z~) 
induced by the source distr ibution q(~)(x, y) contain the terms (see for example  Ref. 8): 

tango d q(~(x) 
q(1)(x)(½ + 0(z,)) + - -  z, logz ,  + 0(z~). 

g a x  

This shows that for v~)(x, 0, z) an expansion in powers  ofe. is not possible. 
We therefore discuss first how we may proceed when a Taylor  series expansion of v~ is not everywhere 

possible. 
Within the second-order  theory for two-dimensional  aerofoils the term v~ I)(x, zw) in equat ion (31) has been 

replaced by its value at z = 0, v~l)(x, 0). One  may be inclined to replace both V~xl>(x, y, z~) and v(1)( . . . . .  ~ in 
equat ion (31) by their values at z = 0. However ,  in Appendix B it is shown, for elliptic sections, that the 
accuracy of the resulting pressure distr ibution is noticeably improved if one retains v~ t)(x, zw) in equat ion 
(31) when computed  values for @ ) ( x , z ~ )  are used, and that one uses V(xl)(x,O) together  with values for 
~,~l)(x, z,~.) derived by Taylor  series expansion. Until we have checked the procedure  by numerical  calculat ions 
for three-dimensional  wings (and non-elliptic aerofoils), we suggest that the same rule should be applied for 
three-dimensional  wings. Thus, when using equat ion (31) with values of v~)(x,  y, z~) computed  on the wing 
surface, we take for the terms v~l)(x, y, z~) and v~l)(x, y, z~) also the values on the wing surface. 

At least near the leading edge, the values v ~ ) ( x , y , z ~ ) ,  v~l)(x,y,  z~) have to be computed  at z = zw(x,y). 
Away from the leading edge, i.e. for ~ = (x - xL(y)) /c(y  ) > 0-1 say, one may use values derived by Taylor  
series expansions. These Taylor  series expansions will be discussed further in Section 2.5. 

In the following, we denote by the suffix t the velocity componen t s  induced by a source distribution and by 
the suffix I the velocity componen t s  induced by a load distribution. The velocity componen t s  vxt , v>,,, v~ are 
symmetr ical  functions of z with respect to the plane z = 0 and v~t, v~z, vyt are ant isymmetr ical  functions. 
When we apply equat ion (31) to the upper  and the lower surface, respectively, then we obtain the two 
equat ions : 

 z.l , , ,1>,. ' , . , , ) , .  
~'.,c + ~ ' x / [ 1  + v~')(x 'v 'z '  + z') + ' ~ ' " Y ' z '  + + ~ ~y + ~>,]" >" ' ' y' z, + z,) + ~,., ,~, .v,z ,  + z,)l 

,,1) ~,~l)(x, v, z, . . = :t* + C~r(y ) + tz, (x, >, z t + z~) + . + z~) + Aver(x, v, 0) + Av. l (x  , y, O) (32) 

and 

- - ~  Aw [ At- y ,  Zt - -  Zs) --  X [-U(1)(~£ Zs ) ,,(1){ . . . .  ,~x i 'x  ] ~' '" ' ~' z, - z,)] + / - - -  + y, z, - - - z,)] ?y ~y ] L yt , ' ,  ~yl ~", ~, "., 

= ~* + ~r(V) ,(11 , (1)t~ . - t,~, (x, 3', z~ - z,) + v~l ~., y, z, - z,) - Avzt(X, y, O) + Av~l(x, V, 0). (33) 

We may remind the reader that we have stated in Section 2.1 that we restrict the present discussion to wing 
shapes for which z~(x, y) + z~(x, y) and zt(x, y) - Zs(X, y) are everywhere positive. 

By subtract ing equat ion (33) from equat ion (32) we obtain for the strength of the addit ional source dis- 
t r ibution Aq(x ,  y) = 2Av~,(x, y, 0) the equat ion : 

/~z, .(1) , , ( ,>(y  .. z~) + v(ll~x z~) v~I/(x,y, z, zA? + A q ( x , y )  = (Txx[2 + vx, (x,). ,z, + z,) + -xt,~-,y, z, - xl t ,Y, z, + - - 

~zs (1) ("~x z~) v ~ ' ( x , y , z ,  Vx, ~., y, z, - y, z, + + - z~)] + + ~ ,x[V~ , (x , y , z~  + z,) - m , ~  z~) + Vx~ , 
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+ OZtr.(1)(.,- v z + z~) + vy t ~ , >, z t -(')~." z~) - ' (')r.. ( l~x  , - z~) + ~rl ~ , Y ,  Zt + ,~y, ~. , ,y ,z ,  - z~)] + 

~z~r.(1)~ Zs ) ,,(nt~ y, zt z~) + ry I (x, y, z, + + ~r~ ~ ,  v, z, z~)] , ( ' )  Zs ) ,~( ')(  x,- - -  + fffy L'gt '..~, Y, z ,  + - ~y~ ,,~., - . - 

EU(1)(X, y,  Zt _1_ Zs ) .q.. (i1 , ( ' )  Zs ) __ , , ( 1 ) Iv  . - v~t  ( x ,  y ,  z ,  - z~)] - [r.~ (x ,  y ,  z,  + ~z~ , ~ ,  Y, z ,  - zA] (34) 

Adding equations (32) and (33), we obtain for the upwash Av=~(x, y, 0), which has to be produced by the 

load distribution Al(x,  y), the equation : 

~'Zt [U(1)(X Zs ) ,(1) U(x~I(X, V, Z t 2Av~(x ,  y, O) = ~ ~ ~, , . ,  y, z, + - c~, (x, y, z, - zA + . + z3  + v~i?(x, v, z, - z3] + 

+ Oz~[2 + v(~',)(x, y, z, + z~) + ,,~'~tv y, z, - z,) + v~l ,  , y, z, + ( ' ( x  z3  - v ~ ( x , y , z , -  z.3] + 

( ' ) / X  

+ ~ E ~ , 2 ( x ,  y, z, + ~)  + (1) , ~ )  + , ,~1~ ~ ) _  (, , ,~ Uy t (X, y ,  Z t - -  Vyl '~ '  Y'  Zt -~ Vyl k , Y, Zt - -  Zs)]  - -  
cy  

- 2c~* - 2er(Y) - [v~l)(x, Y, z, + z~) - v~',)(x, y, z, - z,)] - 

,(l~ z~) ,(1) , (35) - [t, zl (x ,  y ,  z,  + + ~ t  (x ,  y ,  z ,  - zA] .  

The relation between Avz~(x, y, 0) and A/(x, y), similar to equation (27), reads : 

± f[" Attx',.v'tl-i x - x' ] 
8n 3.) (y - 3/) 2 L + ] dx'  dy' = Aver(x, y, 0). 

, / ( x  - x')  ~ + (y  - y')~ 
(36) 

The values of Aq(x,  y), Avz~(x, y, 0) given by equations (34) and (35) have strong singularities at the leading 
edge, similar to those for two-dimensional elliptic aerofoils, which are discussed in Appendix B, see equations 
(B-17) and (B-22). A modification of the values for Aq and Avzt is therefore required near the leading edge. 
The steep variation of Aq, Av~ occurs over a very short distance behind the leading edge, which means that 
the values given by equations (34), (35) have to be modified only over a short distance. One possibility for 
achieving such a modification is discussed in Appendix C. In view of the inaccuracies in the flow field near 
the leading edge implied in a second-order theory, one also may consider taking the values of Aq, Av=t com- 
puted at points away from the leading edge and extrapolating these towards the leading edge in such a manner 
that Aq(x,  y) has a square-root singularity similar to qm(x ,  y) and that Av~(x ,  y) is finite at the leading edge. 
Such a crude modification seems reasonable when we deal with a three-dimensional wing, where we want 
to economize on the computing effort and compute velocity components at only a modest number of chord- 
wise stations. 

We may note here that, when we determine Aq and Av~ from equations (34) and (35), l(ll(x, y) need not be 
an exact solution of equation (27) but may differ by second-order terms. 

When q(2~(x, y) and l(2~(x, y) (see equations (28) and (29)) have been determined, one can calculate the total 
velocity V(x,  y, zw) at the surface of the wing and from this the pressure coefficient Cp -- 1 - V 2. The velocity 
components of the undisturbed flow along the chord and normal to it have the values cos (c~* + ~T) and 
sin (c~* + C~T). The total velocity V(x,  y, zw) can therefore be determined from the equation : 

V2(x, y, z~) = [cos (c~* + ~r) + v~l( x,  Y, zw) + A v A x ,  y, zw)] 2 + [v~Jl(x, y, zw) + Av~(x, y, zw)] 2 + 

+ [sin (c~* + aT) + V~II(x, y, Z~) + Avz(x,  y, zw)] 2. (37) 

We have mentioned that we seek to determine the velocity V(x,  y, zw) to 0(f,,2); this means that we need the 
values of Av x, Avy, Av z only at z = 0, at least away from the leading edge. Av~.(x, y, z~,) contributes only a 
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term of third order to V(x, y, zw), so that we need not compute Avy. The term Avz(X, y, 4-0) is known from 
equation (31). We have thus to compute only AG(x, y, 0) and can calculate V(x, y, zw) from 

VZ(x, y, Zw) = [cos (~* + ~r) + v(~tl(x, Y, Zw) + Avx(X, y, 0)] 2 + [v(yn(x, y, Zw)] 2 + 

~c3zw azw ,t" ]2 (38) 
+ [ (~x [I + v(f(x,y, zw)] + 8y v~ '(x,y, zO~ . 

However, this expression may lead to unrealistic values near the leading edge, for example because 
AG~(x, y, 0) tends to infinity at the leading edge. To obtain finite values, one may suggest computing not only 
v~ ~), _yv (11, _~,'~1} but also A G and A G near the leading edge at the surface and at shifted x-ordinates, as discussed 
in Appendices B and C. 

When one has computed AG, Avy, A G at the surface and thus knows v~2)(x, y, z~,), v(yZl(x, y, z~,), v~Z)(x, y, z~) 
then one would insert these into equation (17) to learn how accurate the solution is. If the error 

OZw @Zw (2). 

(9~X X [l q- V{x2)(x,y, Zw) ] -b ~ y  lay ( x ,  y ,  Zw) --  0~* - -  (Z T --  V~2)(x,y, Zw) : A(x,y)  (39) 

is too large, then one can consider A(x, y) as a A(2)vz(x, y, +0) and derive a modification to the source dis- 
tribution and the load distribution and from these a A(2)vx and an improved value for V(x, y, zw). For cambered 
wings, one must however expect that in certain cases planar singularity distributions cannot represent the 
shape of the wing near the leading edge to great accuracy. When one decides whether the error A(x, y) is too 
large, then one has to remember also that for a twisted wing the boundary condition given by equation (17) 
is only an approximation. 

We may note that the question, whether the extension of the Lighthill technique of strained coordinates 
into three dimensions is permissible, does not arise when we check whether a solution, derived by means of 
shifted x-ordinates, satisfies the boundary condition to a required accuracy. We use the technique only to 
reduce the number of steps in the iteration procedure. A check on the error in the boundary condition can 
only be made when the velocity components on the surface are obtained by computation but not when they 
are derived by means of Taylor series expansions. 

We have mentioned that for the two-dimensional aerofoil the computing effort can be reduced by ex- 
pressing the velocity components at z :~ 0 in terms of the velocity components at z = 0. Before we discuss the 
use of Taylor series expansions for the three-dimensional wing, we examine in the next section how to over- 
come the present difficulty that we do not yet have a fast method for determining a solution of equation (27) 
for non-regular planforms. 

2.4 Solution for Uncambered Wings derived by using Results from the R.A.E. Standard Method 

In the previous section, it is assumed that we have a method for determining a solution l(~)(x, y) which is 
accurate to first order. The determination of a first-order solution l<~l(x, y) may require a fairly large amount 
of computation, even though l(ll(x, y) need not be an 'exact' solution of equation (27) ('exact' in the sense 
that the numerical errors are no greater than some prescribed tolerance). 

In this section, therefore we consider an iterative proced~are, which aims from the start at a solution of 
the problem for the wing of finite thickness, where the first approximation can be determined without much 
effort. Such a first approximation for the wing of finite thickness may be derived by the R.A.E. standard 
method. 3 

To illustrate the procedure, we study the special case of an uncambered, untwisted wing of finite thickness 
at an angle of incidence ~. For this wing the boundary condition reads : 

&dx,  y) 
+ ~ - [cos  ~ + G,(x, y, z,) + vx~(x, y, z,)] + 

CX -- -- 

= sin ~ + Gt(x, y, z,) + Gt(x, y, zt). 

&dx,  y) 
Oy -[vy,(x, y, z,) + v~,(x, y, z,)] 

By adding the equations for the upper and lower surface, we obtain for vzt the equation 

(40) 

OZ t ~Z t 
Gr(x, y, z~) = - s i n  ~ + ~Tx Gl(x , y, zt) + 8~,vyt(x, y, zt). (41) 
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By subtracting the equations, we obtain for v~ 

~z t OZt v~,(x, y, z,) = ~ x  [cos c~ + v,,,(x, y, z,)~ + Uyv,,,(x, y, z,). (42) 

We have selected the uncambered wing because l(x, y) is then independent of q(x, y). 
We shall consider here how to derive a load distribution which satisfies equation (41) to second-order 

accuracy. For the determination of the second-order source distribution one can use the procedure of 

Section 2.3. 
We intend to solve equation (41) by an iterative procedure : 

1 ~,,+ 1)(x ' y) = It")(x, y) + Al~")(x, y), (43) 

where l(~)(x, y) is to be derived by the standard method. 3 (The load distribution of the standard method would 
be modified close to the leading edge to produce a square-root singularity since this is assumed in the com- 
puter program of Ref. 9.) AlC'°(x, y) is an approximation to the load distribution which corresponds to a dis- 
tribution of upwash over the wing planform, A~")v~t(x, y, z,), given by 

Oz, i~,~ ) #z, k{"¥zl(x,Y,  Zt) = --sin~ -- vz l ( x , y , z , ; l  ("~) + ~,xVxl(x,y, zt; + ~yvyt(x,Y,z ,; l{"l) ,  (44) 

where v,a(x, y, z, ; 1(")), vxt, vyl are produced by the known load distribution l°°(x, y). 
Within the iterative procedure, we are free to choose, whether the right-hand side of equation (44) is inter- 

preted as an upwash at z = 0 or at z = z t. To determine from A~")vz~ an approximate Al("~(x, y), one may try 
to use again the standard method. Having determined from Amvz~ an approximate Al (1) and hence /(21, o n e  
would determine A(2)vz~ and continue until [A~")vzt(x, y, z,)[ is smaller than the required accuracy. 

In certain regions of the wing, it is possible that A("¥z~(x, y, z r) varies fairly rapidly both in the x- and y- 
direction; this may imply that the standard method is not suitable for deriving a good approximation to 
Al(")(x, y). If this is the case, then one may consider deriving l(l)(x, y) and Al("}(x, y) by a different method as 
for example a vortex lattice method. It is possible that A~"¥zt varies still fairly rapidly for example near the 
centre section of a swept wing, which means that a fairly large number of control points and therefore a large 
amount of computation could be required unless a somewhat reduced accuracy is accepted near the centre 

section. 
It is not necessary to recompute vx~ and vy t in equation (44) for every change A1 ~"), but sufficient to use 

vxj, vyt induced by lm(x ,  y), unless it was found that 1 cu is a poor first approximation. Within second-order 
accuracy, we may, away from the leading edge, use Vx~(X, y, 0;/m) and vyz(x, y, 0;/{u) which can be derived 
from lU)(x, y) with far less computing effort than is required for computing v,a(x, y, z,) and vs,(x, y, zt). With 
l(x, y), v,a(x, y, 0) is directly known, because 

Since 

v,a(x, y, O) = ¼1(x, y). (45) 

8vy(x, y, O) _ ~v~(x, y, O) 
Ox 8y 

and away from the centre section 

Vy~(xL(y), y, O) = -- tan ~ody)vx~(xL(y), y, 0), (46) 

we can derive vyl(x, y, 0) from the equation 

tan ~0dy) 
vyz(x, y, O) - 4 

X ~ ! t 

I(XL(y), y) + - ~ - -  I(X, y) d x .  (47) 
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Note however that, if (as is frequently the case) l(x, y) ~ ~ as x ~ XL(y), it is necessary to use the alternative 
form of equation (47), 

l(x', y) dx'. (47a) vy,(x, y, O) = ~ ,-~,,) 

Near the leading edge, we would however compute vxz , vrz , v~ at the surface and at shifted x-ordinates. 
We have given in Appendix B analytic expressions for the velocity components induced in two-dimensional 

flow by the flat-plate load distribution, l(x) = 4 ~ / ( c  - x)/x, at any x and z. From equations (B-6), (B-7) we 
have computed values of ACl)v~(x, zt) , as defined by equation (44), for a 10 per cent thick R.A.E. 101 and a 
I0 per cent thick elliptic section; the results are plotted in Fig. 2. We note that IAmv~(x, zr)l/~ is for most of 
the chord of the magnitude 0.1 to 0.2. From these fairly large values one may conclude for the three-dimensional 
wing that it may not be advisable to spend a large amount of computing effort to derive a fairly accurate 
solution of the thin-wing equation, equation (27). 

It may also be advisable to start the iteration with an approximate load distribution for the thick wing. 
For two-dimensional flow past a wing with finite thickness, the AC~)Vzt(X, zt) term is taken into account in a 
second-order theory by approximating the load distribution by 

l(x) = 4c~/c  - x x[1 + SC3)(x)]' (48) 

with 

l f~ raz,(x,) ,z,(x,) ] dx' 
SC3)(x) = ~ L dx' 2x (c - x') A x - x" (49) 

For the 'sheared wing' region of a finite wing the factor E1 + SC3)(x, y)/cos ~p] is included in the standard method; 
near centre and tip the factor [1 + Sl3)(x, y)/cos ~p*(y)] is included to take, at least approximately, account of 
this interaction between thickness and lift. (~0*(y) = (1 - [Kz(y)Dqg(y ) is an interpolation function between 
the value ~o*(y = 0) = 0 and the local sweep ~o(y) of the mid-chord line; for the definition of the function 
K2(y) we refer the reader to Ref. 3.) The introduction of the factor [1 + SC3)/cos ~o*] is of course not restricted 
to the load distribution of the standard method, it can be applied to any other solution ICl)(x, y) of the thin- 
wing problem, equation (27). 

To start the iteration with an approximate load distribution for the thick wing instead of an approximate 
load distribution for the thin wing need of course not improve the convergence of the procedure, but it may 
reduce the number of steps in the iterative procedure and, as a by-product, one would learn something about 
the accuracy of the R.A.E. standard method. 

Consider the possibility that the standard method produces a load distribution lCl)(x, y) which is wrong to 
a fairly large degree, so that the values of IACl)vzl(x, y, zt) I from equation (44) were on average much larger 
than the values of IAv=L~, y, 0)r from equation (35), when IC~l(x, y) is an exact solution of equation (27). This 
need not imply that we must abandon the suggested procedure. The crucial point would be to find out whether 
the iterative procedure, where also AlC")(x, y) is determined from AC")Vzl(X, y, z)  by the standard method, does 
converge, or whether another method for deriving A/c") from AC")vzz can be devised, which does provide a 
convergent procedure. We have already stated that it is not necessary to use the standard method to deter- 
mine a first approximation Ict). If another relatively fast method is available for deriving an approximate 
solution of equation (27), then this also can be used for determining l (a) and A/c"). 

One may be inclined to judge the accuracy of a load distribution l°')(x, y) by examining the maximum value 
of IAC")v~(x, y, z,)l. We must however keep in mind that we can tolerate a considerably reduced accuracy close 
to the leading edge, without noticeably reducing the accuracy of the pressure distribution further downstream. 

No practical examples are considered in this Report. However, since the work reported here was finished, 
Sells 17 has implemented the suggested procedure and has determined the pressure distribution on un- 
cambered untwisted wings at an angle of incidence; he has found that 'the iteration cycle converges to 
acceptable accuracy after 2 steps'. 

When solving the thickness problem by the procedure described in Section 2.3, it may also be advantageous 
to use as a first approximation, qCl)*(x, y) to q(x, y), instead of the source distribution from first-order theory 
qm(x, y) = 2 8zt(x, y)/c3x, a source distribution which takes already some account of the second-order terms. 
For the 'sheared wing' region of an uncambered wing such a source distribution is given by the function 
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(see equations (A-6), (A-10) of Appendix A): 

q~l).(x,y ) = 20zt 2 0 ax + ax [zfi"~(x' y)]' (50) cos ~o(x, y) 

where 

1 fxT(y) Oz,(x',y) dx' 
Sm(x'Y) = ~J=,_~y~ 0,x x - x' (51) 

and ~0(x, y) is the local angle of sweep. We mention in Appendix E how equation (59) can be used, in con- 
(~) and ,,m given by the standard method, to derive a distribution junction with the approximate values for v=t -yt 

q(1)*(x, y) for any spanwise station. If q¢~)*(x, y) were reasonably accurate, then the values of Aq(x, y) derived 
from equation (34) with qm*(x, y) would be smaller than those derived with q~)(x, y) = 2 Ozjgx. As a con- 
sequence, it is to be expected that the remaining error in the boundary condition, A(x, y) of equation (39), 
would also be reduced. With a relatively small amount of additional computation, one would obtain a more 
accurate pressure distribution. 

2.5 Simplification by means of Taylor Series Expansions 

We have already mentioned that for two-dimensional aerofoils the amount of computation can be re- 
duced if the velocity components induced at z -¢ 0 are expressed in terms of the velocity components induced 
at z -- 0; this is done by expanding the velocity components in powers of e. 

Such expansions are possible also on three-dimensional wings, except at the centre section of swept wings 
and near wing tips. The velocity components induced at z = z~ are approximated by the first two terms of 
their Taylor series expansions with respect to the plane z = 0 : 

[ Ovx(x, y, z) 1 
o (x, y, y, ol + Zw t ]z .o'  (52) 

[~v,(x, y, z)l 
vy(x, y, Zw) ~ vy(x, y, O) + zwl - -  i , 

az lz=o 
(53) 

(54) 

By making use of the equations of irrotationality and continuity, the derivatives can be expressed in terms 
of the velocity components in z = 0: 

(Ovx(x,y, z)) _ Ovz(x, y, 0) (55) 
~Z z=O ~X ' 

( ?vy(~zy, z)) ==o _ Ov~(X,~yy, 0), (56) 

C?Vz(X' Y' Z!l -- (57) Ovx(x, y, O) gVy(X, y, O) 
Oz ] z = o Ox c3y 

We have mentioned in Section 2.3 that we cannot make use of equations (54), (57) near the centre section of 
swept wings with for example chordwise thickness distributions of the same type along the span; this is due 
to the fact that, when (Ozt(x,y)/~y)y= o v~ 0, the spanwise derivative O@)(x, y, O)/~y is logarithmically infinite 
at y = 0. A similar behaviour can occur at the tip for wings with finite tip chord. We consider those regions 
of the wing where 8v~l)(x, y, 0)/@ is not large, so that v~l)(x, y, z) can be approximated to second-order accuracy 
by equations (54), (57). 
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By introducing equations (52) to (57) into equation (34) and ignoring all terms of an order higher than ee, 
we obtain for Aq(x, y) the second-order approximation 

Aq(x, y) OZ'El + (1) c~z','¢ut" O) + v~p(x,y,O) + Oy Y~  ' y '  - - -  - v~, (x, y, 0)] + ~ x  ~ '  '~' y' 

¢ ' , x ,  0 ) -  ga¢2,'(~, y, O) '"  0) ga4 ' (~,  y, O) a4l'(x, y, O) 
- y, z, k + + L- + 

_ ~z,(x ,y)  v~,)(x,y,O ) + ~cq_xxEZt(x,y)v~,,(x,y,O ) + z~(x,y)v~l)(x,y,O)] + 
Ox 

+ ~y[Z,(X, y)4p(x, y, O) + z~(x, ~,,,~v(')~x,~, y, 0)]. (58) 

When the source distribution ql~)(x, y) satisfies equation (24), then we obtain for Aq(x, y) the relation" 

Aq(x, y) ~ ~y 
2 - ~x Ez'(x'y)v(~')(x'y'O) + z~(x'y)v~'~(x'y'O)] + [z '(x 'y)v~l)(x 'y 'O) + q (x ' y ) v~ l ) ( x ' y 'O)]  (59) 

If I ¢ U(x, y) satisfies equations (26), (27) to at least order e 2, then we obtain from equation (35) for Av=t(x, y, O) 
the relation 

(? ,,lv(Utx ~, O) + z,(x, y~.~l~ , Y, 0)] + i)y[Z~(X, (1) (11 Avzz(X, y, O) ?x [ z & ,  .,, x, , , .,, ' ~z'~J~x 0' = - -  y)vy, (x, y, O) + zt(x, y)vy l (x, y, 0)]. (60) 

If l(~(x, y) does not satisfy equations (26), (27) to at least order ~2, then we obtain instead of equation (60) 
the following one 

Av~l(x, y, O) - 
az~(x, y) 

~x 
(1)( X o) + 2--[Zs(X, y)v~p(x, y, O) + zt(x, y]vxz ~ ,y,0)] + 

C X  

? 
+ ~E~(x, y)4P(x, y, o) + ~,(~, y)41)(~, y, o)?. (61) 

We note that the use of equations (58) to (61) implies that the boundary condition given by equation (31) 
has been approximated by 

t x  + v ~ ( x , y ,  +0)] + ~z-~-v(~)tx y, +_0) ~* + " r  + v~)(x,Y,  Zw) + Av=(x,y, +0).  - ~ ? y  v ' '  
(62) 

For wings with the same type of camber but different maximum camber, the use of equation (60) would 
imply that Avzt(X, y, 0) and with it Al(x, y) and lt2)(x, y) change linearly with the maximum camber. This is 
not so when equation (35) is applied. For the symmetrical wing at an angle of incidence, u*, both equation 
(35) and equation (60) lead to a linear variation of l(x, y) with cU. 

(I)(x I'(1)(Y 0) finite, except near the Away from the centre section, the velocity components vx, ~ , y, 0), y, are 
trailing edge. For wings with sharp trailing edge and finite trailing-edge angle, q~l~(x, y) is finite at the trailing 
edge; therefore, v~ l,~(x, y, 0), ~y,,,(utY,~., y, 0) are logarithmically infinite at the trailing edge. We can therefore modify 
dxl,)(x, y, 0), v~)(x, y, 0) in equations (59) and (60) over a very small neighbourhood of the trailing edge, without 
noticeably altering the values of Av x, Avy away from the trailing edge. 

Away from the centre section, the velocity components v~l(x, y,O), (1) . vyt (x,),, 0) behave near the leading 
edge like l /v~ ,  with ~ = (x - xL(y))/c(y). We consider wings for which zt(x, y) behaves near the leading edge 
like a(y),v/~ + . . .  and z.~(x, y) like b(y)~ + . . . .  Therefore, Aq(x, y) of equation (59) has the same behaviour 
near the leading edge as q(~)(x, y), and Avzt(x, y, 0) of equation (60) is finite. 

Comparing equation (34) with equations (58), (59) and equation (35) with equations (60), (61), we note a 
large difference in the computing effort required, in particular for a cambered wing. ~,a"ll)t'~,--, y, 0), vy z,~(x, y, 0) 
are related to l~U(x, y) by equations (45) and (47)" the computation of v~)(x, y, 0), v~.n(x, y, 0) therefore requires 
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far less effort than the computation of 

v~l~(x, y, z, + z~), vx~x,t .,,,, z, - z~), 

v(yl)(x, y, zt + zs), ~1) v~,t (x ,  y ,  z ,  - zs). 

The computation of v~t, vy t at z = 0 requires a similar effort as the computation for z = z~; but for a cambered 
wing, equations (34), (35) require values of .(~)tY y, z t + z~) and (1) ~,,t ~.~, v,, (x, y, z t - z~) whilst equations (58) to (61) 
require the value of only v~)(x, y, 0). 

However, at and near the centre section and near the tip, a Taylor series expansion must not be used for 
v~.~ ) and it seems also not advisable to use it for v~l (at least not near the apex). Therefore a hybrid method 
where equations (34), (35) are used near the centre and the tips and equations (58) to (61) away from centre 
and tip may be the most economical with respect to computing time. On the other hand, the hybrid method 
entails a computer program of larger complexity than the method which does not use Taylor series expansions. 
It seems therefore advisable to examine first for uncambered wings at an angle of incidence whether the iter- 
ative procedure suggested in Section 2.4 is convergent or what method can be used to derive a convergent 
procedure, when Taylor series expansions are not used. We have already noted that the use of equations 
(34), (35) does not require that q(~)(x, y) and l(~)(x, y) are the exact solutions of equations (24) to (27). If I")(x, y) 
is not correct to first order, then an iterative procedure, as described in Section 2.4, can be used with equations 
(35) and (61). 

When values of the source and load distributions, q~2)(x, y), /{2)(X, y), correct to second order, have been 
determined, then we can determine the velocity components v~Z)(x, y, zw), v~2)(x, y, z~), which q~Z) and 1(2) induce 
at the wing surface. By means of equations (52) to (56) we can approximate v~El(x, y, Zw) , v~2~(x, y, zw) to second- 
order accuracy by 

~v~2'(x, y, O) 
v~)(x, y, zw) = v~2)(x, y, + O) + z~, 

3x 

To obtain second-order accuracy of v~2)(x, y, Zw) , the derivative ?~v~2)(x, y, O)/Ox has to be correct to only first 
order and can therefore be replaced by Ov~1)(x,y,O)/Ox, where v~l)(x, y, O) is derived from equation (23). 
Therefore, 

a2Zw(X, y) 
v~2}(x, y, Zw) = v~2)(x, y, + O) + Zw Ox 2 (63) 

Similarly, 

O2Zw(X' Y) (64) v~2~(x,y, zw) = v~2~(x,y, +0) + z~ OxOy 

We note that the Taylor series expansions for v x and vy can be used also at y = 0. We note further that 
equation (64) produces a discontinuity in v~Z)(x, y, z,~) at y = 0. 

From the velocity components v~Z)(x, y, z,,), v~Z)(x, y, z,,,) we can compute the total velocity at the surface of 
the wing V(Zl(x, y, Zw) to second-order accuracy. Since v~a)(x, y, Zw) is related to v~ 2) and v~ 2) by the approximate 
boundary condition, we obtain 

[V(2)(X, y, Zw)] 2 = [COS (~* -[- ~T) q- V(2)( X, Y, Zw)] 2 -]" IVy2)( X, Y, Zw)] 2 -[- 

+ [ 3x + v~2)(x' y' zw)] + -~-yV?J(x, y, Zw) ~ . (65) 

The values of v~2)(x, y, Zw) , v(ya)(x, y, zw) derived from the Taylor series expansions, equations (63), (64), have 
strong singularities at the leading edge; they behave like 1/#. When these values of v~ 2), • ~2~ are inserted into Uy 
equation (65), then we obtain values for V ~z~ which are unrealistic near the leading edge. 

Making Taylor series expansions implies that one assumes that the perturbation velocities and their de- 
rivatives are small. We know however that this assumption does not hold near the leading and trailing edges. 
The solution given by equations (63) to (65) is therefore not valid near the edges; in particular we have to 
modify the expression given by equation (65) for V~2)(x, y, z,,) such that we obtain everywhere a finite value and 
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retain the second-order accuracy away from the leading edge. Various rules have been derived s~°7 for the 
modification of v~Z4x, %) for the two-dimensional wing. They are summarised in Appendix A, equations 
(A-20) to (A-22). We would like to have a similar rule for the three-dimensional wing. 

For this purpose, we derive first a uniformly valid equation for the second-order theory for the infinite 
sheared wing. We choose equation (A.22) of Appendix A for the two-dimensional unswept aerofoil. The cor- 
responding equation reads 

V2(X, Zw) = COS 20~ s i n  2 (p + 

{c o) ,,, o ( zw </cos 
os~cosq~ + - - - -  + cos 

cos v, ~ cos ~0 & lJ 
/ 0Zw/COS (P) 2 

1 +  / 0x 

(66) 

We denote by V the uniformly valid value for the total velocity on the surface. Equation (66) can be written 
in the form 

[ ] I <72 C [ ~Z,a, 1 2 q- ['g 2)(X' O) Jr- -}- tan 2 qo cos 2 COS ~ -}- u( i I (x '  O) -{- --(qX IZw CX] ~yylZW~X]J I(~X] 
V2(X, y, Zw) = (67) 

1<1 i<l l + l,~x I + l.~y I 

To obtain a formula for the total velocity V(x, y, z..,,) at any spanwise station of an arbitrary wing we follow 
a procedure suggested by Lock ~° and consider the velocity distribution at the surface of an ellipsoid. It is 
shown in Appendix D that a uniformly valid formula for the velocity V(x, y, z,,,) in terms of the velocity com- 
ponents from second-order theory can be obtained from the following equation : 

[ /</q 
v2(.v y, Zw) 1 + I & I + 1 ,~.~' I J 

~ [ ~z~/7 ~ 

~/ e, zA7 ~ + #,ix, y.01 + + 

{ 0)3  + [cos~ + v,, t v, ,Y, (68) 

For the two-dimensional sheared wing 

and 

u(2}d v 0) --  tan ~ov,,, ( , y, ) '~.,t ~.-'., Y ,  = (2)  x 0 

OZ w OZ w 
v -y tan ~o Ox 

so that the last term in equation (68) is equal to (cos ~ tan ~o ?Zw/(3x) 2, which means equations (67) and (68) 
are identical. 

It is proposed to use equation (68) also for general wing shapes to derive a uniformly valid formula for the 
velocity at the wing surface in terms of the second-order velocity components v~Z4x, y,O), l~y(2)t~Ct., .V, 0). We 
stress here that in the treatment described it is essential that the velocity components v~Z~(x, y, zw), t,y~2)(.~., .v, %) 
at the surface must be determined from the components in the plane z = 0 by Taylor series expansions, 
equations (63), (64) (and not by direct computation on z = %); and the strength of the singularity distributions 
must be derived either by determining the velocity component v~(x ,  y, z,,) also by a Taylor series expansion 
(equations (58) to (61)) or by modifying the values of Aq(x, y) and Avzt(x, y, 0) given by equations (34), (35) in 
such a way that they behave like ql~l(x, y) and v~l~(x, y, 0) near the leading edge. 

Further, it is proposed to use equation (68) for wings with general cambered sections, in which case the 
wing slopes i~zw/~x and Oz,,./Oy should take their separate local values, ~(+_ z t + zs)/Ox, O(+_ z, + zs)/Oy on 
the upper and lower surface respectively. It is not of course possible to justify this procedure with the same 
degree of rigour as with an uncambered wing; and the same applies whenever the shape of the leading edge 
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differs significantly from elliptical; however it is certainly important that the same definitions of ?Zw/i~x, 
Ozw/Oy should be used consistently in both the right- and left-hand sides of equation (68), otherwise the second- 
order accuracy away from the leading edge will not be maintained. 

Lock 1° makes further use of the exact theory for the flow about an ellipsoid and proposes modified ex- 
pressions for the components of surface velocity. Uniformly valid values of the various velocity components 
will be required for calculating the effect of the boundary layer. 

The computing effort may be reduced by substituting in equation (68) for v~2~(x, y, 0) the first-order term 
@l~(x, y, 0), so that values of Avy(X, y, +0) induced by Aq(x, y) and Al(x, y) need not be computed; this would 
change the value of V(x, y, zw) given by equation (68) only by third-order terms. 

The term (Ozw/~x) z + (Ozw/Oy) z on the left-hand side of equation (68) is of second order and can thus be 
modified away from the leading edge, if the right-hand side is also consistently modified. At the leading edge 
Ozw/~y = - tan rp(y) ?zw/Ox, where ~0(y) is the local sweep of the leading edge. Without loss of accuracy, we 
may therefore modify equation (68). Except for wings with large leading-edge sweep or highly tapered wings, 
we propose to use instead of equation (68) the formula 

cos(a* + C~r) + v~2'(x,y, 0) + ~x zw~x}_] + [v~')(x'y'O)]2 

i [ ~Zwl 
2 

- (1)["  X + {[1 + vx, , ,y, 0)] tan ~0 + v)tt'(x,y,O)}2,--, 
V2(x, y, zw ) = I ex I I (69) 

[ ~zw/Oxl 2 
1 + ~ o s e j  

Equation (69) is similar to the one used in the R.A.E. standard method. The major difference is that instead 
of the term v~2)(x, y, 0) + ?]?x[zw(Oz~/Ox)] we use in the standard method an approximate value for the first- 
order term v~l~(x, y, 0). (The formula of the standard method 3 contains one second-order term concerning 
the interference between the wing thickness and the lift due to angle of incidence. Since this term is as yet 
unknown for the centre and tip region of a swept wing, only an assumed term consistent with the term away 
from centre and tip has been introduced. It is possible to introduce all second-order terms for the sheared 
wing in a similar consistent manner. One such possible modification of the basic formula is given in Appendix 
E.) In the standard method only an approximate value for the first-order term v~l~(x, y, 0) is used. Some further 
differences close to the leading edge are discussed in Appendix F. 

For the neighbourhood of the apex, the use of Taylor series expansions for v~l)(x, y, zw), v~.l~(x, y, z,,) does 
not produce any reduction in computing effort, since we have to compute v~ ~(x, y, z~), v~ 1)(x, y, z~) at the sur- 
face when we derive Aq and Avz~ from equations (34), (35). In view of the unknown accuracy of equation (69) 
near the apex, it may be advantageous to compute the velocity components induced by Aq and Al also at 
the surface and at shifted x-values. As mentioned in Section 2.3, we can then determine the error in the 
boundary condition, A(x, y) of equation (39), and, if required, improve the singularity distributions and the 
pressure distribution. 

The assumption of small perturbation velocities does not hold close to the trailing edge either. As men- 
tioned above, v~2)~x, .. 0 ~ and ,~2~ xt, ~,, j t,y t (x,y, 0) are logarithmically infinite at the trailing edge. The velocity V 
computed by equation (69) is therefore not correct near the trailing edge. This is unimportant in practice since 
viscosity alters the inviscid pressure distribution near the trailing edge decisively, even for large Reynolds 
number. 

The suggested procedure also does not apply to the tip edge, because for example, for a wing with a tip 
of finite chord and a square cut edge, the source distribution must not extend right to the tip edge. We have 
not yet examined how to derive a representative singularity distribution because viscous effects are large near 
the tip of a lifting wing, and the pressure distribution near the tip of a non-lifting wing is of less importance 
than the pressure distribution over the inboard part of the wing. 

It has been stated in Section 2.2 that, for wing shapes where the values of ~(x, y) near the centre section 
y = 0 are of first-order magnitude, we ought to depart from using a single planar singularity distribution 
and derive more accurate values for the perturbation velocity at a point x, y by placing the singularities in 
the two half-planes z = lyl tan ¢(x, lY[). 

We could again derive the strength of the singularity distributions in two steps, equations (28), (29), where 
in the first-order solution the non-zero values of ~ are ignored, which means we can use the source and load 
distributions of equations (25) to (27). These singularity distributions q(1)(x,y), lm(x,y) are then placed in 
the two planes z = [y[ tan 0(x, b'[) to compute the velocity components v m (1) v~l) at the surface of the wing, x ,Uy , 
namely at z = [Yl tan ~, + z, + z~. 
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The approximate boundary condition is still given by equation (31), if z w denotes lYl tan ~, + z, + z~. The 
velocity components Av a and Av=~, induced by Aq and AI, are of second order and may therefore be taken in 
the plane z = 0, which means they may be cancelled by a source distribution Aq and a load distribution AI 
in z = 0. Values for Aq(x,  y) = 2Aver(x, y, 0) and for Av~l(x, y, 0) can again be obtained by subtracting and 
adding the two equations which describe the boundary condition on the upper and lower surfaces of the 
wing. These equations read 

az, <l + ~, + z~) + v~],(x, lyl tan ~ + + z~)] + + ~ + OxJ [1 v(xP( x, Y, lY] tan +_ z, Y, Z t 

+ + + ~ / [ v .  ~(x, y, lY[ tan 0 + z, + z~) + v~p(x, y, lYl tan 0 + z, + z~)] 

= o~* + c~ r + v=, ¢~)~xt , ~; lYl tan ~, +_ z, + z~) + v~l(1)tx~, Y, lYl tan 0 +- z, + z,) +_ Aver(x, y, O) + Av~l(x, y, 0). (70) 

The equations for Aq and Avz, differ somewhat from equations (34), (35), because the properties of symmetry 
and antisymmetry which apply to the velocity components for ~, = 0 are lost for ~b g: 0. 

The values of the second-order term Av~, in equation (38) can be derived, to second-order accuracy, from 
the source and load distributions Aq, Al placed either in z = 0 or in z = [Yl tan ~b. 

For a cambered wing with ~,(x, y = 0) of 0(e.), we would thus modify the hybrid method suggested above, in 
that we derive first-order singularity distributions qm, i m in the same way as for ~p(x, y = 0) -- 0, but compute 
the values of v~ ~) and %'(1) in equations (70) and (38) from the singularity distributions qm, l m placed in 
z = lyl tan ~b. Since v~ ~ is required only to first-order accuracy, it can be computed from the singularity dis- 
tributions in z = 0 or in z = lyl tan %. For the outer part of the wing, the procedure is the same as before. 

3. The Design of Wings with Given Properties 

3.1 Wings with Given Load Distribution 

We consider two types of design problems. For both, the planform and the thickness distribution are given. 
In the first case, we consider the task of deriving the shape of a wing for which the load distribution l(x, y) is 
specified. Again, we mean by I(x, y) the strength of the qifting singularities' and not the true load distribution 
-ACp(x,  y). In the second case, the pressure distribution on the upper surface is given. 

We intend to determine the mean camber of the wing, i.e. the spanwise distribution of the twist ~r(Y) (:~* 
being included in ~r) and the camber shape z,(x, y) such that the boundary condition at the surface of the 
wing is satisfied to second-order accuracy. We solve the problem in two steps and determine z~(x, y) as the 
sum of the camber shape from a first-order theory z~l)(x, y) and a second-order correction term Az(x, y): 

z~(x, y)  = zp~(x, y) + zXz~(x, y) 

and similarly 

COT(Y) = =~)(Y) + AC~T(Y). 

A first-order form of the boundary condition reads: 

&p~(x, y) ~) (y )  = v=,(x, y, z,). 
~x 

(71) 

(72) 

(73) 

We choose this form of the boundary condition (instead of v=t(x, y, z = 0) on the right-hand side of equation 
(73)) because some load distributions, as used in the design of swept wings with straight isobars, produce at 
the centre section, in the plane z = 0, infinite values for the downwash, vz~(x, y, z,) is the downwash induced 
by the given load distribution l(x, y). When the load distribution l(x, y) behaves near the leading edge like 
c / x / x  - x L(Y), then the downwash vzt(x, y, Zz(X, y)) tends to infinity when x tends to XL(y). TO derive a finite 
value for Vz~(XL(y ), y) we may compute vzt at shifted x-values or extrapolate the values computed away from 
the leading edge. 

Since z~ is zero at the leading and trailing edges, we obtain the twist c~ ) from 

~,,~-(r) vzl(x, Y, z,) dx  (74) °~7 )(Y)c(Y) = - . ,  x,_(,) 
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and the camber  z~ ~ f rom 

z~l)(x,y) = v=~(x',y,z,)dx' + @)(y)[x - x~(y)]. 
L(y) 

(75) 

In m a n y  cases occurr ing in practice, ( d ~  a)/dy)y = o = 0(e), which means  

Ore(x, y = O) = 0(0. 

To determine the second-order  terms Azs(X, y) and A~r(y), we consider therefore the boundary  condit ion as 
given by equat ion  (70) and approx ima te  it by 

OZ t ~Zs(1)l [ 1 - __ O A Z s  
++-~x + ~£-x _] + v(~{)(x'y'lYltan'Om + z, + z~ ~)) + v~(x,y,  lyl tanO "~ + z, + z~'l)] + ~ - Ac(r(y) + 

F Ozt cgzI1) l (1) i/).(I) Z~I>) -i- #)yl(X, y ,  -[- Z t -i- Z~I))] + L +~-yy + -~ ;J  [% (x, y, lyl t a n  + z, + lyl t a n  ~(i) 

= @)(y) + ,,mr,. @.) v=l(x, lyl tan ~b H) ~=t , ~ ,  Y, lyl tan + z, + z~ ~)) + y, + Z t -[- Zs (1)) -}- - -  

Aq(x, y) 
(76) 

The  velocity componen t s  v~, vy z, v:t, are induced by the given load distr ibution l(x, y) and the velocity com- 
ponents  ,,(~) ,,(1) ,,(1) are induced by the source distr ibution @)(x,  y) given by equat ion (25) (or by q(H*(x, y), ~xt  ~ ~yt ~ ~zt 

see equat ion (50) and Appendix  E), with both singularity distr ibutions placed in z = lyl tan qJtH(x, lyl) where 

tan ~/(1)(x, y ) =  ~y{Zr(y ) + tan o~p)(y)Exr(y) - x]}. (77) 

For  spanwise stations away from the centre section the velocity componen t s  can be evaluated from the 
singularities placed in z = 0. The evaluat ion of the term Aq(x, y) is not required for the derivat ion of the 
mean  surface. We may  note that  equat ion (76) differs from equat ion (70) only by third-order  terms. 

Adding the two equat ions (76) which cor respond  to the upper  and the lower surface of the wing respectively, 
we obta in  with equat ion  (73) : 

2/aAz~r _ 7/ = v:t ,.~, y, lyl tan ~('~ + z t -~- z~ 1)) + v: ,  ( , y ,  lyl tan ~/(1) Z t "Jr" Z~ 1)) "I- L ox Ac~r(y ) j  (1)t.. (a) x - 

+ v:,(x, y, lYl tan Ik ('l + z, + z~ 1)) + l ) z l (X  , y ,  lYl tan ~(i) _ z, + z~ ')) - 2v:l(x, y, z,) - 

0x Lvx, ,¢~, Y, lYl tan ~ b m +  z, + z~ 1)) - v~lt)(x, y, lYl tan q jH)_  z, + z~ 1)) + 

+ vxt(x, y, lYl tan ~b (1) + z, + z<~ I)) - vxl(x, y, lYl tan 0 m - z, + z~l))] - 

Oz~l)[v~ltl( x, Y, lY] tan ~b(1) + z, + Zs m) + '~,.H)(x, Y, lyl tan ~b (1~ - z, + z~ 11) + 

+ vxz(x, y, lyl tan 0 m + z, + z~ 1~) + vxt(x, y, lyl tan ~,HI _ z, + z~11)] - 

aZ'r-">c,- gs('~ ,b('l v,, (x, y, lyl tan - z, + z~ H) + a y L V .  , . . ,y ,  lyl t a n  + z, + z~ I/) - (1~ 

+ v~,~(x, y, lYl tan ~b (1) + z, + z~ 1)) - vyi(x, y, lYl tan ~,(i) _ zt + z~l))] - 

Oz (i) 
-s F~,;( I )(y i/#(1) ~y L~y, ,--, Y, lYl tan @(~) + z, + z~ ~) + ,,(~VY ~y, , - ,  Y, lYl tan - zt + z~ 1)) + 

+ vyl(x, y, lYl tan ~b ~1) + z~ + z~ ~)) + vyl(x, y, lYl tan ~ ( 1 ) _  z, + z~l)]. (78) 
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When we discussed the rather similar expression on the right-hand side of equation (35), we mentioned 
that some of the terms have a strong singularity near the leading edge. Before we can integrate the expression 
for 8 A z j S x  - Ao~ r, similar to equations (74), (75), we have to modify the values near the leading edge. This 
may be done as before by computing the velocity components at shifted x-values. In view of the uncertainty 
about the correct amount of shift, one may consider taking the values computed away from the leading edge 
and extrapolating them to a finite value at the leading edge. This would mainly affect the pressure distribution 
close to the leading edge, where a second-order theory cannot make statements about the accuracy of the 
pressure distribution on a cambered wing. 

It is possible that at and near the centre section Az~ is not small compared to z,. We consider load dis- 
tributions in the plane z = 0 which, over the inner wing, are constant along the span. For these, the downwash 
at the centre section at finite z-values can be approximated by 

where 

The term 

v~l(x, O, z) = f ( x )  In z + g(x) + . . .  

tan q~ l" " 
f ( x )  = ~ txj. 

v=,(x, O, z, + z~ n) + v~(x, O, - z ,  + z~ 1~) - 2v~l(x, O, z,) 

(79) 

(8o) 

in equation (78) is then approximately equal to 

1 
In those cases where Iz~ll(x, 0)l is of a magnitude comparable to zt(x, 0), the term Azs(x, 0) derived by equation 
(78) need not be small, which means that vz~(x, 0, +_ z t + z~ 1)) may differ noticeably from v~l(x, 0, _+ z t + z(~ n + Az~) 
also away from the leading edge. In this case, we may derive a better approximation to z~ at and near y = 0 
from 

Zs(X , y) = Z~I)(x, y) + Amz~(x, y) + A(2)z,(x, y) (81) 

where z ~ ( x ,  y) is derived from equation (73), Amz~(x, y) from equation (78) and AC2)z~(x, y) from 

2[SA'Z'z~(x' Y) ] L ax A(2)er(Y) = v=l(x' y'Iyl tan 0 (*7 + z t + z~ t) + A°~z,) + 

+ v~t(x,Y, [Yl tan C 11 - z, + z~l)+ A m z , ) -  

- v~t(x, y, lYl tan 4/a) + z t + z~ x)) - v~l(x, y, lY[ tan ~0 (1) - z t + zp)). (82) 

When we can neglect the effect of 0, when the velocity component  vzz induced in z = 0 is finite and when 
v~,~t~(x, y,' z) and v=t(x, y, z) can be approximated by the first two terms of their Taylor series expansions (which 
is the case away from the centre section and other discontinuities in the wing shape), then the computing 
effort can be greatly reduced. 

We derive the first-order approximation z~l)(x, y) and @)(y) from the first-order boundary condition 

&p~(x, y) c~)(y) = vzz(x, y, 0), (83) 
8x 

instead of equation (73), and from equations (74), (75). 
Azs(x, y) and Ac~r(y) are derived from equations (78) by ignoring all terms of a higher order than g z. The 

result reads" 

8Az~(x, y) 

8x 

8 
ACCr(y) = -.~2[z,(x, y)v~z(x, y, 0) + Z(1)(X , , y ~ v ~ , , ,  y ,  o ) ]  - 

(1)(X 

8 
z{1)( ,01 8y [z,(x, y)v~(x, y, O) + , ,x, y)v~, (x, y, 0)]. (84) 
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For the type of thickness distribution and load distribution considered in this Report, the right-hand side of 
equation (84) has finite values, so that Az~ and Ae r can be derived by integration similar to equations (74), (75). 

In a practical case one may use equations (71) to (78) for the neighbourhood of the centre section and 
equations (83), (84) with (71), (72), (74), (75) away from the centre. 

In order to obtain the pressure distribution on the warped wing obtained in this way it is of course necessary 
to carry out a second-order calculation of vx(x, y, z,,,) in the usual way, which may be done by subtracting the 
two equations (76) so as to find the correction term Aq(x, y) for the source distribution. Since l(x, y) is given, 
the remainder of the calculation is straightforward; details are therefore not given here. 

3.2 Wings with Given Pressure Distribution on the Upper Surface 

We consider now the problem, which arises in a practical design, where the thickness distribution and the 
pressure distribution (and hence the velocity distribution) on the upper surface are prescribed and the task 
is to determine the mean surface. 

We solve the problem again in several steps and determine first a mean surface z~l)(x, y) which is correct 
to first order. For this purpose we determine from the required velocity V~eq(X, y, Z t + Z~) the value of 

v~ ( ,y ,  O) = V2roq(X, y, Z, + Z~) 1 + ~C--~S~I -- tan2 10x] J -- 1 -- ~t.,,. (85) 

and 

l(X)(x, y) = 4v~)(x, y, 0). (86) 

When v~t-~t)rx~ , y, 0) has not been determined previously, but the streamwise velocity Vxt(x, y, z,) and the total 
velocity Vt(x , y, zt) at the surface of the uncambered non-lifting wing have been computed, then one might 
derive an approximate value of v~])(x, y, 0) from the approximate relation 

vL , (x ,  y, z, + z3 - v~, (x, y, z,) ,~ 2v~(x, y, z,) . v~(x ,  y, o). (87) 

It may be advisable to modify the load distribution/~l)(x, y), derived from equations (85) to (87), close to the 
leading edge, to ensure that l ") behaves like Ix - xL(y)] -° '5 or Ix - xL(y)] °5. 

With l(1)(x, y) we compute by equations (73) or (83) and (74), (75) a first approximation to the mean surface, 
z~l)(x, y) and c~)(y). 

For the wing shape derived from this approximate mean surface and zt(x, y), we compute by second-order 
theory the velocity on the upper surface V, pp(X, y, z t + z~)). The difference between the required velocity 
V~eq(X, y, z t + z~) and the computed V, pp(X, y, z t + z~ ~)) is a second-order term. From this we can derive a 
second-order correction to the streamwise velocity component Aver(x, y, 0). 

From 

['Vreq(X, y, zt + zs) - 2 Z(1))] 1 v~op(x, y, z, + + ~ s  F I 3 

~ 2Avx ' (X ' y 'O) {c° s °~ '  + v~')(x'y'O) + ~Tx[(Z' + z~l)) O(z' + _]J 

2Avxl(x, y, 0). (88) 

A*/(x, y) = 4Avxz(x , y, 0) (89) 

we determine by equations (73) or (83), (74), (75) a second-order correction A*zs, A*e r of the mean surface 
(1) ~(T1 ). Zs 
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To obtain the mean surface correct to second order, we have also to determine the second-order terms 
Az~ and A~r by equations (78) or (84) which are related to the load distribution Ira(x, y), equation (86). Thus 
the mean surface is given by 

zs(x , y) = z~l)(x, y) + Azs(x, y) + A*zs(x, y) (90) 

~r(Y) = @)(Y) + A~r(Y) + A*C~r(Y)" (91) 

It may be advisable to compute Azs and Ac~ r before A*z~, A*ct r are computed and to derive a l/7.pp for 
z p l =  zp ~ + Az~. 

4. R6sum6 

It is shown how the incompressible second-order theory for two-dimensional aerofoils can be extended to 
deal with finite swept wings. The flow field is represented by singularity distributions on the 'chord surface' 
which contains the chord at each spanwise station. The induced velocity field is approximated by the velocities 
induced by planar singularity distributions, which can be calculated on and off the surface by the computer 
programs of Refs. 8 and 9. 

For a twisted wing, the boundary condition of zero normal velocity is approximated by an equation in 
terms of the velocity components computed from planar singularity distributions. The boundary condition 
contains the value of the velocity component v z at the surface of the wing. Away from the centre section, this 
can be expressed, by means of a Taylor series expansion, in terms of the velocity components in the plane 
z = 0 (as in two dimensions); but this is not so for the centre section. Therefore, a solution of the problem 
is derived first without using Taylor series expansions. 

The strength of the singularity distributions is determined in at least two steps. A formal solution which is 
correct to first-order is considered first and then a second-order correction is added to it. The choice of a 
first-order source distribution, q(1)(x, y), is straightforward. The derivation of the first-order load distribution 
Itl)(x,y), which satisfies the first-order boundary condition exactly, involves the solution of an integral 
equation in two variables. Since this problem of 'lifting-surface theory' has not yet been satisfactorily solved 
for general swept wings, it is proposed to use an approximation to the first-order load distribution, and solve 
directly the second-order problem. This procedure has the possible advantage that near the apex of the wing 
the downwash is computed only at finite values of z; further the interference effect between thickness and lift 
can be taken into account approximately from the start. It is suggested that the second-order load distribution 
should be determined by an iterative procedure. No practical examples are considered in this Report but the 
decisive question about convergence has been answered positively by Sells. 17"1s The determination of the 
second-order correction to qt~)(x, y) requires only the computation of the various velocity components in- 
duced by qtl~ and I t~). To derive a solution which is valid also near the leading edge, where the perturbation 
velocity is not small, it is suggested that Lighthill's technique of 'strained coordinates' be applied in an ap- 
proximate form by computing the perturbation velocity near the leading edge at shifted values of x and then 
to examine whether the solution satisfies the boundary condition to a required accuracy; if this is not the 
case, then a further modification of the singularities may be made. 

It is further shown that by using Taylor series expansions, which is possible away from centre and tip, the 
computing effort can be considerably reduced, in particular for cambered wings. Therefore the use of a hybrid 
method is suggested, which uses the general relations near the centre and the simpler relations away from 
the centre even though this requires a more complicated computer program. From the known singularity 
distributions the total velocity at the surface of the wing can be computed. However, the formal solution 
derived by Taylor series expansion breaks down near the leading and trailing edges. The approximate and 
the exact velocity distributions for yawed ellipsoids have been compared and a formula has been derived for 
modifying the approximate velocity distribution for a general three-dimensional wing which gives a finite 
velocity at the leading edge and a velocity which is correct to second order away from the leading edge. 

The problem of designing a wing of given thickness distribution which has a prescribed pressure dis- 
tribution on the upper surface is also treated. As a preliminary step, the problem of designing a wing with 
given load distribution l(x, y) is sol'ved. 
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X*, y*, Z* 

X, y, Z 

Zw(X , y*) 

z*(x* y*) 

zt(x, y) 

z~(x, y) 

zw(x, y) 

c(y) 

P 

S 

~r(Y) 
¢p 

V 

Vo 

l(x, y), Al(x, y) 

q(x, y), Aq(x, y) 

Suffices: 
.L 

T 

1 

t 

Superscripts: 

(1) 

(2) 

LIST OF SYMBOLS 

rectangular coordinate system, where z* = 0 is a median wing plane 

rectangular coordinate system, where z = 0 is the plane which contains the singularity 
distributions; the x-axis is along the chord at each spanwise station; in second-order 
theory the difference between y and y* is ignored 

ordinate of the wing surface 

ordinate of the chord surface 

thickness distribution 

camber distribution 

= + zt(x, y) + zs(x, y) 

wing chord 

x - xz(y) 
c(y) 

nose radius 

plan area 

angle of incidence with respect to the plane z* = 0 

twist distribution 

angle of sweep 

= tan- 1 ~-Y* ] 

total velocity 

free stream velocity, taken as unity 

components of the perturbation velocity with respect to the various axes 

strength of the distribution of lifting singularities 

strength of source distribution 

leading edge 

trailing edge 

velocity induced by load distribution 

velocity induced by source distribution 

(except Section 3) 

related to singularity distribution from first-order theory 

related to singularity distribution from second-order theory (except Section 2.4) 
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A P P E N D I X  A 

Second-Order Theory for Two-Dimensional Aerofoils 

Lighthill, 5 van Dyke 6 and Gretler 7 have treated the two-dimensional aerofoil in incompressible flow by 
second-order theory and derived expressions for the components of the perturbation velocity in powers of 
the thickness-to-chord ratio, the camber ratio and the angle of attack. 

The resulting flow field can be interpreted as the velocity field induced by a singularity distribution on the 
x-axis. Lighthill has shown that it is essential that the x-axis is chosen such that it passes through the leading 
and trailing edges. Taylor series expansions are used to express the velocity components on the surface of 
the aerofoil zw(x) = +_ z~(x) + z~(x) in terms of the velocity components on z = 0. 

[ OvAx, z)l 
 x(X, zwt = Jr ot + ] oo 

Ova(x, + O) 
= vx(x, +_ O) + zw Ox ' (A-1) 

[ Ovz(x, z)l 
=  zfx, +_ol + z l 7-z ° 

OVx(X, +0) 
= v~(x,  + O) - z~, ~ x  (A-2) 

In deriving these equations, use has been made of the equations of continuity and irrotationality. These ex- 
pansions break down near stagnation points. Therefore a formal solution is derived first and this is then 
modified near the stagnation points. 

For the formal solution the components of the perturbation velocity are written as the sum of the first- 
order term and a second-order correction term 

v~Z)(x, +0)  = v~l)(x, +0)  + Avx(x, +0), (A-3) 

U(2)(X, 0 )  = U~I)(x, -]-0) -'[- Avz(x, _+0). (A-4) 

The first-order terms are derived from the first-order boundary condit ion '  

dzt(x) dz,(x) (A-5) 
v~ ll(x, +_0)= - ~  + dx  + d~-- 

The solution reads: 

~ / 1  - x 
O{xl)(x, - ] - 0 ) =  S(1)(X) -]- S(4)(x) -]- (A-6) 

X 

where 

1 ~ dz t dx'  
(A-7) J0 S~l)(x) n dx'  x - x "  

s,4){x):x/1-x,f]azs [ x' ax' 
x n d x ' V l  - x' x - 2¢' (A-8) 

The + signs refer to the upper and lower surface of the aerofoil. Inserting equations (A-2), (A-4), (A-5), into 
the second-order approximation to the boundary condition 

+~-x  + [1+ v~l)(x, +0)] = -c~ + v~2~(x, zw) (A-9) 
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leads ~o 

d (1) Av:(x, 4- O) = dx [v~ (x, + 0)zw]. (A- 10) 

The resulting expression for the second-order approximation to the x-component of the total velocity, V~, 
can be written 

V(2)(X, Zw) = COS O~ 1 -['- S(1)(x) -]- S(4)(x) -~- S ( 4 ° ) ( x )  .-b S(41)(x) -{- z w dx2_ ] + 

+ ;.<.. _,<....<>. ] 

where 

(A-11) 

1 ;~ a I- 1 -/7-L--~l / x' dx' (A- 12) 
s<~>/x/= ~ ~ L = , x / ~ j q l _  x , x -  x,' 

1 ~rs,,,z, dx' 
i + SI4)zs] (A-13) 

S('°)(x) = -n ao dx' x - x"  

-;o- j x, S(41)(x)= 1 x- X 7rl ldx,d [S(1)z s+  S(4}z, ] 1 -  x' x -  x" 

f~ a r ~- x'7 ax' 

The total velocity V at the surface of the aerofoil is 

(A-14) 

(A-I$) 

~/ Vz~t ~ 
V(x, z . , )=  Vx(x, z) 1 + 1 dx ] (A-16) 

A second-order approximation to this is 

l[dz~,12 
V(~)(x, z~) = V<~2)(x, z) + ~17-£x I . (A-17) 

We note that V (2) contains two terms, zw(dZz~/dx2), ½(dz~/dx) 2, which are singular near the leading edge, 
x = 0, like 1/x; thus V (z) has a stronger singularity than vTz(1) = 1 + v~l)(x, 0) which is singular like l/x/~. 

To derive from the formal solution of equations (A-11), (A-17) a uniformly valid approximation, Lighthill 
has applied his technique 13 for rendering approximate solutions unifornqly valid and found that for the two- 
dimensional aerofoil it is sufficient to shift the x-ordinate by half the nose radius of the aerofoil, p, if cubes of 
the perturbation velocities are ignored. Uniformly valid values of the perturbation velocities are thus ob- 
tained from 

vx(x, z~) = v~2)( x - P, zw), (A-18) 

v=(x, z,.) = v~= 2) x - ~ ,  zw • (A-19) 
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Lighthill shows further that one can obtain from the formula 

V =  --x + p/2 coso~+ v~2)(x, zw)+ 2~dx]  + 4x 

P l  
= v x + p/zLC°S ~ + ~,'~}(x, 0) + z . ~  + 5 /~ ;x  I + (A-20) 

a uniformly valid result which is correct to first order near the leading edge and correct to second order away 
from the leading edge. 

Van Dyke ~' has compared the exact solution for a parabola with the formal result from second-order 
theory. He has derived the following modification : 

V . . . . . . . . . . . . . . .  + p/2 + bo~/2px[_Jc°s o~ + + z"'~x2 + dx]  + 4x (A-21) 

where b o is the slope of the camber line at x = 0. Equation (A-21) yields a uniformly valid approximation 
which is correct to second order also near the leading edge if the rate of change of curvature of the section 
shape is continuous. This condition is satisfied for those sections where zf behaves like a0x/~ + a z x / ~ 3 - q  - . . .  

near the leading ledge. For some N.A.C.A. sections z t behaves like a o v ~  + alx  + . . . ;  for these equation 
(A-21) yields results of only first-order accuracy near the leading edge. Van Dyke suggest therefore using 
the simpler formula provided by equation (A-20). 

Gretler 7 has suggested a somewhat different modification; it can be interpreted as a replacement of p/2x 
in equation (A-20) by (dzw/dx) 2. The leading term in (dzw/dx) 2 near the leading edge is p/2x, since from 

Gretler's formula reads 

z = + - x / ~  + (+-al + bo)x + ' "  

= ~x + (al + b°) + . . . .  

i.z.l 
cos ~ + ~2~(x, o) + zw~-x~ + ~ dxJ 

V =  
x/1 + (dz,,,/dx) 2 

d [ dz~,l 
cos~, + 4~,(x, 0)+ ax/zwG] 

X/1 q- (dzw/dx) 2 
(A-22) 

We note that for those cambered sections where equation (A-21) is applicable, values from equation (A-22) 
differ from those of equation (A-21) for the very small region near the leading edge where x is smaller or of 
order 2pb 2 . 

Equation (A-22) is similar to the result from first-order theory when this has been made uniformly valid 
by the 'Riegels factor': 

1 + v~ 1 ~(x, 0) 
V = (A-23) 

x/1 + (dzw/dx) 2 

For the special case of an elliptic aerofoil, equations (A-22) and (A-23) agree with the exact value of V since 

: ' ~ ,  o) - 4"i~,  o) = d [z, dZwl = : .  
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Van Dyke has also derived a formula to modify the formal results near the trailing edge of sections with 
finite trailing-edge angle. We do not intend to consider the details near the trailing edge since the error of the 
formal solution is less important and the boundary layer modifies the inviscid solution near the rear stag- 
nation point drastically. 

We note that equations (A-20) to (A-22) give satisfactory results only when v~2~(x, z) is derived from the 
Taylor series expansion, equation (A-l); the equations must not be used with values of v~Z~(x, z) computed 
at z :~ 0, from the formal singularity distributions. We note further that the correction made by equation 
(A-22) to the approximate result 

V(x,z)  = V~2'(x,z) 1 + Idx] 

namely 

c o s  ~ + v~2~(x, zw) + 1 dx ! _ v~2,(x ' zw" /lk/ 
A V  = x/1 + (dz~,/dx) 2 

= Idz~'12 1 - cos ~ - v~2)(x, z~) 

dx I ~/1 + (dz~/dx) 2 

t</2 
+ ~ d x l  

decreases rapidly when moving away from the leading edge. 
In Fig. 14 of Ref. 14 it is shown that, for cambered Karman-Trefftz aerofoils, second-order theory pro- 

duces fairly accurate results even when the ratio between maximum camber and chord is about 0.08. 
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APPENDIX B 

Comparison between some Approximate  Results and the Exact  Velocity Distribution 
on a Two-Dimens ional  Elliptic Aerofoil  

When determining the strength of the singularity distributions q(2)(x,y), I<Z)(x,y) one uses usually the 
boundary condition in the approximate form 

~Zw[ 1 ~z~, _ = 
+ VOI(x ,y ,  + 0 ) ]  -I- - - V ( ' ) ( X  v + 0 )  ~ + V(1)(x,y, zw) -k- AVz(X ,y  , + 0 )  ( B - l )  

c x  - (~y v , , : ,  

(see equations (62) and (A-9)). This equation is derived under the assumption that the first-order singularity 
distributions q(~)(x, y), l(ll{x, y) induce nearly the same velocity components v(~ l) and v~ ~) at z = zw as at z = 0. 
This assumption does not however hold near the leading edge. When deriving equations (59) and (60) for 
Aq(x ,  y) and Av=~(x, y), we approximate v~)(x,  y, z~,), by the first two terms of the Taylor series expansion with 
respect to z, which implies that we assume that the higher-order terms produce differences of small mag- 
nitude; this assumption also does not hold near the leading edge. 

To examine this matter, we consider the two-dimensional flow past a section of elliptic shape, for which 
the exact flow field is known. 

We have derived analytic expressions for the velocity components which are induced at non-zero values 
of z by the source distribu{ion q(t~(x) related to the thickness distribution of an ellipse and the load dis- 
tribution l(x) of a fiat plate at an angle of incidence : 

1 - 2x 
q(x) = t x / x ( 1  - x ) '  (B-2) 

l(x) = 4c~ /1  / 
X 

v X 

where t is the thickness-to-chord ratio of the ellipse and the chord c is chosen as unity. 
These singularities induce the velocity components 

1 fo  1 x -  x' v, , (x ,  z) = ~ q(x')  (x  __ X,)2 mr- Z2 dx' ,  

(B-3) 

1 t "l z 
v=,(x, z) = ~ Jo q(x')(  x - -  x ' )  2 "+" Z2 dx' ,  

1 •1 Z 

IAxI(X , Z) = ~ JO I(X') ( X - -  X') 2 "t- Z 2 dXt' 

1 f l  X -- X' 
Vzl(X , Z) = ~ J 0  l(X') ( x - -  X') 2 + z2  d x ' .  

The integrals can be evaluated by contour integration, similar to the procedure of Section 7.1 in Ref. 9. The 
following relations are obtained : 

x 1 - x  _ 2 x / ~  2 + z 2  2x/(  1 _ x )  2 + z 2  

~x,ix, z) t +  t ~ + , / ( l - x )  2 + z  2 = - -  (B-4) 
2x/~ / ~ v / ~  + z2x/(1 - x) 2 + z 2 - x(1 - x )  + z 2 ' 

52/.  . : ,  .+ , ]  - + z2  - x)2  + =2: , ( u - s )  
Vz,(X, z) = + + - z 2 

/ ~  + Z 2 ~  - -  X) 2 + Z 2 + x ( l  - -  X) --  Z 2 

Vxt(X , z )  = +_0~ 2(X2 + Z2 ) (B-6) 

x /  z 2 , ~  x) 2 + -- x(l x) + X -I- - -  Z 2 - -  Z 2 

v=l(X , Z) = --C~ + (X 2(X2 q- Z2 ) (B-7) 

34 



The related second-order formulae, derived by developing the above relations into series with respect to 
powers of z, read 

zt 
)(2*)/X Z) = t (B-8) x t  ~, , 

4 , f  ~ - x) a' 

(2*) t(1 -- 2X) 
V~t (X, Z) = -I- (B-9) 

2~/x(1 -- x)' 

z) = +eL/1 / b(2*)/ ,  r X 
x l  ~,¢~' - -  ~] X 

( B - 1 0 )  

(2*) ZO~ vz~ ( x , z ) =  - - ~ +  (B-11) 
2 x , / 3 i  - 

We have added the asterisks to ensure that the expressions are not confused with the velocity components 
from second-order theory (the velocity components (2.) vxt . . . .  are induced by q°)(x), l(~)(x) not by q(21(x), ll21(x)). 

We quote in Tables 1 and 2 values of the difference between the exact velocity components induced at the 
surface of elliptic aerofoils and their second-order approximations, related to the first-order values. We have 
chosen elliptic sections with values of the thickness-to-chord ratio of 0.1 and 0-I 5 and note that the nose shape 
of a 15 per cent thick ellipse is very similar to that of a 12 per cent thick R.A.E. 101 section. The table shows 
that small values for the higher-order terms are only obtained at a distance downstream of the leading edge 
appreciably greater than the nose radius p = 0-5t 2. 

According to equation (B-9), the second-order Taylor series expansion of v~)(x, z,) is for the elliptic section 
equal to the first-order term -mtx 0). U z t  ~, 

If we use the boundary condition in the form of equation (B-l) and the Taylor series expansion for 
v~)(x, zt), we therefore obtain for Aq(x) the well-known result 

Aq(x) dz t q")(x) (B- 12) 
2 - t - ~ x = t  2 

It is also known that Aq(x) from equation (B-12) leads (with the Riegels factor, equation (A-23)) to the exact 
pressure distribution on the aerofoil. 

We want to learn how important it is whether we use for o~t"(a)(x,, zt) the exact values at z, or the values 
derived by Taylor series expansion. We consider therefore the source distribution 

Aq*(x) 
~ - -  - [v~)(x ,  z,) - ~ ) ( x ,  0)]. (B-13) 

(Values of - Aq*(x)/q tl)(x) = [1)z (X  , Z )  - -  U z "  (2*)[X~, , z)]/v~(x, 0) are given in Table 1.) We have computed the chord- 
wise velocity component Av*t(x, 0), which would be induced by the source distribution Aq*(x), from 

1 fo 1 dx' Av*z(x, O) = ~ Aq*(X')x - x'" (B-14) 

The result, plotted in Fig. 1, shows that even at mid-chord Av* t is of the same magnitude as Avxt(x, O) = t 2, 
the velocity induced by the second-order source distribution Aq(x) = 2t dz]dx,  equation (B-12). That Aq*(x), 
which away from the leading edge is a term of order t 3, produces such large values of Av*t(x, 0) is due to the 
fact that for x --, 0, Aq*(x) tends to qCl)(x). 

When we apply the boundary condition in the form of equation (31) instead of equation (B-1), i.e. when we 
")~x zt) at the surface by the value at z 0, ")  do not approximate v~, x , = vxt (x, 0), then we obtain for Aq the relation, 

(see equation (34)) : 

Aq(x) dzt dzt r,,(1)tv - ~ ' (1)ix [v~)(x, z,) ~1) 
- - ~ x , .  , - vz ,  ( x ,  0 ) ] .  2 t ~xx + ~xx L~x, ,~, -t, 0)] - ( 8 - 1 5 )  
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We have considered the source distr ibution 

Aq**(x)  dzt (1) 
- I v y ,  (x,  z,) - ~,~'(x, o)1. dx Ev~, (x, z,) - v~p(x, 0)] - "~ (B-16) 

The two terms on the r ight-hand side of equat ion (B-16) are of opposi te  sign, as a consequence IAq**(x)l is 
not iceably smaller than IAq*(x)[. We have computed  Av**(x, 0) induced .by Aq**(x) and have plot ted 
Av**(x, 0) also in Fig. 1. We note that  the source distr ibution Aq**(x) produces a noticeably smaller error 
than Aq*(x). We have compu ted  Av** for several values of  t and quote  some results. 

Av** (x = O. 1, O) 
t t 2 t 2 

0.05 0.136 0.046 
0.1 0.154 0.058 
0.15 0.157 0-074 
0.2 0.136 0.086 

Av~** (x = 0.5, 0) 

These results show that, when we use the boundary  condit ion in the form of equat ions (31), (34), the error  
in the velocity, away from the leading edge, is of  the order  0-1 t 2. 

We draw the tentative conclusion that, for general aerofoil shapes and three-dimensional  wings, we are 
likely to obtain a more  accurate  source distr ibution if with computed  value of ca)Ix v~, ~ , y, z~) we use for 
v~](x, y, z~) and vr t (~}t~r, y, z~) also values computed  at the surface, and that it seems advisable to use the values 
Vx ,ll ,/~., y, 0), %," I~ ~..t~,, y, 0) in z = 0 together  with~values of v~)(x, y, z~) approx imated  by Taylor  series expansion.  
The values of Ivy(x, z ) -  v~z*~(x, z)]/v~(x,O) given in Table 1 show that  it is not advisable to use near  the 
leading edge for ~.~,,")~",~,, y," z), %," ~l)~.t~,, y, z) values derived by Taylor  series expansions.  

For  the elliptic section at an angle of incidence, the boundary  condit ion (B-l) together  with the Taylor  
series expansion for ~z~' ~i)tx~ , z) leads to 

Av~l(x, O) = -- at. (B- 17) 

It is known that this value for Avz~ leads (with the Riegels factor) to the exact velocity distribution. 
Equat ion  (27) gives for Av~l(x, 0) '  

dz'v"~tx, z )  [v~l'(x, z,) .,~1,.. 0)] 

[" mix ,  z a t ]  = - - a t  -~- ~LdZ' [V{1)/X,xl k Z,) - -  1)(x~)(X, 0)] --  Lt/z l ,  t) -- D(zl)( X, 0) - -  2XX (8-18) 

The second and third term on the r ight-hand side of equat ion (B-l 8) are of opposi te  sign (see Table  2), so that  
. ( 1 ) ix .  0 "(1)fv Z) and values of v~t, . ) it is again advisable to combine  values of v~)tx~z ~ , z) with computed  values of ~z~ t--, 

II)tx" with values ot  vz~ ~ . z) app rox ima ted  by Taylor  series expansion.  
However ,  the values of Avz~ given by equat ions (B-18) are not acceptable  close to the leading edge, since 

Av=t tends to infinity as - a t / 2 x .  
This inadequate  behaviour  is due to the fact that  a singularity distr ibution on z = 0 which is to represent  

the flow past an ellipse exactly, must not extend into the leading edge nor into the trailing edge. It is known 
that  the conformal  t rans format ion  

e 2 
~ = ~ ,  + ~-~ 

t ransforms the ellipse with axes c = 1 and t, and centre at the origin of the coordinate  system in the ~-plane, 
into a circle of  radius r = (1 + 0/4 and the slit - 2 R  < ~ < 2R into the circle of radius R, where 
R = x//1 - t2/4. The flow past the circle of radius r can be represented by a source and vortex distr ibution 
on the circle of radius R, and therefore the flow past the ellipse by a source and vortex distr ibution on the 
slit. The length of the slit is 4R = x / l  - t z, i.e. for small values of the thickness- to-chord ratio ~ 1 - t2/2. 
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The singularity distribution on the chord of the elliptic aerofoil begins thus at a distance of about t2/4 behind 
the leading edge and ends at a distance of about t2/4 in front of the trailing edge. The nose radius of the 
elliptic aerofoil is t2/2. 

This result is related to one derived by Lighthill. s He considers a general aerofoil, expands the velocity 
components in powers of e, introduces these expansions into the boundary condition and derives the strength 
of the singularity distributions. He applies then his techniquC 3 for rendering approximate solutions uni- 
formly valid and finds that it is sufficient to shift the singularity distribution downstream (parallel to the 
chord) through a distance equal to half the leading-edge radius of curvature, if cubes of the perturbation 
velocities are to be ignored. Lighthill derives thus the strength of the singularity distributions by using the 
Taylor series expansion for v~tl(x, z) and the boundary condition (B-l) and uses the shifted x-coordinate to 
determine uniformly valid values for the pressure distribution by computing the velocity components from 
the second-order singularity distributions. 

oz(x,z ) = - ) • 

For three-dimensional flow we cannot always use a Taylor series expansion for v~X)(x, y, z). We have there- 
fore examined for the two-dimensional elliptic aerofoil the behaviour of Av~ determined from the boundary 
condition of equation (31) with v~X)(x, z) and v~ll(x, z) computed from the shifted first-order singularity dis- 
tributions q"~, l (t), i.e. we have derived V~xl)(x, zw) and v~l)(x, z~) from the formulae (B-4) to (B-7) by substituting 
I x  - -  t 2 / 4 ] / [ 1  - -  t2/2] for x and t , f ~  - x) for z. The ratio between the values of Av~t determined in this way 
and the values of t dz,/dx, departs by only a small amount from 1 ; the largest difference occurs at x = 0, where 
the difference is [,,,/1 - t2/4 - 1]/tx/l - t2/4, which is approximately - t / 8 .  The values for AVzt are every- 
where finite; at x = 0, the value is -~ t (3  - t2)/2~/1 - t2/4, whilst equation (B-17) gives -~ t .  The difference 
between Av~ and ~t is only noticeable close to the leading edge; for x = t z, Av~t = -0-86~t(1 + 0(t2)). 

We draw from these results the conclusion that, for those cases where the Taylor series expansions for 
v~t I and v~ ) are not used, we can improve the accuracy of the singularity distributions by using the boundary 
condition given by equation (31) with the velocity components v~ ~1, v~ ~ derived from the shifted first-order 
singularities. 

We note that it follows from equation (B-4) that the source distribution q¢a)(x), related to an elliptic aerofoil, 
induces at the distance p/2 = tz/4 upstream of the singularity distribution the velocity 

( ,+t2j2 
v~l~ ' x =  - ,0 - x/1 + t2/4 + t  

which means the stagnation point of the total flow lies at about x = -p /2 .  For aerofoils with non-elliptic 
noses, the distance x s of the point for which v~t)(-xs,  0) = - 1  and the leading edge, x = 0, of q{l~(x), may 
differ from p/2, so that it is likely that a shift of the singularity distributions by x~ instead of by p/2 may 
improve the results. For aerofoils where the nose shape differs noticeably from an ellipse, we have still to 
examine how the results derived in this way compare with exact results and also how the results derived by 
equations (A-11) and (A-22) compare with exact results. 

One might consider modifying the values of Avz very close to the leading edge, obtained from equation (31) 
without a shift of the x-ordinate, by multiplying the values for example by [1 + (dz,/dx) 2]- ~ ; however the 
resulting values, though finite, vary too rapidly for a numerical computation. For the elliptic aerofoil, the 
term Av~[1 + (dz/dx)Z] -1, with Avzt from equation (B-18), behaves near the leading edge like 

[2~/t] [1 - 4x/t  z + .. .]. 

It may be useful to summarise the results for two-dimensional aerofoils. We can derive valid approximations 
to the velocity near the leading edge in the following ways: 

(1) We start with the exact solutions, q~Xl(x), l~)(x), of the first-order boundary condition, equation (A-5); 
compute v~)(x, 0); derive v~tl(x, zw) by means of a Taylor series, equation (A-2); determine the solution 
q~2)(x), l~2~(x) of the second-order boundary condition, equation (B-l); compute v~Z)(x, 0); derive a uniformly 
valid value of V from equation (A-20) or equation (A-22). 
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(2) We determine the singularity distributions q~2J(x), I(Z)(x) as for (1) and compute the velocity at the 
surface of the aerofoil from the shifted singularities q(Z)(x), /(2)(X). 

(3) We start with the singularity distributions q(~)(x), llal(x) as for (1); compute v~l~(x, Zw) , v~lJ(x, Zw) from 
the shifted singularities; determine q(21(x), l~Z)(x) from the boundary condition, equation (31); compute the 
velocity at the surface of the aerofoil from the shifted singularities fl(Z)(x), l(2)(x). 

We note that method (1) needs the least amount of computation, but the method does not allow to check 
the accuracy of the solution which is possible with methods (2) and (3) if one computes not only v~Z~(x, zw) 
but also U~2)(X, Zw) from the shifted singularities qtZ)(x), /(21(X). Method (2) requires less computation than 
method (3), but it uses a Taylor series expansion for v~l~(x, zw), which does not always exist in three dimensions. 
Further, with method (3) it is allowable that Ill)(x) differs from the exact solution of the first-order boundary 
condition, equation (23), by second-order terms; this is of no advantage for two-dimensional flow but it can 
be important for three-dimensional flow. 
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A P P E N D I X  C 

Application of Lighthill's Technique of 'Strained Coordinates' in an Approximate Form 

In Appendix B, it is shown that the strong singular behaviour of Aq(x) and Av=~(x, 0) given by equations 
(B-15) and (B-18) can be avoided by applying Lighthill's technique 5'13 of 'strained coordinates'. 

For three-dimensional flow, the values of Aq(x, y) and Av=~(x, y, 0) given by equations (34), (35) will also 
have strong singularities at the leading edge. Therefore the question arises whether one can determine an 
appropriate shift of the first-order singularity distributions and obtain values of Aq(x ,y)  and Avzt(x, y, 0) 
which behave similar to q(1)(x, y) and (1)r,: v=l ~ ,  y, 0) near the leading edge. Lighthill's technique has not yet been 
properly extended to a finite swept wing. (It is somewhat uncertain whether the same method is applicable 
in a case where Taylor series expansions are not possible for all velocity components.) We therefore aim at 
an approximation.  

For the two-dimensional aerofoil, the shift of the singularity distribution produces a noticeable modi- 
fication of the velocity field only locally close to the leading edge. We may therefore expect that we obtain 
for the three-dimensional wing a reasonably accurate approximation for most of the wing span by shifting 
the singularity distributions at each spanwise station rearwards by the amount  required for the corresponding 
two-dimensional sheared wing. 

Consider a sheared wing, where the angle of sweep is ~0 and for which the streamwise section has the nose 
radius p and the chord c. The section normal to the leading edge has the nose radius PN and the chord 
eN = c cos ~9; since pN/c N = (1/cos 2 ~9)p/c, it follows that PN = (1/cos q~)p. The singularity distribution has to 
be shifted by ½PN normal to the leading edge, this means by ½(1/cos q~)PN = ½(1/cos a q0P in the streamwise 
direction. 

We must expect that this amount  of shift produces the least satisfactory approximation close to the apex. 
To obtain some guidance on how to improve the approximation near the apex, we consider an uncambered 
swept wing at zero angle of incidence for which the streamwise section shape is constant along the span. For 
this wing the boundary condition reads for y > 0: 

dz,[1 
dx + vx,(x, y, zt) - tan qwyt(x, y, z,)] = vz,(x, y, z,). 

(We note that the term vx, - tan ~ovy t is equal to l/cos ~0 times the perturbation velocity normal to the leading 
edge.) We have mentioned above that for the elliptic aerofoil the distance p/2 is approximately equal to the 
distance between the point, - x  s, where v,,(~)(- x~, z . . . .  0) 1 and the leading edge, x 0, of the dis- 
tribution q(~)(x). For the swept wing, one would therefore like to know how the distance between the leading 
edge x = y tango, y, z = 0 and the points x~(y), y, z = 0 for which 

(~1 x , i  x 0) 1 Vx, (s(y), y, 0) - tan q~vy, (~(y), y, = - 

varies along the span. We have not yet determined values of x~(y), except for the centre section where the 
velocity v~lt)(x, 0, 0) for points in front of the leading edge of the source distribution q(~l(x, y) is equal to cos q~ 

r .  ( 1)(7( times the velocity kvx, ~.,0)]2D of the two-dimensional unswept source distribution. This implies that the 
stagnation point at the centre section of the swept wing is closer to the edge of the source distribution than 
for the two-dimensional unswept section. For a wing with elliptic section shape, the velocity 

COS q)[u(lt)(--Xs, 0)]2D 

is approximately - 1 for x~ = cos 2 ~0 t2/4 = cos 2 ~o p/2. (It follows from equation (B-4) that for x < 0, z = 0: 
v~ = - t (1  + 2[xi)/2x/~x/1 + Ixl + t.) We therefore expect that an appropriate shift of the singularities at 
the centre section is cos z ~op(y = 0)/2, whilst away from the centre section it is (I/cos 2 q~)p(y)/2. We can ex- 
pect that the variation from p cos 2 ~o at y = 0 to p/cos 2 ~o for large y is very rapid near y = 0, similar to the 
rapid change of the measured pressure coefficient at the leading edge. 

The varying shift x~(y) of the source distribution mentioned above would produce a curved leading edge 
for the source distribution. The computer programs of Refs. 8 and 9 are written for singularity distributions 
with straight edges. We would therefore obtain a simpler computer program, and probably results of similar 
accuracy, if we compute from the unshifted singularities the velocity components at the shifted points 
x - ½p(y)/[cos ¢p(y)]2. 

It is to be expected that, when the velocity components V~xll(x, y, Zw) , v~l)(x, y, Zw) , v~l)(x, y, z~) are computed 
at the shifted points, equations (34), (35) would lead to improved values for Aq(x, y) and Av~t(x, y, 0) near the 
leading edge. Numerical calculations using such a procedure have not yet been done, so that we cannot yet 
say whether further modifications near the leading edge are necessary. Numerical examples will also show 
how far behind the leading edge we have to go before it is sufficient to approximate v~l)(x, y, z) and 
v~l)(x, y, z) in equations (34), (35) by their Taylor series expansions with respect to z. 
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A P P E N D I X  D 

Veloc i ty  Dis tr ibut ion  at the  Sur fac e  o f  an  El l ipsoid 

We consider the ellipsoid 

~2 q2 2 Z w 
a z + ~ 5 +  c ~ =  1, (D-l) 

where the rectangular  coordinate  system 4, ~/, z is derived from the system x, y, z by a rotation,  i.e. 

= x cos ~o - -  y sin ~o) 

+ y cos q~J" ? r/ = x sin ¢p 
(D-2) 

The velocity of the undis turbed flow is parallel to the planes y = const. 
Lock 1° has shown (see also Refs. 15, 16) that  the componen t s  of the velocity at the surface of the ellipsoid 

can be determined from the relations 

Vx(x,y,z~) 1 + k ~ x /  + l a Y /  _] 
[ t zqq 

= ( A c o s  2 ~ 0 + B s i n  2~0) cos~  1 + / 0 Y ]  J + 

+ (A - B) sin ~o cos ~o cos ~ - -  - -  
~ z  w ~ z  w az w + C sin ~-- (D-3) 
~x ~y ~ x '  

[ {?z~12 {~z~ 12] = -(A cos2 ~p + Bsin  2 (p)cosc~ ?~z" ~z~ 
v,(x, v ~-w) I + I ,'x I + 1 ay I ax ay 

- ( A -  B) sin ~o cos cp cos :t 1 + l g x ]  + C s i n ~ ? ) ~ ,  (D-4) 

[ ( )  OZw 2 lazwl21 = (A cos2 q~ + Bsin2 ~o)cosc~o~ - -  
~(x,y,-~) I +  a.~ + iay l  J 

- (A - B) sin q~ cos ~o cos c ~  + C sin El c?x ] + 1 3y } (D-5) 

A, B, C are constants  which are related to the lengths of the axes a, b, c of the ellipsoid by the following 
equat ions 

2 
A -  

2 - So 

2 
B -  

2 - rio 

2 
C -  

2 - 7o. 

(D-6) 

and 

~o = a b c  x/(a 2 + )l.)3(b 2 + ,~)(c 2 + 2) 

flo = abc d2 
0 x/(a  2 + J.)(b 2 + ;~)3(c2 + J,) "f 

fo 70 = a b c  x/(a 2 + 2)( b2 + 2)( c2 + 2) 3 

(D-7) 
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We note from equat ions (D-3), (D-4) that  the terms due to incidence C sin ~ Ozw/?~x, C sin ~ OZw/Oy in the 
expressions for V~, V r, do not vanish at the ' trail ing edge'  (defined by z = 0), i.e. a K u t t a - J o u k o w s k i  con- 
dition, as required for a wing with sharp trailing edge, is not satisfied. The given velocity field due to angle of  
incidence is an t i symmetr ic  with respect to the planes ( = 0 and ,7 = 0, which means the total lift on the 
ellipsoid is zero. 

The equat ion for the total  velocity on the ellipsoid can be written in the form 

= [,Acos2 + sin2 ,cos +Csin  ]2 + 

. Oz~] ~ 
+ - ( A  - B) sin cp cos cp cos ~ + Csm=~yj  

3z~, 
+ (A cos z <o + Bsin2 <o) c o s c ~ y  + 

+ (A - B) sin ¢p cos q~ cos a ~ - x ]  

+ 

(D-8) 

We consider now ellipsoids which are similar to wings in that the thickness- to-chord ratio of sections 
normal  to the q-axis, c/a, is small compared  to unity. For  small values of c/a and b > a, the constants  A and 
B have values close to 1.0, i.e. the differences A - 1.0, B - 1.0 are of order c/a (see e.g. Figs. 2 and 3 of  Ref. 
16). We want  to rewrite the expression for the velocity V(x, y, zw), given by equat ion (D-8), in terms of the 
velocity componen t s  V~Zl(x, y, Zw), v~Z)(x, y, Zw) derived from a second-order  theory. We learn from equations 
(D-3), (D-4) that approx imat ions  to V x and V r which are correct to second order are given by the relations 

ozw ioz.l 
V~2)(x, y, Zw) = (A cos 2 ~0 + B sin 2 ~o) cos ~ + C sin ~A~-x - 10x  ] ' (D-9) 

(2} OZw OZw OZw Vy (x,y, Zw) = - ( A  - B)sin ~ c o s  ~ c o s ~  + Cs in  
Oy Ox ~y" 

(D-10) 

With these relations, we can write the equat ion (D-8) for the total velocity V(x, y, z~) in the form 

= V~2)(x'y 'Zw)+ l ax]  + V~2)(x' y ' z~ )+  ?,x ?~y_] + 

[~3zwlZ]~3zw- V~yZ'(x,y, zw) + (D-11) + v~2)(x, y, Zw) + ~ ~x ! j ~y Ox ~y J ~,x j " 

Following Lock ' s  suggestion, we make  use of this relation between the total velocity V(x, y, Zw) and the 
velocity componen t s  V~2)(x, y, z~,), V~2>(x, y, Zw) by second-order  theory also for general wing shapes. There-  
fore, we consider some details of equat ion (D-11). 

Velocity componen t s  V~Z>(x, y, zw), V~y2)(x, y, Zw) which are correct to second order are not uniquely defined, 
because they can differ by third- or higher-order  terms. If we were to ,compute for an ellipsoid at zero angle 
of incidence a source distr ibution q(Z)(x, y) as described in Section 2.3 and 'from this the velocity componen t s  
O (2)1"~ Zw), "(2)/'v" Zw) , then the terms 

G2)(x, y, Zw) + ~ & I = 1 + G2~(x, y, Zw) + ~ Ox I 

and 

~Z w ~Z w 
v~2~(x, y, Zw) + 

Ox Oy ~y~ ,~, y, zw) + - -  - -  
~Z w ~Z w 

Ox c3y 
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would not be constant as are those defined by equations (D-9), (D-10); they would have strong singularities 
at the leading and trailing edge. However, if we were to compute first Vxt dl)(X, y, 0), I'(lltY y, O) (which are in- 

(21 X ' " {2)(x" dependent of x and y) and use equation (59) to derive Aq(x, y), then also v~, ( , y, 0) and vy r ~..,.v, 0) are 
independent of x and y. If we use then the Taylor series expansions, equations (63), (64), to derive the velocity 
components at the surface, we obtain 

/ < t  = I z w - -  , (D-12) 

a l az4  Oz w 8z~ _ v~2)(x ' Y, O) + ~Yl ZW~x ]" (D-13) V(YZ)(x' Y' Zw) + aX aft 

The terms on the right-hand sides of equations (D-12), (D-13) do not contain singularities but are constant 
over the planform of the ellipsoid. If the terms given by equations (D-12), (D-13) are inserted into equation 
(D-1 l), then we obtain uniformly valid values for the velocity V at the surface of the ellipsoid, which are 
correct to second order. 

If we were to determine a second-order solution for the ellipsoid at an angle of incidence for which the 
Kutta Joukowski condition is satisfied at the trailing edge, by using equations (25), (27) and (60), then we 
can expect that v(2~tx ~ v ,  Y, 0) would behave near the leading edge like 1 ~ n i x -  xL(y), i.e. like ?~zw/3x and 
U(2)t.. ,s,~ t.~, y, 0) like c~zw/Sy. The expressions 

[ezq~ ~1 ~z4 
v%='(~,y,=~) + l axl = c o s ~  + ~ 2 ' ( x , y , 0 )  + 4 ? ( x , y , 0 )  + ~ l z w ~ ]  (D-14) 

and 

,2, .  zw) c~z,, ,~z~, _ -(2,t~c y, O) + v,., ( ,y, 0) + ~yyt Z,~xx J (D-15) V,. (~,, y, + ax 0~' ~ ,  ,- ,  _ ,~2~ x a [ azwl 

(where ~2)[~ 0), V~; t ~ , F, l!x, , , . ,  y ,  (2)/'X 0), V{x2)(X, y,  0), (2) . v y ~  (x, y, 0) are determined from equations (25) to (27), (59), (60)) 
have thus the same behaviour as the terms given by equations (D-9), (D-10). By inserting equations (D-14), 
(D-15) into equation (D-l l), we therefore obtain uniformly valid values of the velocity at the surface of an 
ellipsoid which ave correct to second order. 

The third term in equation (D-11) 

{[ [ _ < l < y  

{[ 0, <,q< COS ~X + V{x2)(X, y, 0) + " (2)(X 0) + 
= - ~ "  ' Y' ?~x I zw ?~-x / J 8 y  

[~, + ,c2~x a /  azwl7az~l ~ 
- _ + 

can be modified, without losing the second-order accuracy, into 

{ L'(Z)(x' 0,1 oZw y, 0 ) ] ~ }  2 [ c o s ~  + ~ , ,  ,~ ,  , , ~  - [4,~'/x, 

because the term v(2)iY ~x~ ~-,, .v, O)?zw/?y _ vy t(a~(x, y, O)?zw/?x vanishes, at least near the leading edge. Further, it 
follows from equations (D-l), (D-2) that 

e l e z 4  e2[  a 2 ] 
~ / z w ~ j  = - ~  cos 2 ~ + j s i n  2 ~0 , 

 zw, c2 [ a2] 
~ / z w  ~ j = j sin ,~ cos ~ I - ~ , 

which means that these terms are of second order. 
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Summarising, we can state that we obtain uniformly valid values for the velocity at the surface of an 
ellipsoid which are correct to second order from the relation 

[ 2]E  zw,12 
V2(x, y, zw) 1 + / ax  ] + ~ ay I = cos  ~ + ,~x , , ,  y, 0) + 

F (2,,x o) + @(x, y, o) + a ( azwt]2 
+ L~, ,  ,~, _ ~ . z ~ / /  + 

{ ..,~,,~ 0 , ~  ,,,~,,~ 0,<~ ~ + Ecos o~ + Vx, ~ , y ,  - y ,  (D-16) 
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A P P E N D I X  E 

A Modification to the 'Basic Formula' in the RAE Standard Method 3 to 
include all Second-Order Terms for the Sheared Wing 

Applying equations (A-l 1) and (A-22) of Appendix A to the infinite sheared wing, we obtain 

V 2 = c o s  2 o( sin 2 tp + 

{ [ s,,, s,4o, s,41, 1  zw,1 
cos~cosq~  l + - -  + - -  + - -  + - -  + 

c o s  ~o - c o s ,  c o s  ~ , - c o s  ~ , c o s ~ ,  ex ~ ] ]  + 

+ s i n  L c°s~° + 1 + c o s ~ o !  

[ az~/ax] e 
1 + ~ c o s r p /  

(E-l) 

This equat ion can be written in the form of equat ion (69) with 

~2Z w 
U(21(X, Zw) = COS (pS (1) -1- c o s  (pS (4) ÷ S (401 ~__ S (41) ÷ z w ~ x  ~ ÷ 

+ s i n  :x S (44j + c o s  -[- S (3 - -  , 
x 

(E-2) 

We write ,,{2) L, x 

Ref. 3 and addit ional  terms" 

v~Zl(x, z.,) = cos q)S~l~(x) + cos ~oS~4)(x) + sin c~cos 1 + cos (o j  + 

+ SI4°I+ z, + G  +sin:~#*4) _+ S ~ 4 ~ +  z, + z ~ ( ? ~ ]  . 

The formula  for the velocity at any spanwise stat ion as given in Ref. 3 reads : 

v~2~tx z~,) = - tan ~Ov~xZ)(x, %). - (E-3) y I- 

as the sum of the terms which are included in the formula of the s tandard method given in 

(E-4) 

vii, + lcos ~0"] = cos ~e I + K3 COS,Od'' -- V 1  + (az, /~x) ~ J + ( cos(7~m~ 2 

+ H s i n % c o s ~ o , ,  1 ÷ c o ~ * J ~ /  1 + l c o ~ . l  j j + 

[ {cos~ co~(,~,.) + cos %(1 - IK21) sin ~%S (n _+ N / c O s 2  (/]'(Pm) - -  COS2 (Pro ~ ÷ 

+ H sin %~/cos  2 (2G,) - cos 2 %, 1 + cosign, j x 

× 1 + ~oGT~*/ + (1 - / ~ g s i n  ~ ~ o , ~ o s ~ . . l ~  ] 

+ 

(E-S) 

We note the similarity of this formula with equat ion (69). We suggest modifying only the first term on the 
r ight-hand side of equat ion (E-5), which means modifying only the G contr ibut ion into 

( &,,,,l 
42'(x, y, o) + ~ zwT; ]. 

To do this, we add to the symmetr ical  term (i.e. the approx imate  V{xlt)(x, y, 0)) a term corresponding to the 
term 

a V az, &~] 
AG, = S (4°) + O~e S(44) + cTxLZt~x + ZS~X] (E-6) 
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of the sheared wing and to the antisymmetric term (i.e. the approximate v")tx , xt ~ , , ,  0)) a term corresponding to 

~' l ~== ez, /  
AUxl = S ( 4 1 ,  .j- ~ [  Zt ~.mX "~ Zs~jx}" (E-7) 

For the sheared wing, the term S t'*°) + aS (44) takes account of the source distribution Aq given by equation 
(59), which reads in this case 

Aq(x, y) 1 3 
- " " " x  ,, 0) + z~(x, y)r,~?(x, y, 0)]. 2 cos 2 (o t~x [zt(x' Y)Vx~ t , ). (E-8) 

Equation (59) however is not applicable at the centre section if v~])(x, y, 0) is the value of the spanwise velocity 
in the plane z = 0 derived from the source distribution q(i)(x, y) = 2 ?,z]?x because "~-,~/P- is infinite for I.'l~), t 1 t . j ,  

y -+ 0. The singularity is only logarithmic; if one uses instead of -yt'U)/",-', y, 0) an approximate value v*, for which 
avy/ay is finite for y -+ 0, then one may expect that equation (59) produces a reasonably accurate approxi- 
mation to Aq for any spanwise station of an uncambered wing. Such an approximate value of v* t is given by 
the standard method, where 

vy,'* = - (1  - IK2(Y)l ) sin (otS (1) (E-9) 

and 

,~  - , (1)  Oz t  Vxt = COS ( o t o  - -  K 2 c o s  (ot.f((ot)~-x. (E-  10) 

The approximate values of"t~) ' ¢I) given by the standard method, read ~'xl ~ c'],,l 

[ 1  - x / "  ,. -~ cos(o,, 7 + Hc%cos(o,, ] (E-11) 
c~, = - c o s  (~(om) 2 - / ~ - -  ' 

vy*~ = - tan '* (ovv ~t, (E-12) 

where % is the angle of sweep of the bound vortices. (or varies between (or = 0 at y = 0 and (o,, = (O,, far away 
from the centre section. The standard method uses the interpolation function 

x/cos z (2(o,,) - cos 2 (ore 
tan (or = (E-13) 

COS (ore 

The spanwise derivative of vy*~ as given by equations (E-12), (E-13) is infinite for y 0. If we want to use vx~ 
,* in conjunction with equations (59) and (61), we have to modify the function for tan (o~,. One possible and cyl 

choice would be 

dxar(Y) 
tan(ov(y ) - _ _  

dy 

(o,. d2(y) 
= tan (ore + 

2n dy 

2n tan ( o , . y  

(om 
= tan ( O , , j I +  (2n tan (omy) 2 ~ , .  

(E-14) 

When Ira(x, y) is an exact solution of equation (27) and vy~U):x~, y, 0) is determined from equation (47), then we 
may expect that the spanwise derivative of v~ ) is finite for y --. 0. 
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When we insert the values of Vx,*, Vy,*, vxj*, v~, l* , given by equations (E-9) to (E-12), (E-14), into equations (59), 
(60), then we obtain values for an additional source distribution Aq and an additional required upwash Avzt. 
One might consider to determine from Aq and Avz~ values of Avxt and Avxt in a manner which is similar to 

'* and ,* from q"l(x, y) = 2 ?,zt/Ox and ~z~ that for determining v,: t t,,a -~a) = ~zjOx - o~. We suggest deferring the cor- 
responding modification of equation (E-5) until we have done some sample calculations using the methods 
of Sections 2.3 to 2.5. We therefore include only the second-order terms which are appropriate to a 'sheared 
wing', this means we propose to use Av~, from equation (E-6) and Av~t from equation (E-8), where the terms 
S ~4°1, S ~1), S {4.1 are derived from the section shape at the spanwise station y under consideration and equations 
(A-7), (A-8), (A-13) to (A-15). The modified formula which would replace equation (3) of Ref. 3 and equation 
(E-5) reads then 

V 2 1 + 1 c°sra*] cos % 1 + K3cosrat S i n -  x/1 +(0zjOx)  2 + S  ~4m+%S ~ +  

FZ ~Zt ~Zsl 7 f< COS ~X e COS rant "~ 
+~xx E tc~xx + Zs~x] ;  -+~ COS(Jlram) 2 + H s i n % c o s ( 0  m x 

I-  (l+xt  cos m l. 
x L 1 + c o s t a  cosra*t x ] S(*" + 

r [, + C zwj x 27o.s-n]2 + 

F 
+ Lcosae(1 -IK2l)sin 

+ H sin ~ex/COS 2 (2ra.,) 

+ / c ° s  ra* ] 

+ (1 - K 2) sin z rat c°s2 

.,/cos z (,Ira,.) - cos 2 ra" y + 
ra,S"l + cos~e cos (2ra,,) 

- cos~ @ + ~'~' l /1  - ~/ 
cosra*Jt x /"} × 

-n12 + 

lazw/axl 2 %o~>* ) IE-15t 

One could of course modify the higher order terms in equation (E-15) such that V(x,y, zw) behaves near 
the leading edge like the velocity given by equation (69). Such a formula may read 

V2(x,y, Zw) 1 + lcos ra**] j os % 1 + K 3 cos ~otSm ,,/1 + (Ozj~x) 2 + + %S~44) + 

?~ F Ozt 3z~]} ~fCOS%COS~m 7 + Hsin%cosra, , ,  x 
+ ~ L ~ , ~  + z ~ j  _+ t COS(,~ram) : 

c ~ J  cosra*/ x / s<~'+ 

[ { ,/cos~ c~,,,) - cos,- ra,,, :, 
+ c o s ~ ( l  - IK21 )sin ra,S ~ + c o s ~  

- cos  (2~.,)  2 + 

+ H sin ~x /cos  2 (2ra.,) - cos 2 ram 1 + cos 4o*_] / x ] 

{ {  K z c ° s  ~°if(ra')3zJ?'x] t an<o**-  
+ 1 + K 3 cos ratS ~l) - x/1 + (c~zjc~x) 2 J 

- ( i  -IK~l)sin ra'S" '} ~ [ &~'l ax ! (E-16) 
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with 

(p**(y) = x/1 -- K~(y)~o(y). (E-17) 

APPENDIX F 

Some Comments on Equation (69) 

We have mentioned in Section 2.5 that equation (69) is rather similar to the basic formula of the standard 
method, equation (E-5), but that, close to the leading edge, there are some differences. With the term 
(c~zw/Ox)2/cos 2 ~p in the denominator of equation (69), we use in equation (69) the geometric angle of sweep of 
the leading edge, whilst in Ref. 3 we use for q) a function, ~p* = [1 - IK2(y)l]~,(x), which varies between ~p = 0 
at the centre section and the sweep c&(x) of lines of constant percentage chord, [x -Xz(y)]/c(y)= const., 
further outboard. We cannot yet say whether the results from equation (69) would be improved or other- 
wise, if we were to change the value of ~0(y). 

Instead of the term 

2(oz.)2 
-("tx 0)} ~-x {[1 + v~t)(x, y, 0)] tan ~p + %,,  , y, 

in equation (69) the standard method contains the term 

--2, ,, sin2 ~P, [3z~,l z 
[1 -- l ~ 2 t y ) J ~ l  ~x ] 

For an uncambered wing at zero angle of incidence, equation (69) gives for the velocity at the leading edge 
away from the centre section : 

V(xL, y, O) = [1 + V~I)(XL, y, 0)] sin q~ + /)~I)(XL, y, O) COS (.p (E-l) 

whilst the standard method gives 

V(XL, y, O) = ~/1 -- K~(y) sin ~p. (F-2) 

Equation (F-2) was chosen to represent the rapid spanwise variation near the apex of the pressure measured 
at the leading edge and to give at the apex of an uncambered wing at zero angle of incidence the correct 
value V(XL, 0, 0 ) =  0. Equation (F-2) does not however represent the fact that the spanwise variation of 
V(x L, y, 0) will depend on the thickness of the wing. Such a dependence is given by equation (F-l). 

Equation (69) does not however give the correct value of V(XL(y), y ~ 0) at the centre section of an un- 
cambered swept wing at zero angle of incidence, namely zero. This is due to the fact that v~lt)(x, y = 0, 0) con- 
tains a term proportional to q(1)(x, 0), i.e. to 2 Ozt(x, O)/?x. If we modify Aq(x, y) from equation (34) so that it 
behaves similarly to q(1)(x, y) near the leading edge, then Avx,(x, 0, 0) and v(~)(x, 0, 0) behave also like 1/~/~ 
near the leadirig edge. Therefore, V(x, O, zw) from equation (69) is infinite at the leading edge. This 'fault' of 
equation (69) is in practice not a serious one, since it affects only a minute area of the wing; the failure is not 
surprising because equation (68), derived from the flow past an ellipsoid, is not applicable. 
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T A B L E  1 

Dif ference  between the exac t  values  o f  the veloci ty  component s  induced at the surface o f  

e l l ipt ic  aerofoi ls  (z  = t ~ ( 1  - x) )  by the source distribution 

1 - 2x  
q(x) t 

~ ( ( 1  - x )  

and their second-order approx imat ions .  

vxt(x,z) ,,(2*)ty ~ 
- -  ¢ x t  ","~ ~: 

v~,(x, z) _ ~,"(2")"~', z) 

x Vx,(X, O) vz,(x, O) 

t = 0.1 t = 0.15 t = 0.1 t = 0.15 

O@ 

0.885 

0 .277 

0 .134 

0.078 

0-051 

0.036 

0-027 

0-020 

0 .016 

0.013 

0.006 

0.003 

0.002 

0.001 

0-001 

0.001 

0C 

1.983 

0.705 

0.364 

0.222 

0.149 

0-107 

0-080 

0 .062 

0 .049 

0 .040 

0.018 

O.O09 

0.006 

0.004 

0.003 

0-002 

0 .002 

0-002 

0 

0.01 

0.02 

0-03 

0.04 

0-05 

0.06 

0-07 

0.08 

0.09 

0.10 

0.15 

0.20 

0-25 

0-30 

0.35 

0.40 

0.45 

0.50 

- 1  

- 0 .227 

- 0 - 1 4 3  

- 0 . 1 0 5  

- 0.084 

- 0 .070 

- 0-060 

- 0.053 

- 0.047 

- 0-043 

- 0 .039 

- 0 .028 

- 0.023 

- 0-020 

- 0 . 0 1 8  

- 0 . 0 1 6  

- 0 - 0 1 5  

- 0 - 0 1 5  

- 1  

- 0 . 3 5 0  

- 0.247 

- 0 . 1 9 4  

- 0 . 1 6 0  

- 0 . 1 3 7  

- 0 . 1 2 0  

- 0 . 1 0 7  

- 0.097 

- 0.090 

- 0.082 

- 0.061 

- 0 .050 

- 0.043 

- 0-039 

- 0.036 

- 0-034 

- 0.033 
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T A B L E  2 

Difference between the exact  values of  the velocity components indueed at the surface of  
elliptic aerofoils  (z = t x / ~ i  - x))  by the load distribution 

l(x) = 4 c ~ / 1  - x x 

and their second-order approximations.  

vx~(x,  z )  - , c 2 . 1 . ,  z )  v 4 x ,  z)  - • ,2., ,~ z) Vzl b. ~., 

x vxt(x, O) vz~(x, O) 

t = 0.1 t = 0.15 t = 0.1 t = 0.15 

- 1  

- 0.223 

- 0 . 1 3 9  

- 0 - 1 0 1  

- 0 .079 

- 0-065 

- 0 . 0 5 5  

- 0.048 

- 0 . 0 4 2  

- 0 .038 

- 0-034 

- 0-023 

- 0 . 0 1 7  

- 0 . 0 1 3  

- 0 . 0 1 1  

- 0.009 

- 0 .007 

- 0 .006 

- 0 .005 

- 1  

- 0 - 3 4 4  

- 0-240 

- 0 - 1 8 6  

- 0 . 1 5 1  

- 0 . 1 2 8  

- 0 . 1 1 0  

- 0 . 0 9 7  

- 0 .087 

- O.078 

- 0-071 

- 0-049 

- 0.036 

- 0 .029 

- 0.023 

- 0 . 0 1 9  

- 0 . 0 1 6  

- 0 . 0 1 3  

- 0 . 0 1 1  

3(3 

1.765 

0.552 

0-266 

0-156 

0-101 

0.071 

0.052 

0 .040 

0.031 

0-025 

0.011 

0.006 

0-003 

0.002 

0.001 

0.001 

0.001 

0 

0.01 

0.02 

0.03 

0.04 

0-05 

0.06 

0.07 

0.08 

0.09 

0.10 

0.15 

0.20 

0-25 

0-30 

0.35 

0.40 

0.45 

0.50 

O(3 

3.955 

1.403 

0.723 

0-441 

0.296 

0-211 

0.158 

0.122 

0.097 

0 .079 

0 .034 

0-018 

0-011 

0.007 

0-005 

0.003 

0.002 

0.002 
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O' 06 

0'05 

A "d'xt 

0"0~ 

FIG. 1 

0"03 

0 '02  

0'01 

P_llips¢ , t/c = 0.1 

I 

/ x~ ,  (x') d x' 
'v'x,. (x)  = 7 ",," , ,  - ,<' 

O 

d z  t 
O) : A ~ = 2 t  d ' - U  

• _ a=,. r.,.,.f,> <, ,  1 
(3 j  : a <~ = ~-g-~-~ L ~ (x, z 0 - ~ < t ( x , o ) j  

_~ r..,,~, (×, z~)-v<~_'< (x, o) ] 

~.(3) 
0 l I I I I 

0. I  O'P- 0 .3  0.4- O,S 

x/c 

Various incremental velocities for the ellipse at zero angle of incidence, see equations (B-12) to (B-16). 
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F]~. 2 Downwash to be produced by the additional load distribution Al(x) for two-dimensional aerofoils 
at an angle of incidence, see equation (44). 
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