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Summary. 
An analysis is given for the potential flow through a cascade in which a change in axial velocity occurs. 

An approximate solution of the derived potential equation is obtained and applied first to a flat plate 
cascade and then to a cascade of blades with camber and thickness. In the former application Weinig's 
exact solution is used as a first approximation while in the latter application Schlichting's analysis is 
used as a basic solution and then modified to account for the change in axial velocity. 

Calculations demonstrate the effect of change in axial velocity on the cascade performance. 
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1. Introduction. 

Experimental cascade data is widely used in the design of axial flow compressors. Many attempts have 
been made to predict the performance of compressor cascades with varying degrees of success. Most 
potential-flow theories assume purely two-dimensional flow through the cascade, which is a reasonable 
assumption when the cascade is operating well away from stall. However experiments (Rhodenl, Pollard2, 
Shaalan 3) have shown a remarkable flow contraction across the cascade when the side wall boundary 
layer is not removed. The increase in axial velocity, which is a measure of the contraction, may be some 
30 to 40 per cent of the inlet axial velocity near the stalling point. This enormous contraction appears 
to be due to the boundary-layer separation initiated in the corner between the blade suction surface and 
the side wall of the wind tunnel. Such an acceleration severely limits the static-pressure rise that can be 
achieved by the cascade but it may at the same time delay stalling because of the reduction in the adverse 
pressure gradient through the centre of the cascade. 

In order to predict the stalling incidence, the pressure distribution round the blade profile must be 
calculated as accurately as possible. In a two-dimensional flow, an inviscid-flow solution, with equal 
velocities on the upper and lower surfaces close to the trailing edge, is shown to be a good approximation 
to the real flow (Gostelow, Lewkowicz and Shaalan4). But for accurate determination of the pressure 
distribution, the effects of the three-dimensional contraction of the flow must be included. 

Some attempts have been made to solve the potential flow including an axial velocity change. Mont- 
gomery 5 has created a reduction in axial velocity through a compressor cascade by placing an obstacle 
in the downstream flow and has also approached the problem theoretically, replacing the obstacle by 
a series of doublets. Bollard and Horlock 6. have modified the two-dimensional analysis of Schlichting 7, 
including strip sources and sinks to account for the change in axial velocity. The strip singularities were 
of constant strength in both directions, normal to and along the cascade, producing a linear change in 
axial velocity within the cascade. Recently Norbury a has approached the problem by regarding each 
aerofoil as an element of an annular cascade. The radial flow, which corresponds to axial velocity in the 
conventional case, was obtained by locating an infinite line source or sink along the axis of the annulus. 
This he superimposed on a uniform axial flow and solved the problem for a single conical or near conical 
aerofoil. Two cases were considered, aerofoils of zero camber and thickness and aerofoils of zero thickness 
but with camber. Results for the circulation over a range of incidence and stagger are reported in Reference 
8 for radially inward and outward flows. 

In the present Report the problem is approached differently. The continuity equation is manipulated 
to arrive at a Poisson partial differential equation for the velocity potential. The solution of this equation 
follows that suggested by Price 9 for the case of compressible two-dimensional flow where a similar 
equation arises. 

The method of solution is simplified and applied first to a flat-plate cascade then to a cascade of blades 
with camber and thickness. The latter application may be regarded as an improvement on Pollard and 
Horlock's modification of the Schlichting analysis. 

2. Analysis. 

2.1. The Equation for the Potential. 
Figure 1 shows a diffusing flow through a cascade. An x, y, z co-ordinate system is used. 
The continuity equation in three-dimensional incompressible flow is : 

OCx OC r OCz 
Ox +O-~+Oz = 0 (1) 

*Kubota, S., J.S.M.E. Bulletin, Vol. 5, No. 19 (1962), has also suggested that a change in axial velocity 
may be introduced by including sources whose strengths vary arbitrarily in the x-direction only. However, 
for a cascade of arbitrary aerofoils, he restricted the problem to the case of sources uniformly distributed 
in both the x and y directions. 



where Cx is the axial velocity, Cy is the tangenital velocity and C~ is the spanwise velocity. 
Since the flow is irrotational 

8Cx OCt = O,  

Oy Ox 

and defining a potential function q~ so that: 

a¢ a¢ a¢ 
c~= a~,c,= a-s,c~= N 

it follows that 

Oz¢ . 02¢ OC~ 
Ox z ~--~y2 = az " (2) 

The approximations made here involve the term on the right hand side of equation (2), 

ac~ 8z¢ 
8z 8z z " 

It is assumed that near the x-axis (the centreline of the cascade) the intersections of the stream surfaces 
with any (x,z) plane are lines passing through a common point 0 on the x-axis, which is taken as the origin. 

It then follows approximately 

and 

N /  Cx + Cz C~ Cx 2 z 
Z X X 2 "-[- Z 2 

8C~ Cx z 8Cx 
8z x x" Oz" 

For  points near the x-axis we may ignore the second term so that 

8C~ Cx 
8z x 

(3) 

Hence, equation (2) may be written, for the flow close to the centreline 

az¢ .a~¢  1(a¢) 
ax ~ . 7 =  - x  ~ " 

(4) 

The equation may be solved as it stands if the location of the origin 0 is known. It may be assumed 
that the mean axial velocity across a blade pitch Cx,. obeys a simple 'source' relation near the axis z = 0 

1 
Cxm x = constant = g .  (5) 

Further if the axial velocity changes from Cx,,, at the leading edge (x = xl) to Cx,,~ at the trailing edge 
(x = x2 = Xl +a ,  where a is the axial chord) and if the axial velocity ratio is 2 = Cx,,ffC~,,,, then 
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1 
-~ = Cxm, x l  = C . . . .  x2 = 2C~m~ ( x l + a ) .  (6) 

~ a  

For 2 < 1, x 1 = ~ and the location of the origin is determined for a diffusing axial velocity. A 
B 

similar simple source analysis gives the location of 0 downstream of the cascade, for increasing axial 
velocity across the cascade. 

There are several alternative forms of the potential equation (4), V2~b = F(x,y). The function on the 
right hand side may be written 

F =  1 a4) 
X ~ X  ~ 

cx dc~m a ~4) 
F - C~m dx - dx (loge C~,,) d--~' 

F = - KCx, .  dx 
l - a )  c~m a,k 

Cxm, d x '  

F -  Cx dh • d (log e h ) _ .  
h dx dx dx (7) 

where h is the height of the mean streamline as it passes through the cascade. 
It is probably a better approximation to assume that the product of axial velocity and channel width 

obeys the "source' relation. In this case C~m x = ~ ,  where d is the blade spacing and Yt half 

the thickness. The function F is then increased locally by a factor 

d 

d - 2yt 

2.2. Solution o f  the Potential  Equation. 

Equation (4) may be written as 

OzcP ' aEcP F(x ,y) .  
t x  2 t -~x2 = 

Price 9 has given a method for solving numerically this type of Poisson equation, which also arises in 
two-dimensional compressible flow through cascades. A similar method of solution is followed here, but 
several simplifications are made. 

The steps in the solution are as follows: 

2 2 0o. ~ 4~o 
1. Solve ~-~T-e 0 ~ -  = 0 for 0o, the incompressible two-dimensional solution, as a first approxima- 

tion. 
2. Evaluate the R.H.S. of (4), F(x,y) from this first approximation. 
3. Locate plane sources in the flow field, the strength of a source at any point x,y  being equal to the 

R.H.S. of (6). 
4. Obtain the induced velocities up, VF at the profile boundaries (parallel and normal to the profile) 

due to these plane sources F(x,y). (See Appendix A). 



5. Locate a line of singularities at the profile to cancel the normal induced velocities. 
6. Obtain the total induced velocities in the flow field due to the line singularities and to the plane 

sources. 
7. Add the total perturbation velocities on to the basic flow and re-evaluate the R.H.S. of (4). 
8. Iterate from 4 until convergence has been obtained. 
9. Calculate the total induced velocities parallel to the profile at the blade surface and calculate the 

circulation. 
10. Calculate the outflow angle and lift coefficient from this corrected circulation. 
The application of this procedure to solve a compressible flow is very complicated. In particular, 

numerical calculation of the induced velocities uv, vv (Step 4 above) at the profile is difficult and because 
of this a simplification to the problem was sought. If is assumed in Step 4 (Appendix A) that the distribu- 
tion of axial velocity (and hence the source strength) from the suction surface of one blade to the pressure 
surface of the next blade is linear with y at any x. This enables the area integral which gives the induced 
velocities to be evaluated analytically in the y direction before numerical integration in the x direction. 

3. Applications. 
Two applications of the analysis are given here, one to a cascade of flat plates and one to a cascade of 

cambered aerofoils with thickness. In the first application Weinig's exact solution to the incompressible 
flow through a cascade of flat plates l° is developed to give the potential solution ~b o required in the first 
approximation. In the second application, Schlichting's analysis v is used both for the basic incom- 
pressible flow and in the subsequent analysis. 

3.1. The Cascade of Flat Plates. 
The incompressible two-dimensional velocity distribution (Cxo, Cyo) obtained from Weinig's incom- 

pressible two-dimensional solution is given in.Appendix B. 
It is shown in Appendix A that the induced velocity on a plate or chord line, may be obtained approxi- 

mately, equation (A3), if the source strength (-KCxm (x) ~f-~) on each of the two surfaces is known. 

Using the two appendices the induced velocities associated with the first approximation, parallel and 
normal to the surface (x,y) may be obtained. 

Ur(X, Y)/C1 - 

X2 xZI 
2d . m sin fl I 1 + m cos fl I 2 sinh -~- (x - X) 

x l  

+ b sin fl 13 -k- b cos fl 14 sinh --d- ( x -  X) Ax (8) 

and 

X2 _IZ[ VF(X,Y)/C1 = ~ m c o s f l l l - m s i n f l I 2 s i n h - ~ ( x - X )  
x l  

q 
+ b cos fl I3 - b sin f114 sinh --d ( x -  X) ] A x  

where b = F l ( x ) - F .  (x), the difference in source strength from suction to pressure surface, 

(9) 



x[ ] m = F . ( x )  d t an f l  F l ( x ) - F . ( x )  

and 11, lz, 13 and 14 are integrals given in Appendix A. The limits of integration xa and x 2 are taken 
as 0-025 I cos fl and 0.990 1 cos ft. 

It is next required to distribute line vortices along the plate to cancel out the velocity vv, so that the plate 
lies along a streamline in the flow. 

After Schlichting v it is assumed that the distribution of vorticity along the chord is 

_ ® 
y(x') AoCot~+A~sin®+A2sin2®+ .+A,_~ sin ( n -  1) ® 
2C1 " ' 

(lo) 

where A o, At, A 2 . . . .  A,_ 1 are Fourier coefficients to be determined, and ® = cos-1 (2x'/l-1). 
Using Schlichting's analysis and following his notation, it follows that the induced velocities due to 

~(x') are 

i=n--j 

U~ 

i = 0  

Al g~,, (1 la) 

i = n - 1  

V~, =. ~ , 
C~ A, f  ,, (l lb) 

i = 0  

where g~, andf~, are factors tabulated by Schlichting. 
If the L.H.S. of equation (llb) is put equal to - VF / C j  from equation (9), then the coefficients A1 

may be obtained and the distribution of vorticity 7(x') can be calculated. 
1 0¢o 

The basic ¢o flow, the flow due to the sources - -  - -  and the flow due to the vorticity y(x') may now 
x Ox 

be added together to giye the resultant velocity on either plate surface. 

Cs = C~ o + uF + u~ _ 7/2 (+  for suction side and - for pressure side) (12) 

where C,o is the basic surface velocity. 
(C, may then be used for a second approximation. In the calculation described here, a second iteration 
has not been carried out because of the computation time involved). 

With the vorticity distribution 7(x') obtained, other cascade data follows. The change in tangenital f' 
velocity associated with the change in circulation 7(x') dx' is 

0 

ACt = ~ ~ (Ao +A1/2) C1. 

The modified inlet and outlet angles are then (see Fig. 2). 

tan ~1 = 
C1 sin al +½ ACy 

_ 2 1 t a n ~ 1 4  C~cos-----~I ' 



t a n 8 2 = C 2 s i n a 2 - ½ A C y = 2 + l  ( ½ACt ) 
Cx: 22 tan a2 C1 cos cq 

where 2 = C~/C,,. 
It may be shown that the lift coefficient is 

CL = 2 (d/l) cos 2 ~i cos fl (tan ~1 - 22 tan a2) + (d/l) cos 2 ~1 sin fi 

{(1 + t an  2 ~x)-22 (1 + tan  2 82)+2 (22_ 1)}. 

The percentage change in circulation is 

(zr(I/d)(Ao+A1/2) sinai  ) 
AF ~ = sin ~l - tan a2 cos al × (sin al +~-ACr /Ci )  x 100 

and the modified pressure coefficient is 

Cv=T-?-~=~pCl 1-- = 1-- Cl" 

It is worth noting that the pressure coefficient (and other quantities) obtained must be compared with 
that of two-dimensional flow with the inlet angle ~l, not ~ .  

3.2. The Cascade of Cambered Thick Aerofoils. 
The analysis for cambered aerofoils follows that of the fiat plates, but Schlichting's analysis is used 

from the start for the two-dimensional flow. The aerofoil is replaced by a source-sink distribution qo(x') 
and a vorticity distribution V0(x') along the chord line. The distributions are expressed as Fourier series 
and by matching the thickness slope and the camber-line slope at say n points, n Fourier coefficients 
in each series are determined. 

The velocity distributions on the suction and pressure sides are : 

Cm~, + Uqo + Uro + ~o/2, 

Crux' + Uqo + Uro - 70/2 

respectively 
where Uqo, Uro are the induced velocities due to qo(x'), 7o(X') respectively. The velocities on the profile 
surfaces are : 

(dy. h 2 ) 

( )/( : .v)'  C,ol = Cm,, + Uqo + Uro - 70/2 1 + \ dx' J 

where y,,, Yl are the ordinates of the suction and pressure surfaces. 
From these velocities the plane source distribution F(x,y) is calculated along both sides of the chord 

line and the induced components of velocity (up, re) due to F(x,y) at the chord line are obtained as in 
application 3.1 and Appendix A. 

Next additional line vortices 7(x') and line sources and sinks q(x') are located on the chord line to 
produce induced velocities ur, v :  uq, vq respectively. 



These velocities are calculated using the Schlichting equations : 

i = n =  1 i=n  

2 2" (Uq+U~) _ Aig~l+Bog~o + Bigq,, 
C1 

i = 0  i = 2  

(13a) 

and 

i = n = l  i = n  

C ~  - A i f ; '  + B ° f  q° + Bifq~ 
i = 0  i = 2  

(13b) 

where BI are Fourier coefficients defined by the series : 

i =n  

o Z q(x') _ B® (Cot-~- - 2 sin ®) + Bi sin i ® 
2C1 

i = 2  

(14) 

® and Ai are defined as in equation (10). Again g~, g~, f~ ,  fq are factors tabulated by Schlichting. The 
slope of the camber line is now 

dye _ C, , ,  + (Vqo + G'o) + (vq + v~) + vv 
dx' Crux' + (Uqo + U~o) + (uq + u~) + ur " 

and the slope of the thickness distribution is 

dyt 

dx' 

{" OUr 
½ qo(x')+½ q(x ' ) -y t  ~, ~; -x , -F(x  ) J 

C., ,  + (u~+ ur) + (Uqo + Uro) + uF 

These equations can be solved for n points to yield the unknown Fourier coefficients in the distributions 
7(x'), q(x'). The corresponding velocities (uq + u~) and (Vq + v~) are then obtained and the modified velocities 
on either side of the chord line are then known, and the velocity on the blade surface is obtained as in 
the normal two-dimensional solution. 

The steps in calculating ACy, AF, ~1 and ~2 are all similar to those taken in solving the flat-plate problem. 

4. Calculations. 

4.1. The Flat-Plate Cascade. 
Fig. 3 shows the pressure distribution obtained from Weinig's solution for a flat-plate cascade of 

space-chord ratio 0.875, set at a stagger of 36 ° and an incidence of 20 ° for which a2 = 36"75°- 
Fig. 4 shows the distributions of induced velocities due to plane sources calculated from the first 

approximation and Fig. 5 shows the perturbation vorticity distribution along the chord. The percentage 
change in circulation is A F ~  = -7.50.  Fig. 6 shows the distribution of chordwise components of 
velocity due to line vortices on chord. 

It follows that 

~t = 57"30o, ~2 = 36"30°. 



Fig. 7 shows a comparison between the pressure distributions when there is an increase in axial velocity 
of 15 per cent of a decrease of 20 per cent for the same inlet angle. 

4.2. The Cambered Aerofoil with Thickness. 
The flow past a cascade of aerofoils of profile 10C430C50, set at a stagger fl of 36 ° and a space-chord 

ratio of 0-875, was calculated. The inlet angle el was assumed to be 52.00 in the preliminary two- 
dimensional Schlichting calculation. 

Fig. 8 shows the distribution of induced velocities at the chord line due to plane sources F(x,y) calculated 
from the first approximation. 

The modified pressure distribution Cp is shown in Fig. 9 fork = 1-10 and 2 = 0-90. The corresponding 
air angles are 

~1 = 52"800, ~2 = 28"500 (4 = 1.10). 

For  a two-dimensional flow with the same inlet angle el = 81 -- 52"80°, the outlet angle c~ 2 = 29 ° 
and the pressure distribution is as shown in Fig. 9. 

5. Conclusions. 
A method is given for calculating the pressure distribution and fluid deflection in a cascade across 

with a change in axial velocity takes place. It is shown that there are substantial changes in these quan- 
tities with axial velocity ratio (4 -- Cx2/C,I). In particular the diffusion on the suction surface of the 
blade is altered considerably. 

It is particularly important to realise that the value of 2 increases towards the stall point because of 
end wall effects in the cascade, and any two-dimensional calculations of boundary-layer development 
and separation are not valid unless the effects of axial velocity ratio are included. 

The method described is approximate in two ways 
(a) a linear distribution of equivalent source strength from blade to blade is assumed. 
(b) an approximate result is used for one of the integrals in the analysis. However it is submitted that 

the analysis is sufficiently accurate for practical purposes. 
A comparison is given in Fig. 10 between calculations based on the present analysis and the analysis 

of Ref. 6. The difference between the two pressure distributions occurs mainly on the front part of the 
suction side due to the inclusion of a non-uniform source distribution in the flow field. 

It should be noted that a simple extension of the analysis enables a solution to the compressible flow 
in cascades to be obtained (an approximate solution of the problem as posed by Price9). Details of this 
work form the subject of another paper. 
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APPENDIX A 

The Induced Velocity on the Chord Line due to the Distributed Sources. 

Fig. 11 shows the induced velocities ue and vv parallel and normal to the chord line of the blades due 
to distributed sources of strength F(x,y). Price 9 has shown that the induced velocity on the surface at 
(X, Y) due to source patterns repeating to infinity is 

2= 2n ) 
uv(X,Y) = - i f  F(x'y) sinflsin'-f(y-Y)+cOsflsinh-~-(x-X) dxdy 

(A1) 

2r~ 2n ) 
i+f°°F(x,y) cosflsin-7(y-Y)-sinflsinh--~(x-X) 

- V  i o - ~ 2d cosh-~- ( x -  X ) -  cos -~- ( y -  Y) 

It is next assumed that F(x,y) varies linearly from F,(x) on the suction surface to Ft(x) on the pressure 
surface at a given x 

i.e.F(x,y) = (Fl(x)-F"(x) 

so by substitutions 

x2 y u + d  

uv(X,y)=_f f m+b(f) sinfl's+c°sfl'Sdydx 
2d C-c ' 

Xl Yu 

x2 y u + d  

vF(X'Y)=-f  f m+bO0 c°sf l ' s -s inf l 'xdydx2d C-c 
Xl Yu 

(A2) 

where 

2n 2n 
s = sin ~ ( y -  Y), S = sinh ~ ( x -  X),  

c = cos ~ ( y -  Y), C = cosh ( x -  X), 

rn= F~(X)-d ( F,(x)-F=(x) ) , b = Fl(x)-F~(x), 

t y 

y~ - tanfl ,  f =  3 
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The integration with respect to y may be obtained analytically, and ihe subsequent integration with 
respect to x is carried out numerically. 

Equation (A2) can be written" 

where 

uF(X,Y) - 

X2 

~-d 2 (m sin [l l x + m cos [t S I 2 + b sin [J I 3 + b cos fl S I,d Ax  , 

x l  

VF(X,Y) - 

x2 

'2 2d (m c°s fl l l - m sin fl S I 2 + b c°s fl I 3 - b sin fl S I 4) A x  

XI 

11 

2~ 
Y"+/ sin -~ ( y -  Y) 

J 2n dy ,  
yu C -  cos ~- ( y -  Y) 

(A3) 

12 

y u + d  

f 2n dy , 
y, C -  cos -d- (y - Y) 

13 

27~ Y" +/(y/d) sin -d- (y - Y) 

% !~, 2n dy ,  
C -  cos -~- ( y -  Y) 

yu+d  

14 = f (y/d)2n dy.  (A4) 
yu C - cos -d  ( y -  Y) 

It may be shown that these integrals are 

I1 = 0 , I 2  = ~ 7 - C - T ~ , I 3  = In C - c o s e  
f (C)  ' 

C ~ 2 - 1 [  1 ( x / C 2 - 1 s i n e )  d ]  I4 = ~ t a n -  1 + 
1 - C cos e 

(A5) 

where 

f (C)  "-" C ~ . ( C -  1) ~ . (C+ 1) ~ , 

2n 
e = -~ (Yu- Y), 

I1, 12 and 14 are exact. No analytical solution for I 3 has been obtained, but the approximate result given 
is obtained by graphical plotting and use of the other integrals. 
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APPENDIX B 

W e i n i f  s Two-Dimensional Solution for the Flat Plate Cascade. 

Weinig 1° gave an early exact solution for the flow past a cascade of flat plates. He used the method of 
conformal transformation, from the cascade plane to the region outside a circle. 

Using the notation of Fig. 12 it may be shown by developing Weinig's analysis that the velocities 
Cxo, Cro at the point (x,y) are given by: 

Cxo 1 0q~o d~ I 
C m' = C'--mm 0% = [wO COS 6 + (W 1-1- W,~) sin 6] x ~ x 

(x,y) 
cos fl, (B1) 

Cro - 1 O~% [WoCOSa+(w~+w2)sin6]x & x 
C m C m Oy (x,r} 

sin fl (B2) 

where 

4R d 
Wo = [(R 2 - 1 )  sin fl cos 0 - ( R 2  + 1) cos fl sin 0] x-a--, 1 )2 -4R 2 cos  2 0] 

-4R 
wl = [ ( R 2 + l ) 2 _ 4 R 2 c o s 2 0 ] [ ( R 2 + l ) s i n O s i n f l + ( R 2 - 1 ) c o s O c o s f l ] x  , 

4R d 
w2 = [(R2 + 1) 2 _ 4R 2 cos20] [(R2 + 1) sin 0st sin fl+ (R 2 - 1) cos 0s, cos 1/] x 2-~n' 

[ ] G = t a n  -~ t a n ~ R 2 + l  } , 

where 

R 1 X t  = c o s 2 0 - ~ [ l + c o s 2 f i ( R 2 - c o s 2 0 ) + s i n 2 f l s i n 2 0 ] ,  

1 [R 2 _ cos 20  sin 2 f l -  cos 2 fl sin 2 0 ] ,  Y1 = R sin 2 0 - - ~  

X 2 = (R2 +~2)  cos 2 0 - 1  +sin 2 2 0 - c o s  2 2 0  and 

Y2 = ( R2 +~-~2 - 2 cos 20) sin 2 0 .  

0 is varied from Ost to 0n + 2n to obtain the suction and pressure sides successively. 
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