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The plane inocngressible flow past two symmetric curved obstacles, 
between which Is a finite constant pressure cavity, is calculated for the case 
wfien the cavity length and pressure are i'cnctians of time. 

1. introauction 

In spite of its obvious applications to the theory of underwater cavity 
formation the subject of unsteady oavitatirg flow has *r&y recently received the 
attention of applied mathematicians, von Karmanl calculated a particular 
metrio unsteady flow with a f3nite cusped cavity behind a flat plate, while 
Gilbargg has obtained a formula giving all such flows not on& for a flat plate 
but also for any -metric polygon. Unfortunately cusped cavities have the 
series defect cf be3ng piWsical.b unrealistic in the limit as the flow bec*mes 
steady. In steady flow physical cavities almost invariably have posrltive 
values of the ravitation number Q, (defined in equation (5)), but for cusped 
cavities, 0 < 0. A second unrealistio feature of these cavities is that the 
flrw separates from the obstacle behind the point of mlxirmun pressure - a 
defect which applies, in ;ir(y case,11 flows pastpolvgons. A full 
discussion of these points (for the steady case) occurs in Rof.3. By 
continuity these defects must also appear in the unsteady flows f>r which the 
rate of change of cavity length is small, but in general. it is only these 
slowly varying flows that are likely to be ndcquately reprosontod by the theory. 
The reason for this is that tho free boundaries enclosing the cavity are 
3CtuCLly material lines, and generally not the streemlinas it is necessary to 
assum they UTc in the mathematical theory. As pointed cut by Gilbarg2, it is 
physically reasonable that errors from this approximation can be neglected for 
slowly vaying flaws. 

The introduction of s second body at the rear of the ccvity, as in 
Riabauchinskyls model of steady cavitating fLcw3, overcomes the above mentioned 
defects. In the next section we shall obtain a fonmrln for the qvmmotriccJ 
unsteady flow about two curved obstacles bokeen which extends a cavity for 
which the pressure is constant at nrly gxven time. Fig. I, where B is moving 
relative to A alon';tho axis of metry, illustrates such a flow. Gilbarg ' s 
rosilt is the special case when A is a ptlygon and B degenerates to a point. 

2. Goneral Theory 

One form of tho diffarential equation of the flew Is 

Vf = 0, . ..(I) 

where 

f = log(U/q) + ie, . ..(2) 

i/ 
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i = n, (q,e) is the veloci vector in polar co-ordinates and U is the 
velocity nt infinity. can be written in the alternative form 

az 
f = l*g u-- 

( ) 
, 

d.W 

where z is the p&sical. plane, e q x + iy, and w is the complex potential, 
w = $+iy. Equation (I) holds in the z-plane and in fmy other plane derived 
from it by a oorXonnal tr~sfozmat~on. 

The upper halves of the w and e-planes are shown in Fig. 2 where the 
dotted line representing the free boundary is assumed in tho following analysis to 
be the streamline 9 = 0. The boundary conditions are that 6 vanishes in 

while on CD the velocity satisfies 

a 
= 1 +0-Q--#, 

at 

where 

8 = (Pm - Po)APU', . ..(5) 

PC and. Pm arc the pressures in tho cavity and at 
is the deneity and t is the tA+e,. In addition if 0 

Is the cavitation numbor, 
infini~ respectively, Q 
is measured f'ran the flaw direction at infinity, then from (2) 

limf(e) = 0, . ..(6) 
z= ea 

while the absence of circulation about the obstacles requres that 

lilil Zf(2) = 0 . * . ..(7) 
.ZCW 

The solution >f (1) in the e-plane, shown in Fig. 1 and defined by 

w = a(1 - coth e), e = 6 + i4;, 6,& real, . ..(8) 

been calculated4 for the boundary conditions, 8 known on & = 0 
known on & = ?JTL The result is 

ta&-' exp(6* - e) de(P) - - tan+ exp(6* - E) dr(S*) P 

. ..(v) 

where 0 is the f'low direction on E; = 3s and f. is the value of 5 = 0, r is the ~UQ of l&J/d on 
at w = 0 (point C in F&. 2). On 

the free streamlines, c = +I, and (8) becomes 
= Q/ 
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Q = a(1 - bnh6), 

so that equation (l+) OM be written 

2a’ 2a' 
r = - + log 1 + Q - ..-m + ___ tm 

vo lJ= 
. ..(lO) 

the dash denoting the time rate of change. From (9) and (10) 

2 w 
f(E) = fo + - ' 

J 

2a' w 
tanhA exp(6" - E) ae(s*) t --- 

i 

se& 6* tan4 ,6*-e &a 
-------_---_------------- 

x 6*i-a, dJ= 7x) 23' 2a' 
1 + Q - m-v + --- ta&-, 6* 

u= u= > 

Two disthot cases now arise, one of 

. ..(n) 

whloh, it is shown below, is physically 
unrealistic. 

4a' 
Case I:- If 1 + Q >, ---, equation 

lJa 
(:I) becomes 

2 00 
f(e) = f, + - 

6 
tant? exp(b* - a) d8(6*) 

= Loo 
t log (;+zJ, 

w-here 

4n’ 
Case II:- If I t Q ,( ---, 

VP 
equation (11) becomes 

2 00 
f(E) -= f. + - 

71. d 

+ e-e a 
tarWi exp(S' - e) d9(6*) + $ log 

(1 1 
*z-w ‘: 1 

---------- , 
I - h'e'ae 

. ..(12) 

. . 

. ..(13) 

. ..(14) 

where ka is now a negatzve number. Xow 
the free strwmline E = 6 t &!A, where, 

(1 - A'e"') vanishes at some point 3n 
from (14), the direction of the free 

streamline 1s discenttiolous. This is pbsically unrealistic, so Case II will net 
be considered further. 

It is cenvenient to transform the solution (12) into the c-plane shown 
in Fig. 2 and defined by 

. ..(15) 

It is easily verified that this equation transforms the upper half of the w-plane 
into the upper half of the unit olrole in the &p&e, From (8) and (15) 
equation (12) then becomes 

fez.)/ _ 



f(G) = fo + 1 
1 /' - aI* 

log 
L 

------- ae(i7") - log(1 - UZJ ) . ..(16) 
n "51 g - 11* 

where 

X-l . 
u = ----- , . ..(17) 

X+1 

From (6) and (7), w = uz + O(z"), so that from (15) tho two conditions at 
infinity are equivalent to 

Equation (16) snd theso two ltits yxLd 

1 1 
f, = - 

i 
Log(- 71*x) de(?) )' 

n 'z-1 

and 

1 1 

i ( 

1 
0 =,- q' - - ae(rJ*) . 

n *a-j rl* 

At w = 0, 8 = DO, and (10) yields 
' : 

r. = - 3 log (1 + a) ; 

whence (18) OM be written in the more usefkl form 

Combining (16) and (18) wo hzve 

dw 
w- = u(1 - a) oxp - 
dz 

c 

or if F(g) is defined by 

F’(g) = --------- exp 

. ..(18) 

. ..(I91 

. ..(20) 

log(~-~-E)deh*)]} ag, . ..(22) 

then/' 
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then the required solution is given parmetrically by 

z = ,” F(C) , 
2u 

The follmmg spcc~dl oases of the above theory are of some mtcrest. 

(a) In the case of 3. cusped cavity e(n") = Oh- 1 .< V* 4 k, k > 0 . 

(b) If in sddltion e(n*) is a step-function, l,e., the obstaole 1s a 
polygon, the Stmltjes integrals in (19) and (21) degenerate to 

dW 
-- - z Fi (I - e&)(ki . ;;j] F;(;-!-$j-ai, ki> 0 , . ..(24) 

where the angle between the x axis and the first side of tho 
polygon is a,% and the vertex angle of the polygon exe 
%,?I, i = I,2 , . . . n - I. 

In the CCSe Gf a flat plate a, = 4, ai = 0, SO that 

$ = ,,~+o~;.?](~-~mf!i$- . ..(25) 

Equations (24) and (25) are.duo to Gilbarg2. 

Cavities of constant shape are obtained when e(tl*) is mdependent 
of time, and in this case the theory 1s exact, since tho free 
boundaries arc also streamlines. For the case of a flat plate the 
constant shape cavities are thus given by the equation k. = constant. 

Von Karman' obtained the particular case of a constant shape cavity 
behind a flat plate for which u = - 1, (cf. (23)), 
i.e., k. = &c-T, 

The case u = 0 is the theory of steady Riabouchin&y flow about 
curved obstacles. 

For the reasons given in the Introduction the cusped cavities described 
(e) are not satisfactory representations of pwsical cavities. 

The simpled possible model of cavitating flow without a cusped cavity 
is shown in Fig. 3. There are'discontmrLties of $X in 0 at 
q)* = k. and rp = 'k,, 
Equations (19) - (22) yield 

say, where ko, h > 0. 

and equation (15). One final point in this general theory is that since the 
positive square root must be taken in (13) It follows from (I 7) that 

3. Speoml Cases 

U&-l. . ..(23) 

. 
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(1 + kdc, ) (kc - k ) 
u = ------------------- , 

2ks kc 

1 
Q = 1 ---- - *, 

kdr, 

1 
dW 1-c/kol+t;/k,2 
em = u(1 -UC) -------- -------- , 

as 1 -Cko 1 +& > 

h = ; !F(l) - F(kc)l , . ..(29) 

. ..(26) 

. ..(27) 

. ..(28) 

where 

F(Z) = 

‘-gkc I+& 
------mm -s------ ar; , 
I-zfk,l+~ 

. ..(34) 

2h is the width of the front plate, end 1 is the cevity length. 
F(Z) is expressible in terms of elolnontary fLzndS.ons. 

Suppose U, h, a' and Q are known, then (13), (17), (26), (27) and 
(29) determine the corresponding values of kc, ki and a. The length of the 
cavity, which cannot be assigned independently, follows from (so), while (28) 
completes the description of tho flow. 

The drag coefficient on the front plate is given by 

(Cp + Q) aY(‘d , 
0 

where Cp is the pressure coefficient on the 
From (4) x-d (15) 

"w&ted" surface of the front plate. 

where from (28) 
. 
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4. Curved Obstaclei 

To fix ideas consider the-case of a continuously curved obstacle, the 
cavily behind which is completed by a flat plate as ahown in Fig. I+. Where ~(TJ") 
is continuous, 1.8.) in ko < q* 6 1, 

aedsa$ 
de(+) = - -- --- dlj” ) 

as a# a~* 

i.e., 

ae(t;") = 
a 1-p 

_ _- ---- at)* ) 
m P 

where R = - as/de, is the radius of curvature of the surface. From equations 
(IY), (20) ma (34) 

(1 + k&,)(ko - k,) 
Q z! -----.!------------- 4. WI ---------- dtl , ..*(35) 

zkok, 

1 1 u 1-g 
Q = e--w exp -- ------ log q drj - I ) 

kc% Rq rla 
0 

. ..W) 

where we have used the same notation for the discontinuities in 6 as in 
section 3(g). On Z = 11, k,( TJ < 1, equation (21) becomes 

1 u 1-l)" 1 - m* 
-- ------- lag -------- &J* 

o Rq r)* 1 - dl* 
. . . 

!&is inte ml equation aa.n be solved by the following iterative process. 
A distribution q(n is assumed. rind used in 

-----m - dq, k,,< 114 1 , . ..(38) 

to find the perlneter SM3.nce, s, from the front stagnatIon point. This enables 
the known R(s) relation to be changed to a R(v) relation, which together vath 
the assumed q(V) aan be usea under tho integral sign in (37) to obtain n new 
q(r)) relation, thus completing the firat iteration. The prooess is now repeated 
until q(q) is unchanged by an iteration. 
be modified to satlsfy (35), (36) and 

At each stage ko, k, and "a" shalcl 

where/ 
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where 2S is the total wetted perimeter distance. In general the integratmns 
have to be perf'omed numericam. When the solution on t; = TI has been found, 
the solutxon for general values of t: follows from (21) and (34) without further 
iteration. The questlon of the convergence of the iterations still remins, but 
experience vslth similar integral equatmn& leads the author to expect praCtlCdl 
convergence 3.n most oases. 
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FIG I 

Unsteady Rtabouchhsky Flow. 
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