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Surmary

The plane incompressible flow past two gymmetric curved obstacles,
between which is a finite constant pressure cavity, is calculated for the case
when the cavity length and pressure are functions of time.

1. Tntroduction

In gpite of 1ts obvious applications to the theory of underwater cavity
formation the subject of unsteady cavitating flow has only recently received the
attention of applied mathematicians, von Kerman! calculated a partioular
grmmetrio unsteady flow with a finite cusped cavity behind a flat plate, while
Gilbarg? has obtained a& formula giving all such flows not only fer a flat plate
but alss for any gymmetric polygon. Unfortunately cusped cavities have the
series defect cf being physically unrealistic in the limit as the flow becames
steady. In steady flow physical cavities almost invariably have positive
values of the ravitation number @, (defined in equation (5)), but for cusped
cavities, Q < O, A second unrealistic feature of these cavities is that the
flaow separates from the ebstacle behind the point of minimum pressure = a
defect which applies, in any case, to all flows past polygons. A full
discussion of these points (for the steady case) occurs in Ref.3. By
contimuity these defects must also appear in the unsteady flows for which the
rate of change of cavity length ia small, but in general it is only these
slewly varylng flows that are likely te be adequately reprosented by the theory.
Tho reocsan for this is that the free boundaries enclosing the cavity are
actually material lines, and generally not the streamlines it is necesgary %o
assume thoy ere in the mothematical thecry. As pointed out by Gilbarg?, it is
physically reasonable that errors from this approximation can be neglected for

slowly wvaxrying flcws,

The intreduction of & second body at the rear of the cavity, as in
Riabouchinsky's model of steady cavitating flowd, overcomes the above mentioned
defects. In the next secticn we shall obtain a formula for the gymmotrical
unateady flow about two curved ohstaclea botween which extends a cavity for
which the pressure is constant at any given time. Fig, 1, where B 1is noving
relative to A alon;tho axis of gymmetry, illustrates such a flow, Gilbarg's
result is the special case when A is a pelygon and B degenerates to a point.

2« General Theory

One ferm of the dif'ferential equation of the flew ig

Vir

0, : v (1)

where

Hh
fl

log(U/q) + 18, e se(2)
i/
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i = v -1, (q,8) is the velocity vector in polar co=ordinates and U 4is the
velocity at infinity. Equation (2) can be written in the alternative form

dz

f = 1eg<U—-), eeo(3)
aw
where =z is the physical plane, 2z = x + iy, and w 4is the complex potential,
W = ¢ + dy. Equation (1) holds in the z-plane and in any other plane derived

from it by a conformal transformatien.

The upper halves of the w and z-planes are shown in Fig. 2 where the
dotted line representing the free boundary is assumed in the following aonalysis to
bg the streamline y = 0. The boundary conditions are that 6 wvanishes in
A B, FFyw ond is known in BC and DE, while on CD the velocity satisfies
Bernoulli's equation

g 3
(-) = 1+Q=p -9, eon(l)
U 9%
where
Q@ = (Px - DPo)/200%, e o(5)

1s the cavitation mubor, e and R,e are the pressures in the cavity and at
infinity respectavely, p d4is the density end + is the time. In addition if O
is measured frem the flow direction at infinity, then frum (2)

lim £(z) = 0, .o o(6)
Z= 00

while the absence of circulation about the obstacles requires that

Lin 2f(z) = 0. ere(7)

The solution »f (1) in the e~plane, shown in Fig. 1 and defined by
w = a(1 -cothe), ¢ = & +iE, 8,E real, N E:)

has alresdy been caloulatedt for the boundary conditions, 6 knownon & = 0
and log(U/q) known on E = $r. The result is

2 . 2 rx
= o+ = f tanh™ exp(8* - €) a6(8*) -~ - f tan™ exp(8* - ¢) ar(s*) ,
L) eee(9)

LR T gm0

where O is the flow directionon & = 0, r is the value of log(U/q} on
E = 4w, ond f, is the value of f at w = O (point C in Fig. 2). On
the free streamlines, & = %%, and (8) bocomes y



so that equation (4) oan be written

H
1]

2at 2at
1 - e o m—
Z log (1 + Q Ua + Ua tanh 6) Y Q..(10)

the dash denoting the tame rate of change. From (9) and (10)

»
2 p o 2al .00  geok’ 6% tan=t &0 ~€ a5¥
£(e) = £+ - [ © o™ exp(8* - €) a5(8%) + o / e e
T deg_ x4 2at  2at
=00 "°°(1+Q----+---tanh5’)
U: U3
e (11)

Iwo distinct cases now arise, one of whach, it is shown below, is physically
unrealistic.

ha'!
Cage Ii= If 1+ Q3 --=, seuatien (1) becomes
U
2 poo : 1 + o€
£(e) = £, + - parh=t exp(5% - €) aB(d*) + 103( -------- ) . eee(i2)
'S S 1 + o™
where ..
1 4+Q = J_,.a.'/'Ua
A= ( b 7 e 0 ") . ¢-0(13)
1+ Q
Lot

Cose IT:= If 1 +Q & =--, equatien (11) becomes

£(e) = fg + = tarh™ exp(d* - €) a6(3™®) + % log € mecmm——m—= ), L.o(1L)

1 - 2,.=23¢€
e ¥ o Ae

2 [W (1 + e-e)’
where A* is now a negative mumber. Now (1 = Ae"?€) vanishes at some point on
the free streamline e = & + %im, where, from (14), the direction of the free

streamline 1s discentimious. This is physically unrealistie, so Case II will net
be considered further,

It is cenvenient to transferm the solution {12) into the Z~plane showm
in FPig. 2 and defined by

1
w = a 1--%(?;’,+E) y & = 7n+ iy, n,y real «oo(15)

It is eagily verified that this equation transforms the upper half of the w-plane
into the upper half of the unit circle in the &-plane, From (8) and (15)
equation (12) then becomes

£(2)/ -
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1 /1 - ;n*

£(z) = £, + - e\ T )de(ﬂ*) - log(t = o%) ,  «..(16)
T g - n*
where
A=1
T = mewe- eae{17)
A+ 1

From (6) and (7), w = Uz + 0(z"?), so that from (15) tho two conditions at
infinlty are equivalent to

1
lim £(Z) = lin-f(%) = 0.
£=0 £=0 g

Equation (16) and theso two lamits yield

1 A
gy = - Z rog(= %) a6(r®) ,- o ea(18)
iy *...1
and
1 4 1
o = -[ (n‘- -= as(n*) . eee(19)
T ¥ 7

At w = 0, 8§ = o0, and (10) yiclds
Te = = +log (1 +Q) ;
whence (18) can be written in the more useful form

2 1
Q = exp{ -j. log( n*) de(n*;L -1, «s+(20)
n n¥== J

Combining (16} and (18) weo have

aw 1 pt 1 - Zn*
- = 1 - - JOR | e * ) s 21
- U(1 - o%) oxp “'/;1*31 103(1 - ;/n*>d3(n ) (21)
or if F(Z) is defined by
1«2 1M 1 - Yn* !
F - o o e - 1 JOR| meesamowama * y ene
(¥ f { o e [) . g 3o ) a8() J i, .n(22)
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then the required solution is given parametrically by

&

z = --FZ),
2U

ond equation (15). One final point in this general theory is that since the
positive square root must be taken in (13) 1t follows from (17) that

ocp -1, veo(23)

3, Bpecaal Cases

The following special cases of the above theory are of some interest.
(2) In the case of a cusped cavity O8(n®) = Oin-1< 7 ¢k, k>0 .

(b) If in eddation 8(n*) is a stop-function, z.e., the obstacle is a
polygon, the Stieltjes integrals in (19) and (21) degencrate to

aw n-1 1| net 1 = gy o
— = U -z 2 (1 - ay) (ki - --) I (--------) s ks> 0, eon(2L)
dz k_-j_ i=0

wheore the angle between the x axis and the furst side of the
polygon 1s ag® and the vertex angle of the polygon are
a'iﬂ,i = 1 2, eee N = 1,

(¢) In the case cf a flat plate o, = %, a4 = O, so that

ool (HE) e

Bquations (24) and (25) are-due to Gilbarg?.

(d) Cavities of constant shape are obtained when 6(n*) is independent
of time, and in this case the theory is exact, since the free
boundaries are also streamlines. For the case of a flat plate the
constant shape cavities are thus given by the equation ks = constant.

(e) Von Karman! obtained the particular case of a constant shape cavity
behind a flat plate for which o = -1, (ef. (23)),
i-eo, ko =v2 =1,

(f) Tho case o = 0 is the thcory of steady Riabouchinsky flow about
curved obstacles,

For the reasons given in the Introduction the cusped cavities described
in (a) -~ (e) are not satisfactory representations of physicel cavities.

(g) The simplect possible model of cavitating flow without a cusped cavity
is shown in Fig. 3. There are‘discontimiities of Zx in 6 at
n* = ko and n* = ~k , say, where kg, k, > O.

Equations (19) = (22) yield

v/
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(1 + keky ) (ko = I )

¢ = e + o o(26)
2k ko
1
Q@ = == - 1" 300(2?)
kol
1 - 1+ 2
C_lf.v = U(1 ..o-z_’,)<........{°.£1:9. --__.Z:.‘.{ii) , o (28)
az 1 =Zky 1+ %k
B o= - [P(1) - P(ko)] e (29)
and
| L= e [F) - (K )] cer(30)
2u
where
z 1=z 1~;k01+g1g1§
F = | 2 mee—e——aaeee o az , 000(31)
2 / z? (1 -UZ)(‘l-g/ko‘l+§/k1>

2h 1s the width of the front plate, and 1 dis the cavity length.
F(Z) 4is expressidle in terms of elementary functions.,

Suppose U, h, a' and Q are known, then (13}, (17), (26), (27) ard
(29) determine the corresponding values of ko, ki and a. The length of the
cavity, which cannot be assigned independently, follews from (30), while (28)
coppletes the deascription of the {low,

The drag coefficient on the front plate is given by

1

1
cp = / (Cp + Q) ay(n) ,
h 1=k,

where Gp is the pressure coefficient on the "wetted" surface of the front plate.
Fronm (L4) and (15)

a 1 q .1 ata g1 U1 gt
Cp = 1+Q-= ---f - (-; - 1) dn + ----a-f - wmeewe dp , eee(32)
2nU J, U7 2h0° dy, 4 n°

where from (28)

.

4
- = (1 -0om) —— -> . ees(33)

Lo/



L. Curved Obstacled

To fix ideas consider the case of a contimiously curved obstacle, the
cavity behind which is completed by a flat plate as shown in Fig. L. Whers 6(n*)
is continuous, 1.e., in k, < 7* ¢ 1,

dd ds d¢
(1) = = == =z an®,
ds d¢ dn
ilaij
« a 1 -n* "
a8(n") = = =m= emw=eemdn” . oe(34)
2Rq 7

where R = = dg/d8, is the radius of curvaturse of the surface. From equatisns

(19), (20) and (34)

(1 + kel ) (kg = ky) & 1 U(H = )

¢ = mmmmm SRS " #mme [ e an vee(35)
2kal, enl Jk, RqT7
and
1 a p1 U 1a-p
Q - el exp - f A lclg n dn - 1 r 000(56)
Kok g AU d Rgo 00
0

where we bhave used the same notatioen for the discontinuities in 6 os in

section 3(g). On ¥ = n, kg¢ n< 1, equation (21) becomes
1
ko = 14+ 1k N2 a 1 U1 -ne 1 em*
q(n) = Uv(1 - m)(---—-—--—- ----——---) EXp | mmm — e——— log wem—m=- : .
1= ko 1 + 7K, ol Rqg n* 1 -1/
° «e(37)

This integral equation can be solved by the following iterative process.
A distribution q(n) is assumed and used in

n U a Mm1-nU
Us(n) = f - df(n) = -[ memem = ANy kg < Mg T, e e{38)
ko 4 2%, T a

to f£ind the perimeter distance, s, from the front stagnetion point, This enables
the known R(s) relation to be changed to a R(n) relation, which together Wwath
the assumed q(n) oan be used under the integral sign in (37) to obtain a new

a(n) relation, thus completing the first iteration, The process is now repeated
until q(n) is unchanged by an iteration. At each stege kg, k, and "a" should
be modified to satisfy (35), (36) and

a 1-nfU
US & = | oweee= =dp,
24, ”? q

where/
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where 25 is the total wetted perimeter distance. In general the integrations
have to be performed numerically. When the solution on & = 7 has been found,
the solution for general values of & follows from (21) and (34) without further
iteraticn. The question of the convergence of the iterations still remains, but
experience with similar integral equatlon35 leads the author to expect practical
convergence 1n most cases.
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